
1

Zmotion RTBasic Program Manuals

Version 1.1.0

2

Foreword

Zmotion Technology is a national high-tech enterprise, which devotes to study motion control and

general motion control products. Zmotion Technology has attracted experienced talents from

famous companies or institutions, such as Huawei, ZET, Huazhong University of Science and

Technology etc. Zmotion insists self- innovating and collaborating with comprehensive

universities to research basic knowledge of motion control. Due to its concentration and hard work

in motion control technology, ZMOTION already become one of the fastest growing industrial

motion control companies in China, and it is also the rare company that has managed core

technologies of motion control and real time industrial control software completely.

All Zmotion products development obeys standard IPD-CMM from Huawei, which means they

have stability and reliability of telecom level, perfect compatibility and expansibility of software

or hardware. Zmotion provides powerful and convenient ZDevelop development environment, and

it supports ZBasic, ZPLC ladder diagram and ZHMI configuration second-development and

hybrid program. Real time simulation and online-tracking Debug are available, also it supports all

kinds of control systems call different program language’s function library.

This manual is to better serve customers and provide customers with more comprehensive

reference materials. ZMOTION is committed to the continuous optimization and improvement of

products, so that customers can quickly understand our products. And the product manuals will

also be updated all the way.

This manual includes the use of Zmotion ZDevelop software, detailed instruction, program

operation logic description, motion buffer principle, expansion module, axis application, controller

introduction and wiring reference between the controller and other components, and it can support

multiple communication methods. In addition, application routines of typical industries are

provided for programming reference.

 Relative Program Manuals:

ZMotion PC Function Library Program Manual

ZMotion PLC Program Manual

ZMotion HMI Program Manual

ZMotion Robotic Arm Instruction Description Manual

ZDevelop Use Manual

These materials and other hardware manuals all can be downloaded from

http://www.zmotionglobal.com

http://www.zmotionglobal.com/

3

Safety Tips

1. Precautions

➢ The controller is highly integrated, and it is designed to be small and lightweight, that’s easy

to install, and users can use the space efficiently. The controller can be installed on a panel or

standard rail, and it can be installed horizontally or vertically.

➢ As the basic rule for installing and arranging various equipment in the system, isolate low-

voltage logic equipment such as controllers from heat radiation, high voltage and electrical

noise, and keep away from dust, corrosive gases, water, oil, chemicals and other places.

➢ When configuring the layout of the controller on the panel, since the controller will generate

heat when running for a long time, it should be considered to arrange the controller in a

cooler area, and less exposure to high temperature environment will prolong the service life

of electronic equipment. The high temperature environment may cause that the controller

can’t be used normally.

➢ Also, wiring of the equipment in the panel should be considered during installation. Avoid

laying low-voltage signal lines and communication cables in slots with AC power lines and

high-energy fast-switching DC lines.

➢ Please leave sufficient interspace around the controller for cooling and wiring of the

controller. The controller can be cooled by natural convection. To ensure proper cooling,

interspace must be left above and below the equipment.

2. Warnings

➢ The controller is a weak current device, so it needs to be installed in a place that is not easy to

touch, such as the casing, control cabinet or electric control room, to avoid being touched by

non-operators.

➢ For your personal safety, please do not approach the machine when it is running.

➢ Do not disassemble, repair or modify this product.

➢ External use of control circuit to form emergency stop circuit, interlock circuit, limit circuit is

equal to the circuit related to safety protection.

➢ When installing or removing the controller, the power supply of the control system should be

completely disconnected to avoid unnecessary losses caused by electric shock or accidental

equipment operation.

➢ Failure to comply with the above requirements may result in serious personal injury and

4

property damage, and Zmotion Technology does not assume the corresponding risks and

responsibilities.

3. Wiring Requirements

➢ Use screws to fix the controller to prevent the product from being dropped or subjected to

abnormal shocks and cause malfunctions.

➢ In order to ensure stable communication, the communication cable of the controller should be

a high-performance cable with shielding layer.

➢ Use 24V DC power supply to supply power to the controller, and the IO port needs to be

powered separately, which is separate from the controller power supply.

➢ Each component of the controller network for safety reasons, ensure that all commons and

grounds of the controller and related equipment are grounded at the same point, which should

be directly connected to the system earth ground. When determining the grounding point, the

safety grounding requirements and the proper operation of the protective interrupting device

should be considered.

➢ After completing all wiring work, power on the control circuit, do not operate with power on.

➢ All line connections should be as short as possible to reduce interference and ensure

communication quality.

5

Copyright statement

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the

written permission of the Zmotion Technology, no person shall reproduce,

translate and copy any content in this manual.

ZMC controller software involved in details as well as the introduction and

routines of each instruction, please refer to ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in

design and functions and other aspects, Zmotion Technology reserves the final

interpretation! Subject to change without notice!

Pay attention to safety when debug the machine! Be sure to design effective

safety devices in the machine, and add the error handling procedures in software.

Zmotion has no obligation or responsibility for the loss.

6

Content

Chapter I Introduction of Motion Control Products .. 25

1.1 Motion Control Product Overview .. 25

1.2 Motion Control Product Advantage .. 26

1.3 Controller Main Function Description .. 27

1.4 Applications of Controller ... 28

1.5 Controller Interface ... 29

1.6 Controller’s usage ... 30

Chapter II ZDevelop Software Program ... 34

2.1 Program Software Introduction ... 34

2.2 New Project ... 35

2.3 Online Command and Output ... 39

2.4 How to Use Oscilloscope .. 41

2.4.1 Scope Interface ... 41

2.4.2. How to Configure Scope ... 44

2.4.3. How to Import & Export Scope Data .. 49

2.4.4. How to Sample by SCOPE.. 49

2.4.5. Scope Needs .. 50

2.4.6. Scope Usage Routine .. 51

2.5 Program Debug ... 55

2.5.1 Enter Program Debug ... 55

2.5.2 Task and Watch Windows .. 56

2.5.3 Usage of Debug Tool Bar ... 56

2.5.4 Breakpoint Debug .. 57

2.6 the View Window .. 58

Chapter III Basis of Basic Programming .. 60

3.1 Programming Basic Knowledge ... 60

3.1.1 Program .. 60

◼ Common Program Structure.. 60

◼ Sub-procedure ... 65

3.1.2 Data .. 66

◼ Data Definition .. 66

◼ Data Type .. 68

◼ Data Operation .. 70

3.2 Three Programming Methods of Zdevelop ... 72

3.2.1 Hybrid Programming ... 72

3.2.2 PLC and BASIC Call Each Other .. 73

3.3 Register ... 74

3.3.1 Table ... 74

3.2.2 FLASH ... 76

3.3.3 VR .. 77

7

3.3.4 MODBUS ... 78

3.4 Multi-task Program ... 81

3.4.1 Concept of Muti-task .. 81

3.4.2 Check Multi-task Status ... 83

3.4.3 Multi-task Start and Stop ... 84

3.4.4 Pause and Resume of Task ... 86

3.4.5 Basic and PLC Task Call Each Other ... 87

3.4.6 Multi-task Routine ... 88

3.5 Three Kinds of Interruption .. 90

3.5.1 Power Failure Interruption ... 92

3.5.2 External Interruption .. 92

2.5.3 Timer Interruption .. 93

3.6 Motion Buffer ... 93

3.6.1 The Concept of Motion Buffer ... 93

3.6.2 Motion Buffer ... 94

3.6.3 Motion Buffer Blocked .. 96

3.6.4 Output in Motion Buffer .. 98

Chapter IV Communication Method ... 99

4.1 Serial Port Communication ... 99

4.1.1 The Serial Port Type ... 99

4.1.2 Serial Connection Method .. 101

4.2 Net Port Communication... 103

4.3 CAN Bus Communication .. 106

4.3.1 CAN Wiring ... 106

4.4 U Disk Interface .. 108

4.5 EtherCAT Bus communication.. 110

4.5.1 EtherCAT Bus Initialization ... 110

4.5.2 EtherCAT Bus and Drive Communication ... 114

4.5.3 EtherCAT Bus Connect to Expansion Module ... 115

4.6 RTEX Bus Communication... 116

Chapter V Motion Control Function ... 120

5.1 Common Motion Mode ... 120

5.1.1 Single-axis Jog Motion .. 120

5.1.2 Electronic CAM ... 123

5.1.3 Electronic Gear... 125

5.1.4 Handwheel ... 126

5.2 Interpolation Motion ... 128

5.2.1 Concept of Interpolation .. 128

5.2.2 Continuous Interpolation .. 131

5.3 Look-ahead processing.. 132

5.4 Origin Point Homing ... 135

5.5 Related Limit Position Instructions ... 140

5.6 Position Latch ... 142

5.7 Hardware Comparison Output .. 144

8

5.8 Precision Output .. 146

5.9 Galvanometer Control System .. 147

5.9.1 The Description of Galvanometer .. 147

5.9.2 Galvanometer Application Process .. 151

5.10 Robotic Arm .. 157

5.10.1 Related Concept of Robot .. 157

5.10.2 Forward and Inverse Solution Motion ... 159

5.10.3 Functions Supported by Robot ... 161

5.10.4 Application Cases of Robot .. 161

5.11 G Code .. 166

Chapter VI Description Related to Axis .. 166

6.1 The Concept of Axis .. 166

6.2 Axis Number Description .. 167

6.3 Axis Status .. 168

6.4 Axis Speed... 169

6.4.1 Speed Curve ... 169

6.4.2 SP Speed ... 173

6.5 Axis Mapping .. 175

6.6 Axis Type .. 176

Chapter VII Motion Instructions ... 181

7.1 Single-axis Motion Instructions .. 181

ADDAX -- Motion Superposition ... 181

CANCEL -- Stop Single-Axis / Axis Group ... 187

DATUM – Homing ... 191

DATUM_OFFSET – Origin Position Offset ... 196

VMOVE – Continuous Movement ... 197

FORWARD – positive movement ... 198

REVERSE – negative movement .. 199

MOVEMODIFY – Modify Motion Position ... 199

7.2 Multi-axis Motion Instruction ... 201

RAPIDSTOP – all axes stop ... 201

MOVE – linear motion.. 204

MOVEABS – Linear Motion-Absolutely ... 206

MOVEMODIFY2 – Move to new position .. 207

MOVECIRC –Arc at the Center ... 209

MOVECIRCABS - Center Based Arc - Absolute ... 211

MOVECIRC2 - Three-Point Based Arc .. 212

MOVECIRC2ABS --Three-Point Based Arc - Absolute .. 213

MHELICAL – Central Helical .. 214

MHELICALABS – Central Helical - Absolute ... 216

MHELICAL2 – Three-Point Based Helical .. 217

MHELICAL2ABS-Three-Point Based Helical-Absolute ... 219

MECLIPSE -- Ellipse .. 221

MECLIPSEABS – Ellipse - Absolute ... 223

9

MSPHERICAL – Space Arc ... 225

MSPHERICALABS – Space Arc – Absolute ... 229

MOVESPIRAL – Involute Arc ... 232

MOVESPLINE/MOVESPLINEABS -- Spline Interpolation 235

MOVE_TURNABS-Rotating Stage Interpolation .. 237

MCIRC_TURNABS-Rotating Stage Interpolation-Absolute 238

MOVESMOOTH-Fillet .. 240

*SP-Motion Independent Speed .. 241

MOVESCAN – Galvanometer (SCAN) Motion ... 243

MPULSCAN – Galvanometer Motion 2 ... 245

7.3 Special Motion Instruction .. 246

MOVE_PAUSE – Motion Pause ... 246

MOVE_RESUME – Motion Resume ... 247

MOVE_PT -Distance in Unit Time ... 248

MOVE_PTABS – Absolute motion distance in unit time. .. 251

MOVE_PVT – Unit Distance (with speed planning) .. 255

MOVE_PVTABS – Unit Absolute Distance (with speed planning) 258

MOVE_PVTPP – Distance of unit time .. 260

MOVE_PVTPPABS – Distance of unit time .. 262

MOVE_PTP – Point to Point .. 264

MOVE_PTPABS – Point-to-Point | Absolute ... 267

MOVE_OP--Output in Buffer ... 270

MOVE_OP2-Output2 in buffer ... 274

MOVE_TABLE – Table in Buffer .. 275

MOVE_PARA-Parameters in buffer ... 276

MOVE_PWM-PWM in Buffer ... 278

MOVE_SYNMOVE-Synchronous Axis in Buffer ... 279

MOVE_SYNMOVE-Synchronous Axis in Buffer 2 .. 280

MOVE_TASK-Start Task in Buffer .. 281

MOVE_AOUT-Analog Signal in Buffer... 282

MOVE_DELAY-Delay in buffer ... 283

MOVE_WAIT - Wait in Buffer ... 283

MOVE_CANCEL—Stop Buffer .. 285

MOVE_HWPSWITCH2 — Buffer hardware comparison output 285

MOVE_HWTIMER – Buffer Hardware Timer .. 286

MOVE_ADDAX – Motion Superposition .. 287

MOVELIMIT – Speed Limit .. 289

7.4 Synchronization Motion Instruction .. 291

CONNECT-Synchronization Motion .. 291

CONNPATH-Synchronization Motion 2 ... 292

CAM-Cam Based Motion ... 293

CAMBOX- Following Motion of CAMBOX ... 297

MOVELINK-Auto Cam.. 299

MOVESLINK-Auto Cam 2 .. 305

10

MOVELINK_MODIFY-Link Distance Modification... 308

MOVESYNC – Sychronous Motion ... 312

FLEXLINK--Excitation Motion ... 317

7.5 Motion Setting Instructions ... 319

CLUTCH_RATE--Link Speed .. 319

ENCODER_RATIO-Gear Ratio of Encoder ... 322

STEP_RATIO- Gear Ratio of Motor ... 322

BACKLASH- Reverse Clearance Compensation ... 322

PITCHSET -- Screw Pitch Compensation .. 324

PITCH_DIST -- Pitch Compensation Distance ... 328

7.6 Robot Instructions ... 329

CONNFRAME – Inverse Solution of Robotic Arm ... 329

CONNREFRAME –Forward Solution of Robotic Arm .. 331

FRAME--Robotic Arm Type ... 332

FRAME_STATUS-Axis Status of Robot .. 332

FRAME_TRANS2-Coordinate Conversion of Forward and Inverse Solutions 333

FRAME_ROTATE-Workpiece Coordinate Conversion ... 334

FRAME_ROTATE2-Coordinate Conversion Calculation .. 336

WORLD_DPOS-World coordinate system ... 339

MOVER_L/MOVER_LABS-Joint Axis Linear Interpolation 339

MOVER_C/MOVER_CABS-Plane Circular of Joint Axis .. 340

MOVER_C3/MOVER_C3ABS-Space Circular of Joint Axis...................................... 341

FRAME_CAL-Parameter Correction ... 342

Chapter VIII Program Structure and Process Instruction .. 344

8.1 Procedure Symbol ... 344

' --Add Comments ... 344

_--Change Line ... 344

:--Label .. 344

8.2 Data Definition Instruction ... 344

CONST--Define Constant ... 344

DIM—Define Variables .. 345

LOCAL—Define Local .. 346

GLOBAL—Define Global .. 346

8.3 Array Operation Instruction .. 347

DMINS--Insert Array Link List .. 347

DMADD –Arrays Volume Increase .. 347

DMDEL--Delete Array Link List .. 348

DMCPY--Array Copy ... 348

DMSET- Array Assign .. 349

DMCMP- Array Comparison .. 349

DMCMP- Array Search... 350

SIZEOFARRAY – Get Array Space .. 351

8.4 Self-defined Sub Function Instruction .. 352

SUB--Self-defined Subfunction SUB ... 352

11

SUB_PARA—SUB Transfers Parameters .. 354

SUB_IFPARA --Judgement of SUB Input Parameters ... 354

GOSUB/CALL—SUB Calling ... 355

GSUB--Self-defined Subfunction-G Code .. 355

GSUB_PARA--Input Parameters of GSUB .. 356

GSUB_IFPARA-- Judgement of GSUB Input Parameters ... 356

END SUB--End of Self-defined Function .. 357

RETURN--Function Value Return .. 357

XSUB – Custom XSUB Sub-Function ... 357

RSUB – Custom RSUB Sub-Function .. 358

8.5 Structural Definition Instruction ... 359

STRUCTURE-Definition of Structural Body ... 359

UNION-Definition of Community .. 360

8.6 Jump Instruction .. 361

GOTO--Forced Jump .. 361

ON GOSUB--Condition Jump .. 362

ON GOTO-- Condition Jump 2 ... 362

8.7 Condition Judgement Instruction .. 363

IF--Condition Judgement Structure ... 363

THEN--Condition Judgement Structure .. 363

ENDIF--Condition Judgement Structure .. 363

ELSEIF--Condition Judgement Structure ... 364

8.8 Cycle Instruction ... 364

FOR – “for” Cycle .. 364

TO—for Cycle Structure ... 365

STEP--For Cycle Structure ... 365

NEXT--For Cycle Structure .. 365

WHILE--while Cycle Structure .. 365

WEND--While Cycle .. 365

EXIT--Exit Cycle .. 366

REPEAT--Condition Cycle ... 366

UNTIL--Condition Structure .. 366

8.9 Wait Execution Instruction .. 366

DELAY--Time Delay .. 366

WAIT UNTIL--Wait for Meeting Condition ... 367

WAIT IDLE--Wait Until Axes Stop .. 367

WAIT LOADED--Wait Until Axes Buffer Clears ... 368

8.10. ZINDEX Pointer Instructions .. 369

ZINDEX_LABEL – Build Pointer Index .. 369

ZINDEX_CALL – Access SUB Function ... 370

ZINDEX_ARRAY – Access Array ... 370

ZINDEX_VAR – Access Variables ... 370

ZINDEX_STRUCT – Access Structure .. 371

Chapter IX Instructions Related to Task ... 373

12

9.1 Task Start and Stop Instruction ... 373

RUN--Start File Task .. 373

RUNTASK--Start SUB TASK .. 373

END--End Task ... 374

STOP--Stop File Task ... 374

STOPTASK--Stop SUB Task .. 375

HALT--Stop All Tasks ... 375

PAUSE--Pause All Tasks ... 375

PAUSETASK--Pause Assigned Tasks ... 375

RESUMETASK--Resume Assigned Tasks ... 376

9.2 Three-file Task Instruction .. 376

FILE3_RUN--Execute FILE3 Task... 376

FILE3_ONRUN--FILE3 Callback Function ... 377

FILE3_GOTO--FILE3 Process Forces to Jump .. 377

FILE3_LINE -- FILE3 line NO. ... 377

9.3 Task Parameter Instruction .. 378

BASE_MOVE--Assign Main Axis ... 378

PROC_STATUS--Task Status ... 378

PROC--Task Serial Number .. 379

PROCNUMBER--Present Task NO. ... 379

PROC_LINE--Task Line ... 379

PROC_PROGRESS-Progress of task instruction ... 380

PROC_PRIORITY-Task priority... 380

ERROR_LINE--Error Line ... 380

RUN_ERROR--Task Error Code .. 381

TICKS--Task Count Period ... 381

TIME_TICKUS-Task Count Period .. 381

Chapter X Operator and Mathematical Function Instructions .. 383

10.1 Arithmetic Operation Instructions ... 383

+--Plus Operation .. 383

---Minus Operation ... 384

* --Multiply Operation .. 384

/ --Divide Operation .. 384

\ --Exact Divide ... 385

<< --Shift Left ... 385

>>--Shift Right .. 386

MOD--Remainder Operation .. 386

ABS--Absolute Operation ... 387

10.2 Comparison Operation Instructions .. 387

= --Comparison or Assign Operation .. 387

<>--Not Equal ... 387

>--More Than .. 388

>= --More Than or Equal To ... 388

< --Less Than .. 389

13

<= --Less Than or Equal To .. 389

10.3 Logical Operation Instruction ... 389

AND--Bit Operation: AND ... 389

OR--Bit Operation: OR ... 390

NOT--Bit Operation: NOT .. 390

XOR--Bit Operation:XOR .. 391

EQV--Bit Operation:EQV ... 391

10.4 Trigonometry Instructions ... 392

SIN-- Trigonometric Function: SINE .. 392

ASIN--Trigonometric Function: Anti-SINE.. 392

COS--Trigonometric Function: Cosine ... 393

ACOS -- Trigonometric Function: Anticosine .. 393

TAN--Trigonometric Function: Tangent ... 393

ATAN--Trigonometric Function: Antitangent ... 393

ATAN2--Trigonometric Function: Antitangent 2 .. 394

10.5 Exponentiation Instructions .. 394

EXP--Exponent ... 394

SQR-- Square Root ... 394

LN-- Natural Logarithm .. 394

LOG--Logarithm of 10 .. 395

10.6 Data Operate Instruction ... 395

SET_BIT--Set Bit .. 395

CLEAR_BIT--Operate Bit 0 ... 396

READ_BIT--Read Bit ... 397

READ_BIT2--Read Bit 2 .. 397

FRAC--Return Decimal .. 397

INT--Return Integer... 398

SGN--Return Sign ... 398

IEEE_IN--Combine Float Number ... 398

IEEE_OUT--Select Single Byte .. 398

$--Hexadecimal ... 399

10.7 Character String Operation Instruction ... 399

CHR--ASCII Code Print ... 399

HEX--Print Hexadecimal .. 400

STRLEN-Return String Length .. 400

TOSTR—Format Output .. 400

STRCOMP--String Comparison ... 401

STRFIND—String Search .. 401

STRCONV—Encoder Conversion ... 402

VAL--Convert String to Number ... 402

10.8 Constant Instruction .. 402

PI--Circular Constant .. 402

TRUE--True Value .. 403

FALSE--False Value .. 403

14

ON--Open.. 403

OFF--Close.. 403

10.9 Advanced Operational Instruction ... 403

CRC16 --CRC Verification Calculation .. 403

DTSMOOTH--Table Smooth .. 404

B_SPLINE--B-Spline Smooth .. 404

TURN_POSMAKE--Rotating Center Calculation ... 406

ZCUSTOM--Motion Parameters Calculation ... 406

ZMATH64-64 Bits Calculation ... 411

MODBUS_DOUBLE- Read MODBUS ... 412

Chapter XI Axis Parameter and Axis Status Instruction ... 414

11.1 Axis Selection .. 414

BASE-Axis Selection/Axis Group Selection .. 414

AXIS-Temporary Axis .. 415

11.2 Basic Parameter Instruction .. 415

UNITS--Pulse Amount .. 415

ATYPE--Axis Type ... 416

AXIS_ADDRESS--Axis Address Configuration .. 420

AXIS_ENABLE--Axis Enable ... 423

11.3 Speed Parameter Instruction .. 423

SPEED--Motion Speed ... 423

ACCEL--Axis Acceleration .. 424

DECEL--Axis Deceleration .. 425

CREEP--Creep Speed ... 426

LSPEED--Initial Speed ... 427

FORCE_SPEED--SP Speed .. 428

STARTMOVE_SPEED--Start Speed of SP Motion ... 429

ENDMOVE_SPEED--End Speed of SP motion ... 430

FASTDEC--Fast Deceleration... 432

MSPEED--Actual Speed Feedback ... 433

SPEED_RATIO--Speed Proportion .. 433

SRAMP--Acceleration Curve ... 434

VP_MODE—Acceleration & Deceleration Curve ... 435

VP_SPEED--Present Motion Speed ... 438

INTERP_FACTOR--Interpolation Speed ... 439

CORNER_ACCEL – Corner Acceleration ... 441

11.4 Axis Status Checking Instruction .. 441

MTYPE--Type of Present Motion ... 441

NTYPE--Motion Type of Next Motion ... 443

AXISSTATUS--Axis Status .. 444

IDLE--Motion Status .. 445

ADDAX_AXIS--Added Axis NO. .. 445

AXIS_STOPREASON--Axes Stop Reason .. 446

LINK_AXIS--Link Axis NO. .. 446

15

11.5 Motion Look-ahead Instruction ... 446

CORNER_MODE--Corner Speed Setting .. 446

DECEL_ANGLE--Corner Deceleration Angle ... 452

STOP_ANGLE--Corner Deceleration Stops... 453

FULL_SP_RADIUS--Speed Limit Radius ... 454

SPLIMIT_RADIUS--Speed Limit Value .. 455

ZSMOOTH--Chamfer Radius ... 455

MERGE--Continuous Interpolation .. 455

11.6 Motion Buffer Instruction ... 457

LOADED--Buffer Empty .. 457

MOVES_BUFFERED--Present Buffer Number ... 457

REMAIN_BUFFER--Rest Buffers ... 457

MOVE_MARK--Move Mark ... 458

MOVE_CURMARK--Return Move Mark ... 459

LIMIT_BUFFERED--Motion Buffer Limit .. 459

11.7 Instructions Related to Position ... 459

DPOS--Axis Instruction Position .. 459

MPOS--Encoder Feedback Position.. 460

DEFPOS--Position Offset ... 460

OFFPOS--Offset Position ... 461

ENDMOVE--Target Position .. 462

VECTOR_MOVED--Present Motion Distance .. 462

REMAIN--Rest Target Motion Distance... 463

VECTOR_BUFFERED--Remain Distance in Buffer ... 464

VECTOR_BUFFERED2—Target Vector Distance .. 464

ENDMOVE_BUFFER--Final Position in Buffer ... 465

11.8 Instructions for Origin Homing ... 466

DATUM_IN--Origin Input .. 466

HOMEWAIT—Reversely Find Delay when Homing ... 467

11.9 JOG Motion Instruction .. 468

FAST_JOG--Jog Input Mapping ... 468

FWD_JOG--Positive JOG Input Mapping .. 469

REV_JOG--Negative JOG Input Mapping ... 470

JOGSPEED--JOG Speed .. 471

FHOLD_IN--Hold Input Mapping .. 472

FHSPEED--Hold Speed .. 473

11.10 Instructions Relate to Encoder .. 473

ENCODER—Original Value of Encoder .. 473

ENCODER_STATUS--Encoder Status ... 474

ENCODER_FILTER—Encoder Filter .. 474

PP_STEP--Encoder Internal Proportion .. 474

ENCODER_BITS – Encoder Absolute Value Setting ... 474

DRIVE_POSMIN – Encoder Transfer Original Min Value .. 475

DRIVE_POSMAN – Encoder Transfer Original Max Value 476

16

11.11 Instructions Relate to Latch ... 476

REGIST-Position Latch ... 476

REG_INPUTS--Latch Input Mapping .. 482

MARK--Latch Trigger .. 482

MARKB--Latch 2 Trigger... 482

MARKC-- Latch 3 Trigger.. 483

MARKD-- Latch 4 Trigger ... 483

OPEN_WIN--Coordinate Range for Latch Starts ... 483

CLOSE_WIN-- Coordinate Range for Latch Ends ... 484

REG_POS--Latch Position.. 484

REG_POSB--Latch 2 Position .. 484

REG_POSC--Latch 3 Position .. 484

REG_POSD--Latch 4 Position .. 485

11.12 Position Limit Parameter Instructions ... 485

FS_LIMIT--Soft Positive Limit .. 485

RS_LIMIT--Soft Negative Limit... 486

FWD_IN--Positive Limit Mapping Input ... 486

REV_IN--Negative Limit Mapping .. 487

ALM_IN--Alarm Input ... 487

11.13 On-Position Parameter Instructions ... 488

IN_POS – On Position Mark ... 488

AXISINP_IN – On-position Signal Input ... 488

IN_POS_DIST – On-position Distance .. 489

IN_POS_SPEED – On-position Speed ... 490

11.14 Range Limit Parameter Instructions .. 491

REP_OPTION--Coordinate Cycle Mode .. 491

REP_DIST--Coordinate Cycle Position .. 492

FE—Current Follow-up Error ... 492

FE_RANGE-- Follow-up Error when Alarm .. 493

FE_LIMIT--Maximum Follow-Up Error .. 493

11.15 Advanced Setting Instruction .. 493

INVERT_STEP--Pulse Mode Setting ... 493

MAX_SPEED--Pulse Frequency Limit .. 495

AXIS_ZSET--Setting of Precision Output .. 495

AXIS_MODE—connect Motion Holds .. 497

MOVEOP_DELAY-Output Delay in Buffer ... 499

MOVEOP_ADIST—Close the glue in advance ... 500

DAC--Analog Control of Field Bus Axes ... 501

ERRORMASK--Operation when Error .. 504

ZSCAN_CORRECT—Galvanometer Correction ... 504

11.16 Reserved Instructions .. 505

D_GAIN--Differential Gain .. 505

I_GAIN--Integral Gain.. 505

OV_GAIN--Speed Gain .. 506

17

P_GAIN--Proportion Gain .. 506

VFF_GAIN--Feedforward Gain .. 507

AFF_GAIN -- Acceleration Feedforward Gain... 507

SERVO—Closed-Loop Switch ... 507

TRANS_DPOS ... 509

Chapter XII Instructions Related to Input and Output .. 510

12.1 Instructions Related to Input ... 510

IN--Inputs .. 510

AIN--Analog Input .. 510

ZSIMU_IN--Inputs Simulation ... 511

ZSIMU_AIN--Analog Inputs Simulation ... 511

ZSIMU_ENCODER--Encoder Inputs Simulation .. 511

INVERT_IN--Reverse Inputs .. 511

IN_SCAN--Scan Inputs Change Status ... 512

IN_EVENT--Read Input Change .. 512

SCAN_EVENT--Check Change ... 513

IN_BUFF--Read Inputs Buffer ... 513

INFILTER—Input Filter ... 514

IN_SMFILTER – Set IN Filter .. 514

12.2 Instructions Related to Output .. 514

OP--Outputs .. 514

AOUT--Analog Output ... 516

READ_OP--Read Outputs .. 516

EXIO_DIR – Configure EXIO Interface .. 517

12.3 Position Comparison Output Instructions ... 517

PSWITCH--Position Comparison by Software ... 517

HW_PSWITCH—Hardware Position Comparison Output .. 519

HW_TIMER--Hardware Timing ... 521

HW_PSWITCH2 -- Bus Hardware Position Comparison OUT 526

HW_MINTIME – HW Min Time Space ... 542

HW_PS2AXISNUM—Set PS2 Axis Number .. 543

HW_PS2COUNTS—PS Comparison Numbers ... 545

12.4 PWM Control Instructions .. 546

PWM_FREQ--PWM Frequency ... 546

PWM_DUTY--Duty Cycle of PWM ... 546

12.5 Buzzer Control Commands ... 547

SPEAKOUT – Buzzer Control ... 547

Chapter XIII Instructions Related to Communication .. 548

13.1 Serial Communication Instructions ... 548

SETCOM -- Serial Port Configuration.. 548

ADDRESS--Controller Station NO. ... 551

COM_UNUSED—Assign Serial Port .. 551

13.2 CAN Communication Instruction ... 551

CAN -- CAN Communication .. 551

18

CANIO_ADDRESS--CAN Communication Setting .. 554

CANIO_ENABLE--CAN Enable ... 555

CANIO_STATUS--ZIO Expansion Status .. 555

CANIO_INFO—CAN Expansion Information... 556

13.3 Self-defined Communication Instructions .. 557

GET#--Read String ... 557

OPEN # -- Open Custom Ethernet Communication ... 558

CLOSE # -- Close Self-defined Ethernet Communication ... 559

PRINT #--Output Character String ... 560

PUTCHAR#--Output Character .. 561

PORT_TARGET—IP and Port NO. configuration ... 562

13.4 Print and Output Instructions .. 563

PRINT--Print Information ... 563

ERRSWITCH--Information Output Setting .. 564

TRACE--Print Information 2 .. 564

WARN--Alarm Information .. 565

ERROR--Error Information .. 565

13.5 Channel Parameter Instruction .. 565

PORT--Channel NO. ... 565

PORT_STATUS--Channel Status .. 567

PORT_MODE--Channel Mode ... 568

FILE_PORT--Present Channel File NO. ... 569

PROTOCOL--Channel Communication Protocol ... 569

ETH_MODE—Net Port Mode Settings .. 569

SEND_AUTOUP—Active Report .. 570

SEND_AUTOUP2—Active Report 2 ... 570

IFAUTOUP_PORT—Check Active Reporting Port ... 571

13.6 MODBUS Communication Instruction ... 571

MODBUS_BIT--Bit Register .. 571

MODBUS_IEEE--Word Register-32bits float .. 571

MODBUS_LONG--Word Register-32 bits integer ... 572

MODBUS_REG--Word Register-16 bits integer .. 572

MODBUS_STRING--Word Register-Byte ... 573

MODBUSM_DES--Modbus Communication Connection ... 573

MODBUSM_DES2--Ethernet Communication .. 575

MODBUSM_STATE--modbus Communication Status .. 577

MODBUSM_REGSET—Set Save Modbus Value ... 578

MODBUSM_REGGET--Read Save Modbus Value ... 579

MODBUSM_3XGET--Read Input Register ... 580

MODBUSM_BITSET--Write Coil ... 580

MODBUSM_BITGET--Read Coil .. 580

MODBUSM_1XGET--Read Isolated Inputs .. 581

13.7 Direct Command Instructions between Controllers .. 581

SEND_RESULT—Read send Result .. 581

19

SEND_CMD—send Command .. 581

SEND_CMDAXIS—send Command ... 582

SEND_ASSIGN—send Command ... 582

SEND_QUERY—send Command .. 583

SEND_QUERTSET—send Command ... 584

13.8 Send Instructions bewteen File Connection of Controllers ... 584

SEND_ZAR—USB Drive operation .. 584

SEND_FALSH—Data copy .. 585

SEND_FILE—Copy USB Drive data ... 585

SEND_IFLASH—Copy flash Data .. 585

SEND_PERCENT—Check Instruction Process ... 586

SEND_CONTROL—Check Controller Type ... 586

Chapter XIV Instructions Related to System .. 588

14.1 Controller Encryption Instructions .. 588

APP_PASS-- Password ... 588

LOCK--Lock Controller.. 588

UNLOCK--Unlock Controller .. 589

14.2 System Time Instructions .. 589

DATE--System Date ... 589

DATE$--System Date 2... 589

DAY--System Week .. 590

DAY$--System Week 2 ... 590

RTC_DATE--System Date .. 590

TIME--System Time ... 591

TIME$--System Time 2 .. 591

RTC_TIME--System Time 3 ... 592

14.3 Axis System Parameter Instructions .. 592

WDOG--Total Axes Enable .. 592

DISABLE_GROUP--Axes Group .. 592

ERROR_AXIS--Error Axis ... 593

MOTION_ERROR--Error Axes List .. 593

ERROR_SET--Error Output ... 593

RADIUS_ERRSET—Circular Interpolation Check ... 594

14.4 IP Parameter Instructions .. 595

IP_ADDRESS--IP Address ... 595

IP_ADDRESS2—IP Address 2 ... 596

IP_GATEWAY--IP Gateway ... 596

IP_NETMASK -- IP Mask .. 596

IP_IFDHCP—Get IP Address Automatically ... 597

IP_IFDHCP2—Get IP Address Automatically 2 .. 597

14.5 Controller Information Instructions .. 597

VERSION_FPGA--System FPGA Version ... 597

VERSION_BUILD--System Firmware Creating Date ... 598

VERSION_DATE--System Firmware Version ... 598

20

VERSION--System Software Version... 598

ID_HARDWARE--Controller Hardware Type ... 599

CONTROL--Controller Software Model .. 599

SYSTEM_ZSET--Controller Setting .. 600

LEDOUT--Controller Indicator Light ... 601

SERIAL_NUMBER--Unique ID of Controller .. 601

SERVO_PERIOD--Fieldbus Communication Period ... 602

SYS_ZFEATURE—System Specification .. 602

SYS_IOSET—Special IO Switch ... 604

LASER_SET -- Energy Parallel Port Output Switch .. 605

ZML_DEFSHIFT – ZML Device “shift” Time .. 605

14.6 Log Instructions .. 605

RTLOG_COUNT – The Number of Current Logs ... 605

RTLOG_CLEAR – Clear Current Logs .. 606

RTLOG_ADD – Add Error Message of Log .. 606

RTLOG_CODE – Get Error No. of Log ... 606

RTLOG_TIME$ – Get Error Time of Log .. 607

RTLOG_INFO – Get Error Message of Log... 607

RTLOG_INFO2 – Get Error Message of Log (2) ... 607

?* RTLOG – Clear Current Recorded Logs .. 608

14.7 TABLE Array Instructions .. 609

TABLE--System Default Array ... 609

TSIZE – Table Size ... 609

TABLESTRING—Print table in String format ... 609

14.8 Instructions Related to Oscilloscope ... 610

TRIGGER – Trigger Oscilloscope .. 610

SCOPE – Data Acquisition ... 611

SCOPE_POS – Point Numbers Acquisition .. 611

14.9 Instructions Related to VR .. 612

CLEAR--Clear VR .. 612

VR—Power Failure Storage ... 612

VR_INT--Integer Stored when Power Failure .. 612

VRSTRING--String Stored when Power Failure .. 613

14.10 Instructions Related to 7XX Series ... 613

CARD_INFO – Read & Write Control Card Information .. 613

?*CARD – Print Control Card Information .. 614

REG_CARD – Control Card Latch ... 615

Chapter XV Instructions Related to Storage ... 616

15.1 U Disk Instructions ... 616

FILE--Operate Files in USB Drive ... 616

U_STATE--USB Drive Status ... 620

U_READ--Read USB Drive ... 620

U_READDBL-- Read from USB – double ... 621

U_READ2-- Read USB Drive 2 ... 622

21

U_READ2DBL-- Read from USB 2 – double .. 622

U_READDSB--Read DSB File .. 623

U_WRITE—Output to USB Drive ... 624

U_WRITEDBL—Output to USB – double .. 625

STICK_READ—Read USB Drive to Table ... 625

STICK_WRITE--Table to USB Drive .. 626

STICK_READVR--USB Drive to VR .. 627

STICK_WRITEVR--VR to USB Drive .. 627

15.2 FLASH Instructions .. 628

FLASH_WRITE--Write Flash .. 628

FLASH_WRITEDBL--Write Flash--double ... 629

FLASH_READ--Read Flash ... 629

FLASH_READDBL--Read Flash--double ... 630

LASH_READ2--Read Flash (2) -- double .. 630

FLASH_READ2DBL--Read Flash (2)--double .. 631

FLASHVR--Copy RAM Data ... 632

FLASH_SECTSIZE--Variable Numbers in Flash ... 633

FLASH_SECTES--Flash Block Number .. 633

15.3 File Storage Related Instructions .. 634

FILE_ZOPEN – Open File .. 634

FILE_ZCLOSE – Close File ... 635

FILE_ZWRITES – Write File into Character String ... 635

FILE_ZWRITE – Write File into Character.. 636

FILE_ZREAD – Read Character from File .. 636

FILE_ZREADLINE – File Line Reading ... 637

FILE_ZSEEK – File Location .. 638

FILE_ZSEEKLINE – File Line Location ... 638

FILE_ZTELL – File Reading and Writing Position .. 639

FILE_ZTELLLINE – File Line No. .. 640

Chapter XVI Instructions Related to Interrupt .. 641

16.1 Three Interrupt Instructions ... 641

INT_ENABLE--Main Switch of Interrupt .. 641

ONPOWEROFF--Power-Failure Interrupt SUB ... 642

INT_ONn—External Input Interrupt SUB .. 643

INT_OFFn--External Input Interrupt SUB ... 643

ONTIMERn--Timer Interrupt SUB ... 644

INT_CYCLE—Interrupt Period Execution .. 644

16.2 Timer Instructions ... 645

TIMER_IFEND--Timer Status ... 645

TIMER_START--Open Timer ... 646

TIMER_COUNT – Timer Accumulation Time ... 646

TIMER_STOP--Stop Timer .. 646

Chapter XVII Instructions Related to Bus .. 648

17.1 Number Description .. 648

22

Slot NO. .. 648

Device NO... 648

Drive NO. .. 648

17.2 Basic Instructions .. 648

SLOT_SCAN-- Bus Scan ... 648

SLOT_START--Start Field Bus .. 649

SLOT_STOP--Field Bus Stops ... 650

SLOT_INFO – Get Bus Information .. 650

?*SLOT--Print Field bus Ports .. 651

?*ETHERCAT--Print EtherCAT Bus Status ... 651

?*RTEX--Print Rtex Status. .. 652

ZTEST—Check EtherCAT Bus Information .. 653

?*ZML – Print ZML Information .. 655

17.3 SDO Operational Instructions ... 655

SDO_WRITE--Write Data Dictionary .. 655

SDO_WRITE_AXIS--Write Data Dictionary ... 656

SDO_READ--Read Data Dictionary .. 657

SDO_READ_AXIS--Read Data Dictionary ... 657

17.4 Device Instructions ... 658

NODE_COUNT--Connected Device NO. .. 658

NODE_STATUS--Device Status ... 659

NODE_AXIS_COUNT--Connected Motor NO.. 659

NODE_IO--Device IO .. 660

NODE_AIO--Device Analog .. 660

NODE_INFO--Device Information .. 661

NODE_PROFILE--PDO Reserved Setting ... 663

NODE_PDOBUFF--PDO Setting of Specail Devices .. 663

NODE_PDO_WRBUFF – Offset Modify PDO ... 664

NODE_PDO_RDBUFF – Offset Read PDO .. 664

NODE_REGWRITE – ESC Register Writing .. 665

NODE_REGREAD – ESC Register Reading ... 665

NODE_PRESET--Device Preset ... 666

ZML_INFO – Check Device XML ... 667

17.5 Drive Instructions .. 668

DRIVE_MODE—Drive Mode ... 668

DRIVE_PROFILE--Drive PDO Setting ... 668

DRIVE_CW_MODE--Drive Setting .. 673

DRIVE_CONTROLWORD--Drive Control Word ... 673

DRIVE_STATUS--Drive Status .. 675

DRIVE_IO--Drive IO Setting ... 676

DRIVE_TORQUE--Drive Torque .. 677

DRIVE_FE--Drive Error ... 677

DRIVE_FE_LIMIT--Drive Error Limit .. 677

DRIVE_CLEAR--Alert Clear ... 678

23

DRIVE_READ--Read Parameters .. 678

DRIVE_WRITE--Write Parameters .. 681

Chapter XVIII ZHD Teaching Box ... 684

18.1 Teaching Box Commands ... 684

LCD_CONNECT – LCD No. Setting ... 684

IP_CONNECT – IP Connection .. 684

IP_ADDRESS – IP Address .. 684

IP_GATEWAY – IP Gateway .. 685

IP_NETMASK – IP Mask ... 685

18.2 Controller Commands ... 685

LCD_LEDSTATE – LED State Setting .. 685

LCD_WDOGTIME – Time Setting for Screen Power-Off ... 686

Chapter XVIIII MotionRT Commands ... 687

19.1 MotionRT Commands ... 687

CARD_INFO – Read & Write Control Card Info ... 687

CARD – Print Sub-Card Info .. 688

REG_CARD – Latch Selection ... 688

SLOT_SLAVE – EtherCAT Redundancy Configuration .. 689

Chapter XX Commands of Local Slave Interface ... 690

ZMIO_CONFIG – Set/Get Analog Range & Channel State 690

ZMIO_INFO – Check ZMIO Itself Expansion ... 691

Chapter XXI Simple Routines .. 692

21.1 Common Operation ... 692

IO Operation ... 692

SP Instruction continuous interpolation .. 692

Conversion between String and Data .. 693

Handwheel .. 694

Fly-Shearing .. 695

Position Comparison Output ... 695

Power Failure Storage ... 695

Robot ... 695

Robotic Arm by MOVESYNC Command .. 696

Read Encoder .. 701

Self-defined G code .. 703

21.2 Module Communication.. 707

CAN Communication ... 707

HMI Communication .. 709

Self-defined Ethernet Communication .. 713

Communication between controllers ... 714

String and Self-defined Communication ... 715

21.3 Bus Initialization ... 716

EtherCAT Initialization ... 716

Rtex Initialization .. 717

Chapter XXII Error and Debug ... 719

24

22.1 List of Common Problem .. 719

Problem Checking ... 719

22.2 Solutions ... 722

Manual Motion Debug .. 722

Interrupt Debug ... 723

Oscilloscope Collection .. 723

Register Check .. 724

Remote Commands ... 725

Print Program Information .. 725

Fast IOs Test .. 725

Axis Parameters Status Judge ... 726

Appendix I Error Code List .. 727

Appendix II Module Expansion .. 755

ZCAN Expansion Module .. 755

Expansion wiring .. 755

Resource mapped .. 756

IO mapped ... 757

Axis mapped ... 760

EtherCAT Expansion Module ... 761

Expansion Wiring .. 761

Resource mapped .. 762

IO mapped ... 762

Axis mapped ... 763

Appendix III HMI Communication .. 764

Controller and HMI Communication Introduction ... 764

Connect Controller with HMI ... 764

Connect with ZHD Series HMI... 765

Connect to the third-party HMI... 766

Appendix IV ETHERCAT Communication .. 772

Appendix V RTEX Bus ... 777

25

Chapter I Introduction of Motion Control

Products

1.1 Motion Control Product Overview

Motion control achieves real-time control of position, speed, acceleration, etc. of mechanical

transmission components, so that it can complete corresponding motions according to expected

trajectory and specified motion parameters.

The control system takes the processor, detection mechanism, and actuator as the core to realize

logic control, position control, trajectory processing control, robot motion control, etc. The

processor is usually a programmable controller, a single-chip microcomputer, or a motion

controller, which is equivalent to the brain of the system. It is mainly responsible for logically

processing the received signals, and issuing commands to the actuator to coordinate the normal

operation of the system. The detection mechanism is usually composed of various sensors, which

are equivalent to the eyes of the system. The purpose is to detect condition’s changes in system

and feed them back to the controller. The actuator is usually composed of servo units and valves,

which are equivalent to the hands of the system. It is mainly for executing the commands issued

by controller.

The motion controller is the core component of the motion control system. It is responsible for

generating the control instructions of the motion path, and also it is used for the logical control of

the equipment, assigning motion parameters to the axes that need motion, and responding to

changes in the external environment of the controlled object in time.

General motion controllers usually provide a series of motion planning methods, based on the

limitation of the magnitudes such as impact, acceleration and speed that can affect the accuracy of

the dynamic trajectory, and provide the setting of motion parameters and motion-related

instructions for the motion control process, so that it completes the corresponding actions

according to the pre-specified motion parameters and the specified trajectory.

26

1.2 Motion Control Product Advantage

ZMOTION motion control products include pulse standalone motion controller, pulse network

motion control card, fieldbus standalone motion controller, fieldbus PCI motion control card, etc.

These can meet motion control requirements from all walks of life, a single controller supports

128 axes motion control.

Motion control products support multi-interpolation motions, such as, interpolation of linear,

circular, space arc, ellipse, helical, etc. A single interpolation channel support most 16 axes joint

interpolation. These products support speed look-ahead, electronic cam, electronic gear, pitch

compensation, synchronous follow, motion superposition, virtual-axis, precision output, hardware

position latch, continuous interpolation, motion pause and other functions. Some motion control

products internally set more than 30 kinds of robot motion control algorithm, such as, SCARA,

DELTA, 6-joint, etc. one controller can control several robotic arms, and it supports superpose

multi-robot. Please see “ZMotion Robotic Arm Instrction” for details of robotic arm.

Fieldbus motion control products support EtherCAT, RTEX industrial Ethernet motion control bus.

They lead in the performance and stability, and support EtherCAT bus, RTEX bus and pulse axes,

these three kinds mixed use.

The first domestically launched dual-bus PCI control card and dual-bus motion controller that

supports both EtherCAT bus and RTEX bus. The fastest EtherCAT bus cycle is 100 microseconds,

and it also supports bus axis hardware position latch and position comparison output.

ZMOTION provides powerful ZDevelop software development environment, which is easy to

learn and operate.

Motion controller supports Ethernet, U disk, CAN bus, RS485, RS232 serial port and other

communication interfaces, and controller can link to ZMOTION expansion module through CAN

bus or EtherCAT bus to expand inputs and outputs and pulse motion axes (a 120Ω resistor should

be connected between CAN bus two terminals, CANL and CANH).

Advantages:

 The hardware composition is simple, the system can be composed by connecting the motion

controller to the PC.

 Except ZDevelop software, there also supports all kinds of operation systems and program

language to develop upper computer software (such as, VC, VB, C#, PYTHON, LABVIEW,

27

etc.).

 Motion control software has wonderful code commonality and portability.

 It is easy to be learnt and developed, which means no need of too much training work, and it

support several persons develop at the same time.

1.3 Controller Main Function Description

Item Description

Task Execute I/O refresh of specified condition and user

procedure function, support multi-task run

simultaneously, they don’t interrupt each other, the

maximum task number can be checked in ZDevelop

software “Controller Status”

Debug Support interruption point debug and single-step

debug, and check task operation status

Interrupt Support three kinds, externally interrupt, timer

interrupt, power-off interrupt

Set Monitor Window Monitor variable, constants, input and output, axis

parameters, etc.

Program Language Type ZDevelop program (BASIC, PLC, HMI), or other

common upper computer program language

Online Command Input instruction parameters in online command bar

and then send them to controller for executing

immediately

Communication

Interface

Serial 232 serial and 485 serial ports, they support

MODBUS_RTU protocol and self-defined

communication

Net Fast communication speed, convenient wiring, it

supports MODBUS_TCP protocol and self-defined

communication

U Disk Insert U disk, data interaction

CAN bus Connect to ZIO expansion module, and controllers

interconnect

EtherCAT Connect to EtherCAT drive or EtherCAT expansion

module

RTEX Connect to RTEX drive

Data Type Self-defined Array Sets elements of the same data type, default floating

point type

Self-defined Variable Default floating point type

Self-defined Constant It can be Boolean type, character string type, time

type, date type, integer type, etc.

Register It comes with 4 kinds of registers, TABLE,

MODBUS, VR, FLASH

28

Common

Motion Control

Functions

Point to Point JOG point motion

Interpolation Interpolation of linear, circular, space, arc, ellipse,

helical, support continuous interpolation

Electronic Gear Build electronic gear connection between main axis

and slave axis.

Electronic Gam Cam watch motion and automatic cam

Motion Superposition Motion superposition of different axes

Path Speed Look-

ahead

Speed self-optimization according to lookahead

parameters

Position Latch Memory axis position according to external signal

trigger situation

Position Comparison

Output

Arrive comparison point, output OP signal, and

compare continuously, respond rapidly

Precision Output OP respond rapidly

1.4 Applications of Controller

The motion control products of Zmotion Technology have been developed and applied by many

partners for many years, and the products are widely used in 3C electronic semiconductors,

dispensing equipment, laser processing, printing and packaging, special machine tools, robots,

stage entertainment, medical equipment and other automation fields.

The electronic product processing industry includes placement machines, glue dispensers, printed

circuit board drilling machines, winding machines, welding machines, loading and unloading

robots, screw tightening machines and other equipment.

The textile and garment industry has warp knitting machines, dyeing machines, printing machines,

industrial sewing machines, embroidery machines, cloth cutting machines, combing machines,

twisting machines, shoe-making machines and other equipment.

The printing and packaging industry includes automatic blow molding machine, bag making

machine, die-cutting machine, bronzing machine, unpacking machine, packing machine, labeling

machine, automatic particle packaging machine, bag packaging machine, newspaper printing

machine, gravure printing machine, etc.

Where there is automation equipment, there is motion control. With its excellent performance and

perfect functions, Zmotion controllers can provide the best solutions for all walks of life.

29

1.5 Controller Interface

Here the example is ZMC420SCAN bus motion controller

ZMC420SCAN bus motion controller supports EtherCAT bus and RTEX bus connection, and it

supports at most 20 axes motion control, and several kinds of axes (pulse axis, EtherCAT bus axis,

RTEX bus axis, encoder axis, galvanometer axis, virtual axis) can be hybrid interpolated. And it

supports full-function motion control. For product specific parameters, please see hardware

manuals.

ZMC motion controller supports Ethernet, U disk, CAN bus, RS485, RS232 serial port and other

communication interfaces, and controller can link to ZMOTION expansion module through CAN

bus or EtherCAT bus to expand inputs and outputs and pulse motion axes (a 120Ω resistor should

be connected between CAN bus two terminals, CANL and CANH). “Expansion Module” can

refer to the expansion methods.

ZMC420SCAN is like:

Interface Function:

Specification Interface Number Description

RS232 232 serial-port 1 Use MODBUS_RTU protocol

485 485 serial-port 1 Use MODBUS_RTU protocol

CAN CAN bus 1 Connect CAN expansion module or controller

ETHERNET Net 1 Use MODBUS_TCP protocol, expand

30

interface number through switch

EtherCAT EtherCAT bus 1 Connect to EtherCAT drive or EtherCAT

expansion module

RTEX RTEX bus 1 Connect to RTEX drive

UDISK U disk 1 Insert U disk equipment

E +24V Main power 1 24V DC power supply

IN Digital input 24 NPN type, internal 24V power

OUT Digital output 12 NPN type, internal 24V power

AD Analog input 2 Precision 12-bit, 0-10V

DA Analog output 2 Precision 12-bit, 0-10V

DSCAN Galvanometer

axis interface

4 Connect to laser galvanometer, support XY2-

100 protocol

Axis Pulse axis

interface

4 Each interface includes pulse output and

encoder input

1.6 Controller’s usage

 Prepare Work

Software: install ZDevelop program software or other upper computer program software

supported by controller (VC, VB, C#, PYTHON, LABVIEW).

Equipment: select controller, computer, 24V DC power supply, drive, step motor or servo motor,

wiring terminal, IO equipment, expansion module and other equipment according to

specific requirements.

Connecting line: the connection line for communication between computer and controller, the

connection line between drive axis interface and controller, and other connecting line

of IO interface, power interface.

 Procedure design

1. System Diagram Design

Select the required components and connecting lines according to functional requirements, and

please be familiar with the use of control instructions related to the function, and design the

overall composition of the system software, including variable design, task design, program

function design, etc.

2. Software Setup and Program

Use ZDevelop software to write programs according to the design in step 1. For quick use of the

software, please refer to the "New Project" section of this article, or open the ZDevelop software

menu bar "Help" - "ZDevelop Help" to view the introduction of the various functions of the

31

software, writing tasks and program module for program simulation debugging.

Parameters that need to be set for programming: BASE select the axis numebr, ATYPE axis type,

UNITS pulse equivalent, SPEED axis speed, ACCEL axis acceleration, DECEL axis deceleration

and other basic axis parameters, and then send motion commands to the axis.

If the drive is connected by using the EtherCAT bus or the RTEX bus, a bus initialization

operation is required during programming (see the "Bus initialization" routine). If expansion

modules are required, such as expansion of axes or IO points, axis mapping needs to be performed

on the extended axis resources during programming (see "Axis Mapping"). IO mapping is

required for extended IO resources, and ZCAN expansion uses the DIP switch on the expansion

board to set the number of the extended IO (refer to the chapter "ZCAN expansion module"), the

EtherCAT bus extension uses the NODE_IO instruction to set the number of the extended IO, and

the extended resources can be accessed through the IO number.

 Install and Wiring

Install various units, and connect each unit to the controller with appropriate cables. The wiring

diagram of the controller is as follow:

➢ Wiring between computer and controller:

Serial or network port can be used to communicate. When using the serial port

communication, RS232 serial port of the controller should be connected. When using the

network port communication, the EtherNET network port of the controller should be

connected.

32

➢ Wiring between drive and controller:

The driver can link to the pulse axis interface, EtherCAT bus interface, and RTEX bus

interface of the controller. Refer to the figure below when the driver is connected to the pulse

port. To use the bus to connect the driver, just use the network cable to directly insert the

corresponding EtherCAT or RTEX interface.

➢ Power wiring:

Connect the positive pole of the +24V DC power supply to the 24V interface of the power

supply module of the controller, the negative pole to the GND interface, the motor to the

220V AC power supply, and the IO device to the corresponding IO interface of the controller.

Some models of the controller IO need to be powered by a 24V DC, and IO power is

supplied separately, then can be used later.

➢ Expansion wiring:

Support expand IO or pulse axis through CAN bus or EtherCAT bus. For details, please refer

to the "Module Extension" chapter.

➢ Configuration reference:

33

 Trail Running

After confirming that the wiring is correct, then power on, download the debugged program to the

controller, and start trial operation. Use the oscilloscope window or other parameter monitoring

windows to confirm that the action is as desired.

34

Chapter II ZDevelop Software Program

2.1 Program Software Introduction

ZDevelop is a PC-side program development debugging and diagnosis software for ZMoiton

series motion controllers. Through it, users can easily edit and configure the controller program,

quickly develop applications, monitor the axis running parameters in real time, and real-time

debug the running program of controller. And it supports Chinese and English bilingual

environment.

ZDevelop programming software supports ZBasic, ZPLC ladder diagram, ZHMI configuration

programming. ZBasic is the Basic programming language used by ZMotion motion controller, and

provides all standard program grammar, variables, arrays, conditional judgments, loops and

mathematical operations. This extended Basic instruction and function provides a wide range of

motion control functions, such as single-axis motion, multi-axis synchronization and interpolation

motions, as well as digital, analog and IO control.

ZBasic supports below functions:

➢ Self-define the SUB procedure, some general functions can be written as a self-defined SUB

procedure, which is convenient for program writing and modification.

➢ SUB procedure with G code form, which supports G00, G01, G02, G03, G04, G90, G92 and

other common instructions.

➢ Support global variables (GLOBAL), array and SUB procedure. Support file module

variables, array and SUB procedure. Support local variables (LOCAL).

➢ Interruption procedure (power-off interruption, external interruption, timer interruption), such

as, power-off interruption, save data through power off interruption, which can recover the

power-off status.

ZBasic has the real-time multi-task property, multi ZBasic procedures can build at the same time

and multi-task real-time operation, which makes the complex application simpler.

PC online send Basic commands also can realize the same effect, the inner Basic program of

controller and PC online Basic commands can multi-task run simultaneously.

35

2.2 New Project

Please build a new folder to save the project that is to be built. Open ZDevelop programming

software, here shows ZDevelop V3.10. Please visit ZMOTION website (www.zmotionglobal.com)

to update software version.

1. New build item: “File” in “Menu” → “New Project”.

2. Click “New Project”, then “Save as…” will be jumped, select one folder and open it. Input

folder’s name and save the project, pay attention to the suffix should be “.zpj”.

36

3. New build a file: “File” → “New File”.

After clicking “New Project”, below jumping window will appear, which supports

Basic/PLC/Hmi hybrid programming. Here selects the “Basic” file type and click “OK”.

4. Set file as automatic operation: please see the below picture, double click the right position

“AutoRun” of “File”, and input task number is “0”.

5. Program the procedure: when procedure is programmed, click “save” the file. New built Basic

file will be saved automatically into the file in Project zpj.

37

6. Connect to Controller: program the procedure well in the input window, click “Controller” -

“Connect”.

If there is no “Controller”, select connect to simulation, click “Connect” – “Connect to Simulator”.

In this way, it can be connected to simulator, and there is hint showing simulator is connected

successfully.

Click “Connect”, then “Connect to Controller” window will jump. And select serial port

parameters or net port IP address, click “Connect”. When it is connected well, print information in

Command and Output window: Connect to Controller: ZMC432 Version: 4.64-20170623.

For the detailed method of serial port connection and network port connection, please refer to the

"Help" → "ZDevelop Help" document in the menu bar of ZDevelop software.

38

7. Download Program: click “Download RAM” or “Download ROM”. When it is downloaded

successfully, Command and Output window will give a hint. Program is downloaded into

controller and will run automatically.

✓ Download RAM:

✓ Download ROM:

The program will not be saved after the RAM download is powered off, but the program will be

saved after the ROM download is powered off. After the program downloaded to the ROM is

connected to the controller next time, the program will automatically run according to the task

number.

Precautions:

➢ When open the project item, select the item zpj file. If only the Bas file is opened, program

can’t be downloaded into controller.

➢ ZMC00x series controller don’t support Download RAM.

➢ When project is not built, only Bas file can’t be downloaded into controller.

➢ AutoRun 0 means the task number, task number 0 runs the procedure. Task number doesn’t

have priority.

➢ If all files of whole project are not set the task number, when downloading into controller,

system will give the indication: WARN: no program set autorun.

39

2.3 Online Command and Output

The online command and output window can see and output various parameters of the controller,

print program running results and program error information. The print output function given by

the software developer in the program (output by commands such as, ?, PRINT, WARN, ERROR,

TRACE, etc.).

Note: English symbols are used for question marks, and Chinese symbols are invalid.

ERRSWITCH is the control switch of TRACE, WARN, and ERROR commands. Different

parameter values correspond to different output effects:

0: TRACK, WARN, ERROR instructions all don’t output.

1: only output ERROR instruction.

2: output WARN, ERROR instructions.

3: TRACE, WARN, ERROR instructions all output.

The online command and output window is shown below, “>>” represents the command input by

ZDevelop online command, and the online command input “print 1+2” window will print the

calculation result.

This function is valid when connecting to controller or simulator, it is not limited by program

running status.

Use online command to see status of all axes, please see the below picture. Input “?*mpo”,

window will print measurement positions of several axes mpos.

Common print and check commands:

40

?*SET: print all parameters’ values

?*TASK: print task information

Normal Only print task status

Error Print task status, error task number, error line

?*MAX: print all specifications and parameters

?*FILE: print program file information

?*SETCOM: print the present serial port configuration information

?*BASE: print the present task BASE list

?*数组名: print all elements of array, the array length can’t be so long.

?*参数名: print single parameter of all axes

?*ETHERCAT: print EtherCAT bus connection setting status

?*RTEX: print Rtex bus connection setting status

?*FRAME: print robot parameter, which needs 161022 or above firmware.

?*SLOT: print slot information of controller (RTEX, EtherCAT)

?*PORT: print all PORT communication ports

After connection to controller, use ?*max to print all specifications and parameters results of

controller:

Modify the value of a variable. The setting and modification of VR variables, TABLE variables,

MODBUS variables, global variables, system settings, axis parameters, and axis state variables

can be realized through “Online Commands”. The following figure is an example of modifying

the VR variable value.

41

2.4 How to Use Oscilloscope

2.4.1 Scope Interface

Oscilloscope is extremely important of program debugging and running. It is used to transfer

signals that can’t be seen by naked eyes into graphics, so it is convenient to analyze change

processes of all kinds of signals. Oscilloscope shows controller internal data in graph, it can

display different signals, like, axis parameter, axis status, etc., click “Tool” – “Scope” to open the

scope window.

Please see above SCOPE main interface, horizontal line means time, its time unit depends on

horizontal scale, controller period, and space size, the corresponding calculation formular is “unit

time = horizontal scale * space * controller period” (unit time: the time of each horizontal span),

for example, if the horizontal scale is 1000, the space is 2, and period is 1000us, then each grid’s

time will be 2000ms. For vertical line, unit depends on specific selected data source.

42

--How to Operate--

After editing the program in RTSys, and connecting to controller / simulator, then open the scope,

now you can set needed data source and corresponding No., select auto-trigger / manual trigger,

next, click “ ” open button, and download the program into RAM/ROM again. At this time, if

you use auto-trigger, it will sample after clicking ON, if you use manual trigger, after clicking ON,

you need to click “Manual-trigger” to sample, then download to RAM/ROM, or download directly

after clicking ON, then waiting for Basic to trigger (note, when waiting Basic trigger, “TRIGGER”

command should be added in program).

--Scope Basic Buttons--

Buttons Functions

Channel Selected channel and superposition channel, comparison channel isn’t

shown.

Config Open oscilloscope configuration window, set parameters.

Accessibility Assist in observing waveforms, including searching waveforms,

comparing waveforms, and importing and exporting waveforms.

Help Display the mouse operation guide interface to prompt the mouse shortcut

operations in each mode.

Switch of oscilloscope. ON state, it is , but it will not trigger the

oscilloscope.

Trigger Mode In the drop-down menu, you can select auto-trigger or manual-trigger.

When auto-trigger is selected, the manual-trigger button is unavailable.

⚫ Auto-trigger: it will be triggered immediately after clicking the ON

button.

⚫ Manual-trigger: it is necessary to download to RAM/ROM after

clicking ON button, then click the "Manual-trigger" button, or

download directly to RAM/ROM after clicking “ON” button and

wait for the Basic program to trigger (Note: when waiting for the

Basic program to trigger, the "TRIGGER" instruction must be added

to the program).

Manual-trigger Trigger manually oscilloscope to sample.

<< Press to hide the channel name and peak value, and display only the

channel No.

X Scale The scale of the horizontal axis. Select from the drop-down menu to

manually enter the value and unit. The default input unit is ms, which is

automatically converted to s after input. Place the mouse in the value box

and scroll the mouse to zoom in and out of the horizontal scale. It is

effective in YT mode, but becomes sensitivity in XYZ mode and XYZD

mode, indicating the sensitivity of the left mouse button operation.

Display There are four modes to switch, including YT mode, XY mode, XYZ

mode and XYZD mode. When the number of channels is less than 2, the

XY/XYZ/XYZD mode is not available, when the number of channels is

less than 3, the XYZ/XYZD mode is not available, when the number of

43

channels is less than 4, the XYZD mode is not available.

YT Mode The curves of different data sources changing over time, with each

channel showing a waveform.

XY Mode The XY plane displays the interpolated synthetic trajectory of the two

axes, and two consecutive channels of the same type are grouped together

to display a waveform.

XYZ Mode XYZ 3D space displays the synthetic trajectory. Select the channel as the

X, Y, and Z axis in turn. Three channels of the same type are grouped

together to display a waveform (channel types include regular channel,

overlay channel, contrast regular channel, and contrast overlay channel).

Each type can display at most one waveform.

Note: When using this mode, the OpenGL version of the display card

must be 1.5 or above.

XYZD Mode XYZD four-channel visualization display trajectory, where XYZ is the

3D space synthetic trajectory display, and D is the data source displayed

in the form of dots.

The calculation method is: dot diameter size = current D value ÷ D

reference value × D reference size. Parameter modification is located in

the "Observer Config" window. Select channels as X, Y, Z axis and D

value channels in turn. Four channels of the same type are grouped to

display a waveform (channel types include: regular channel, overlay

channel, contrast regular channel and contrast overlay channel), and each

type can display at most one waveform.

Current D value: the size of the data source value at the current position.

Note: When using this mode, the OpenGL version of the display card

must be 1.5 or above.

Channels Set the total number of regular channels to be sampled. It cannot be

modified when ON. When the set number of channels is greater than the

number of channels supported by the controller, a prompt message will

pop up: Exceeding the maximum number of channels supported by the

controller.

3D View You can choose oblique angle, front angle, left angle and top angle. The

default is oblique angle. XYZ mode and XYZD mode are valid.

Continuous When continuous acquisition is not enabled, sampling stops after reaching

the maximum acquisition cycle number, when continuous acquisition is

enabled, the oscilloscope will continue sampling, and will continue

sampling after reaching the maximum acquisition cycle number, that is, it

will not stop sampling until the stop button is pressed. The acquired data

will automatically overwrite the previous data. what’s more, all waveform

sampling data acquired continuously can be exported (the continuous

acquisition function is automatically canceled when using the serial port).

Follow After turning on the follow, the horizontal axis automatically moves to the

real-time sampling position and follows the waveform display.

Magnifier When this is checked, and the magnified view will be automatically

displayed at the lower right of the mouse when the mouse moves to the

44

display area. The magnified view will follow the mouse movement and

refresh. The magnifying glass parameters can be modified in the

"Observer Config" window. YT mode is valid.

Show Select whether to display the current channel curve. The oscilloscope has

four types of channels, including regular channels 1 to 8, superimposed

channels 1 to 4, regular channels 1 to 8 for comparison waveforms, and

superimposed channels 1 to 4 for comparison waveforms.

Index Select the data source No. to be collected, such as axis No., digital IO

No., analog IO No., TABLE No., VR No., MODBUS No., etc. The

number setting range is from 0 to the maximum number of axes of the

controller, and the number can be entered manually.

Source Select the data type to be collected. Click the left mouse button to

manually enter the data type, or click the drop-down menu to select

the type parameter. You can set the required parameter type in the "Data

Source Design" window.

Offset To set the waveform vertical axis offset, select the offset from the drop-

down menu or enter it manually.

Scale The scale of one grid on the vertical axis. When auto is selected, it

indicates automatic scale, which is available when the oscilloscope is

stopped. The scale value changes automatically according to currently

acquired waveform, so that the waveform can be fully displayed on the

current oscilloscope interface.

 It indicates loss may occur here, which is related to the maximum

acquisition cycle number. After the oscilloscope starts continuous

acquisition, it will re-trigger the acquisition at 80% of the maximum

acquisition cycle. At this time, the TABLE data begins to be rewritten,

and point loss may occur during this process. The "TRIGGER" command

is effective in manual trigger mode, and it appears at about 80% of the

maximum acquisition cycle number.

Note: to set the oscilloscope parameters, such as axis No., data source, and oscilloscope

"Parameter Config" window, you must stop the oscilloscope first and then set them.

2.4.2. How to Configure Scope

(1) Scope Config Window

Click menu above “Config” button, then click “parameter configuration”.

45

Parameter Description

Basic parameters

Sampling period (us) Time interval between twice sampling by SCOPE, it can’t be

modified.

Interval period number The sampling time interval, the unit is system cycles, which is

related to the controller firmware version. The default value is 1ms.

You can view it by SERVO_PERIOD. (For example, if the interval

cycle number is set to 1, it means sampling once in 1 cycle. If the

interval cycle number is set to 5, it means sampling once in 5 cycles,

the cycle time depends on the controller firmware version.)

Generally, the smaller the interval cycle, the more accurate the

sampling data, and the larger the data volume per unit time.

Max sampling periods The total number of sampled data. The larger the value, the larger

the sampling range. (That is, the size of the table required for the

data collected by one channel)

Auto use end of table The position where saves the data, default is True.

Table pos Set the location where the captured data is stored. Generally, the

default is to automatically use the space at the end of the TABLE

data. When "Auto use end of TABLE array" is set to False, you can

46

customize the setting, but be careful not to overlap with the TABLE

data area used by the program.

There are three ways to check the size of the controller TABLE

space:

a. use the TSIZE instruction to read.

b. view in the "Controller Status" window.

c. print and view the online command? *max.

Export parameters Select when you need to export oscilloscope channel parameter

information. After checking, oscilloscope parameters are exported

when exporting waveforms, including: basic parameters, overlay

parameters, and channel configuration parameters (No., data source,

offset, vertical scale). The default is True.

Overlay channel parameters

Channels Select how many channels that are overlayed, select from the drop-

down menu.

Overlay channel 1 / 2 You can select the channel number for superimposition.

Overlay method The overlay method between two channels, add or subtract.

Statistics parameters

Statistics parameters Set the parameter information displayed on the oscilloscope statistics

page. The default value is True.

(2) Observer Configuration Window

Click menu above “Config” button, then click “obverse config”, then corresponding window will

appear, after configured, click “use” to preview how it is after modified, then click “OK”.

47

Parameter Description

Back / Grid / Grid line

/ Cursor color

Set corresponding needed color.

Grid line type Set the grid line type, there are solid or dashed lines.

Cursor line type Set cursor line type, there are solid or dashed lines.

Channel line type Set channel line type, there are point, solid, dashed lines.

For “point”, scope will show data that are sampled by SCOPE in

fixed period, “point size” parameter can be set.

For “solid / dashed lines”, sampled points will become one smooth

lines, then abnormal data can be easily checked, also, “line width”

parameter can be set.

Line quality Set channel waveform’s line quality, when there are many data,

recommend to use standard mode, which can accelerate scope

performance.

Font / Font size Set the font and font size of the channel No., channel name and peak

value on the waveform display interface.

Normal / Overlay /

Contrast / Contrast

overlay channel

Set corresponding channel’s line width, point size, and channel

color.

D reference value /

size

Used to calculate the dot diameter size in XYZD mode. The

diameter size is related to the ratio of D reference size/D reference

48

value. The larger the ratio, the larger the dot diameter. The

calculation formula is: Dot diameter size = current D value ÷ D

reference value × D reference size. (The current D value is the value

of "D value selection")

D points per group Display a dot for every N sampling points. (For example, if "D

points per group" is set to 100, a dot will be displayed for every 100

sampling points according to the value of "D value selection")

D value selection The value of the current display dot size in N sampling points can be

selected as the maximum value, minimum value and average value.

(For example, if "D value selection" is set to the maximum value and

"D points per group" is set to 100, the maximum value of every 100

sampling points will be used as the basis for calculating the current

display dot diameter)

Magnifier Set the width, height and magnification of the magnifier.

Search Set the line width, point size, and channel color of the search results

displayed when searching a waveform.

(3) Data Source Design Window

Click menu above “Config” button, then click “data source design”.

Parameter Description

49

First / Second

level menu

Set corresponding needed color. When there is information in second level

menu, the first level menu text is the type, the second level content is data

source. When there is no information in second level menu, the first level

menu is data source.

“add” button, add information in first level or second level.

“delete” button, deleted selected information. Note: axis parameter and

register in first level can’t be modified.

Up / down, used to sort.

Rerrange Sort items of first level and second level according to characters from A to Z.

2.4.3. How to Import & Export Scope Data

a. Import Configuration

Import parameters related to scope, including parameter configuration, observer configuration,

data source design, channel parameter configuration (show, No., data source, offset, vertical scale).

And the file format of the imported data is .ini.

You only need to click “config” – “import config”, then select which file, when imported, new file

data will cover before parameters.

b. Export Configuration

Export parameters related to scope, including parameter configuration, observer configuration,

data source design, channel parameter configuration (show, No., data source, offset, vertical scale).

And the file format of the imported data is .ini.

You only need to click “config” – “export config”, then select folder to save it.

2.4.4. How to Sample by SCOPE

A. Open project, connect to controller or simulator, then open the oscilloscope window (note:

first, connect to controller or simulator, then operate the oscilloscope window).

B. Click “Scope Config” in oscilloscope window, select sampling period, max sampling period,

sampling space, whether use END table, table position and show type, etc. Then, click “OK”

for saving this configuration.

C. Select sampling Index and Source, then select auto-trigger or manual-trigger, click button.

50

D. Download program into controller. When it is auto-trigger, sampling immediately after

clicking button. When it is manual-trigger, click button first, then click “manual-trigger”,

at last, download RAM/ROM, or if there is “TRIGGER” command in the program, you can

click and download directly to wait for BASIC to trigger sampling.

E. If the waveform accuracy is not high or the display is incomplete, click the " " button and

then open the "Scope Config", adjusting the sampling space and sampling depth, and perform

the above sampling process again.

If the sampling time is long, start “Continuous acquisition” function. At this time, no relation

between sampling time and max sampling period.

2.4.5. Scope Needs

⚫ How to Calculate Scope Sampling Time:

For example, max period: 1000, space: 5

If system cycle SERVO_PERIOD=1000, which means it is 1ms trajectory planning cycle. Space 5

means sampling one data point per 5ms. Total sampling data number is 10000, so sampling time

length is 50s.

⚫ How to Calculate TABLE End Space:

Set the position where the captured data is stored. Generally, the space at the end of the TABLE

data is automatically used by default, now starting space address is calculated automatically

according to captured data space.

Calculation method: captured data space = channel numbers * max sampling periods

For example, if TABLE space of controller is 320000, there are 4 sampling channels, max

sampling periods is 30000, each sampling point occupies one TABLE, so it will occupy

4*30000=120000 TABLE positions. 320000-120000=200000, which means starting position of

TABLE is 200000.

If you don’t use TABLE end space, you also can self-define. Same condition as above, starting

TABLE position can’t be more than 200000, because this space can’t be same as TABLE spaced

used in program, otherwise, no way to run.

⚫ How to Solve “Point Loss” Problem:

51

Generally, the “max sampling periods” is too low, “point loss” may appear. Then, you can set a

bigger value.

⚫ How to Solve “Polyline” under “Continuous Acquisition”:

Related to “max sampling periods”. Actually, the problem is “point loss”.

⚫ How to Use “Continuous Acquisition” Function:

When continuous acquisition is not selected, the oscilloscope automatically stops sampling when

the sampling depth is reached.

First select “Continuous acquisition” in “Scope Config”, then start oscilloscope, it will continue to

sampling after triggered, and sampling even if it reached the depth. It will stop until press “Stop”

button manually.

All waveforms and captured data from continuous acquisition can be exported.

2.4.6. Scope Usage Routine

Example 1: Continuous trajectory look-ahead application

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

DPOS=0,0

ATYPE=1,1

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

SRAMP=100,100

MERGE=ON

CORNER_MODE=2 ′start corner deceleration

DECEL_ANGLE = 15 * (PI/180) ′set angle of starting deceleration

STOP_ANGLE = 45 * (PI/180) ′set angle of ending deceleration

FORCE_SPEED=100 ′it is valid when in equal deceleration

52

TRIGGER ′trigger oscilloscope automatically

MOVE(100,100)

MOVECIRC(200,0,100,0,1) ′Radius 100 draw a semi-circle clockwise, end coordinates (300,100)

Speed and position curve of sampling axis 0 and axis 1:

Two-axis interpolation synthetic trajectory in XY mode:

Example 2: PSO position synchronization output, output OP signal when arriving comparison

point

53

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

DPOS=0

MPOS=0

ATYPE=1

UNITS=100

SPEED=100

ACCEL=1000

DECEL=1000

OP(0,OFF)

TABLE(0,50,100,150,200) ′coordinate of comparison point

HW_PSWITCH2(2) ′stop and delete incomplete comparison points

HW_PSWITCH2(1, 0, 1, 0, 3,1) ′compare 4 points, operate output 0

TRIGGER ′trigger oscilloscope automatically

MOVE(300)

Example 3: Electronic Cam Application

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0) ′select axis 0

ATYPE=1 ′pulse directional step or servo

54

DPOS = 0

UNITS = 100 ′pulse equivalent

SPEED = 200

ACCEL = 2000

DECEL = 2000

′Calculate TABLE data

DIM deg, rad, x, stepdeg

stepdeg = 2 ′use this to modify line number, line is more, speed is more stable

FOR deg = 0 TO 360 STEP stepdeg

rad = deg * 2 * PI/360 ′convert to radian

X = deg * 25 + 10000 * (1-COS (rad)) ′calculate offset of each small segment

TABLE (deg/stepdeg, X) ′store TABEL

TRACE deg/stepdeg, X

NEXT deg

TRIGGER ′trigger oscilloscope sampling

WHILE 1 ′cycle motion

CAM (0, 360/stepdeg, 0.1, 300) ′the virtual follow length is 300

WAIT UNTIL IDLE ′wait until motion stops

END

Motion trajectory: total time of each cam instruction = distance / speed = 300/200 = 1.5s

55

2.5 Program Debug

2.5.1 Enter Program Debug

Pay attention to safety when debug the machine! Be sure to design effective safety

devices in the machine, and add the error handling procedures in software. Zmotion has no

obligation or responsibility for the loss.

Debug function means it can debug the program rapidly, and check the running situation of all

tasks in the program.

After ZDevelop connecting to controller, select “Debug” – “Start/Stop Debug”, then it will jump

below window:

There are 4 kinds of debugging way when enters debug:

➢ Down ram again: it means the program is downloaded into RAM again, RAM fails to store

when power-off.

➢ Down rom again: it means the program is downloaded into ROM again, RAM stores when

power-off.

➢ No download, Reset: it means not to download the program, and run the program

downloaded before, and open task window to see current running status.

➢ Attach to current: it means this time the program is not to be downloaded, only showing

current running status when opened task window.

56

2.5.2 Task and Watch Windows

After selecting debug method, task and watch windows can be opened.

Task window is used to see running status of task, file and task running line number.

Valid expressions such as global variables and file module variables can be added into the “Watch”

window. Local variables are not supported, and its parameter values are automatically obtained

and displayed when the program is running. Also, under the debugging state, you can select

variables in the program editing area and right-click "Add to Watch", or double-click the content

name of the watch window to modify or add watch items.

2.5.3 Usage of Debug Tool Bar

After starting debugging, debug tool bar becomes valid.

From the left to the right:

➢ Reset: run from the starting position

➢ Run(F5): start to run automatically, pause the scan when encountering a breakpoint, and then

click to resume the scan.

➢ Pause: pause the running

➢ Step Into(F11): run into program, press once, it will scan the next line

➢ Step Over(F10): run into next program

➢ Step Out: jump out of SUB subroutine to run

➢ Run to: run to the line specified by the cursor

➢ Toggle breakpoint: click to set, click to cancel again in the original position

57

➢ Emerge Stop: force stop all programs from running

When the program is inconsistent with the controller or the program is not downloaded in time

after re-modification, it will cause the line number specified by debugging to be offset. Motions

that are currently submitted when paused are not paused.

2.5.4 Breakpoint Debug

Program can be obtained and paused through adding breakpoints

Breakpoint debugging can view the specific running process of program, which is mainly used to

judge program logic errors. With watch content and axis parameter changes, you can view the

impact of each step of the program execution on registers, variables, arrays, etc.

Breakpoint shortcut key F9 add, add or delete breakpoint button or menu bar "Debug" → "Toggle

Breakpoint", multiple breakpoints can be added, menu bar "Debug" → "Kill All Breakpoint" is

used to clear the project file at one time all breakpoints. “Edit Breakpoint” window can quickly

remove the target breakpoint or navigate to the breakpoint to edit the code.

After the program stops at the breakpoint, you can perform step-by-step debugging, press the

shortcut key F11, and press the program once to execute one step down.

As shown in the figure below, the debugging cursor stops at line 17. At this time, the statement on

line 17 is not executed, and the statement on line 16 has been executed. Press F11 once to execute

line 17.

58

If the breakpoint is set in the loop, the next time the loop runs to the breakpoint, the program will

still be stopped.

After the program is debugged, all breakpoints should be cleared first, then download the program

to the controller. Otherwise, print information prompting Warn file: "Basic1.BAS" line: 17 task: 0,

Paused. The program after the breakpoint will not be scanned for the time being.

When the program is running, a warn warning appears, still it can continue to run. After the

program is downloaded, it will stop running if it prints an ERROR error.

2.6 the View Window

ZDevelop software has a variety of view windows, users can easily edit and configure the

controller program, develop applications quickly, monitor the axis running parameters in real time,

and debug the running program of the motion controller in real time.

For example, the axis parameter window can monitor common parameters in motion control, and

the readable and writable axis parameters can be directly modified after double-clicking in the

window, the read-only parameters do not support modification. The input and output window

monitors the status of IO, and the manual motion window quickly debugs the running status of the

axis.

For more view windows and their function descriptions, please refer to the help menu of

ZDevelop software, and open the "ZDevelop User Manual" to view.

59

60

Chapter III Basis of Basic Programming

This manual takes the Basic programming language as an example for detailed description. For

customers who use PC host computer programming, please refer to Zmotion "Zmotion PC

Function Library Programming Manual" for more information.

3.1 Programming Basic Knowledge

3.1.1 Program

Procedure consists of code sequence, telling computer how to execute a specific task. A program

is a sequence of instructions (statements) developed by software developers according to user

needs and described in a programming language that is suitable for computer execution.

ZBasic is not case sensitive, all punctuation marks of instructions in the program should be in

English format.

Two aspects should be included in one procedure as follow:

1. To describe the data properly. In the procedure, the data type and organization form should be

defined well, namely, the data structure. (For Reference: DIM, Global, Const)

2. To describe the operation procedure well. That is, the operation steps, or the algorithm,

combined with the motion control is the process of motion and action.

◼ Common Program Structure

To write an algorithm, we generally use the following program structure description methods:

sequence, selection, loop, delay, wait, and sub-procedure calling. See the next section for sub-

procedure calling.

◆ Sequence

In the absence of conditions and loops, the program always moves from top to bottom. When set

to run automatically, the files are executed sequentially from the beginning of the file down by

default.

Function 1

61

Function 2

Like above, execute function 1 firstly, then execute function 2.

Under BASIC programming, the program scans once from top to bottom.

Under PLC programming, the program scans periodically from top to bottom.

62

◆ Selection

Select different commands to execute according to execution conditions. There includes; IF THEN,

ON GOTO, ON GOSUB, etc.

Routine 1:

DIM aa

aa = 1

IF aa = 0 THEN

Command 1

ELSELF aa = 1 THEN

Command 2

ELSE

Command 3

ENDIF

END

Routine 2:

DIM a

a = 100

ON a > 10 GOTO label1

a = 1000

END ′main program ends

Lable1:

PRINT a

END ′goto jump can’t return

◆ Loop

Program is executed repeatedly, which means loop. There are main loop commands, FOR NEXT,

WHILE WEND, REPERAT UNTIL, etc.

Routine 1:

DIM a

63

a = 0

FOR i = 1 TO 10 STEP 1

a = a + 1

 PRINT a

NEXT

END

Routine 2:

DIM a

a = 0

WHILE IN(1) = OFF ′wait until input 1 is valid, exit loop

a = a + 1

PRINT a

DELAY (1000)

WEND

END

◆ Delay

When program encounters DELAY command, it will stop for a relative time, then continue to

executing.

Routine:

PRINT 1

DELAY(2000) ′delay 2000ms

PRINT2 ′print 1, after delaying 2000ms, print 2

END

◆ WAIT

When program encounters WAIT command, it will stop here, then execute until meeting WAIT

conditions.

Routine:

BASE(0,1)

MOVE(100,100)

64

WAIT IDLE ′wait until the current interpolation motion ends

PRINT ′motion finishes

Except the WAIT and the DELAY commands, the program will block. When the motion

instruction is scanned, if the motion buffer of the axis is full, the program will stop at the current

motion command line until the current motion is completed. When the buffer has one black space,

the program will continue to execute. See Motion Buffer Instructions for buffers.

65

◼ Sub-procedure

Subprograms are often used in the programming process (subprograms are defined by the SUB

instruction in Basic). Using subprograms can modularize programming. The relationship between

each module is as simple as possible, and the functions are relatively independent, which is

equivalent to simplifying the main program, so programming becomes more efficient and easier to

read, and it can effectively decompose a complex program system design task into many

subroutines and subtasks that are easy to control and process, which is convenient for

development and maintenance.

→ Main program and subprogram execution logic:

The SUB subprogram can be opened as a subprogram, it returns to the main program after running

END SUB. It can also be opened by using RUNTASK instruction to run independently as a task.

After the task is opened, it has no relation with the main program. After the operation is completed,

the subprogram task ends. Not return to the main program.

The main program calls subprograms nested up to 8 levels.

There are Global SUB, File Module SUB. Global SUB can be applied in all files, but File Module

SUB only can be used in the current file. Subprogram also can pass parameters and returns

parameters.

Example:

SUB sub1() ′define process SUB1, which is only used in the current file.

?1

…

END SUB ′self-define SUB process ends

GLOBAL SUBg_sub2() ′define global process g_sub2, which can be used in any file.

?2

…

66

END SUB ′self-define SUB process ends

GLOBAL SUBg_sub3(para1,para2) ′define global process g_sub3, passing 2 parameters

?para1, para2

…

RETURN para1 + para 2 ′parameter return functions add

END SUB ′self-define SUB process ends

3.1.2 Data

◼ Data Definition

◆ Variable Definition

Variable is the parameter that can be self-defined by users. It is used to temporarily save

communication data with external equipment or data that’s processed by task inside. Namely, it

saves data that is with property, like, name or data type, etc. There is no need to assign address

allocation between variables and memory addresses.

Variable definition instruction: global variable (GLOBAL), file module variable (DIM), local

variable (LOCAL).

Global variable (GLOBAL): it can be used in any file of project.

File module variable (DIM): it only can be used in file inside project.

Local variable (LOCAL): it is mainly used in the SUB, which means it is invalid in other files.

Variable can be assigned without definition, now variable is the DIM by default.

Example:

GLOBAL g_var2 ′define the global variable g_var2

DIM VAR1 ′define file module variable VAR1

SUB aaa()

LOCAL v1 ′define local variable V1

v1=100

END SUB

67

◆ Constant Definition

The value of a variable varies depending on the data that is substituted for that variable. The

relative fixed value is a constant. Once the value of the constant is defined, it cannot be modified,

which means it can only be read.

CONST defines a constant once time, and the definition and assignment must be the same line.

Constant can be defined as global constant GLOBAL CONST. GLOBAL is used in any file, but

there is no way to write LOCAL CONST. Constant is different from variable, it doesn’t save the

information in memories. There are many common constants, such as, Boolean type, Character

String type, Time type, Date type, Integer type, etc.

Example:

CONST MAX_VALUE = 100000 ′define file constant

GLOBAL CONST MAX_AXIS = 6 ′define global constant

◆ Array Definition

Array assignment means that the data of the same attribute are collectively defined, and the

number of data is designated. The pieces of data that make up the array are called "elements".

GLOBAL and DIM are relative instructions, but LOCAL definition is not supported.

Pay attention to array space designation, it can’t be over definition range. Otherwise, program will

appear error that indicates the array space limits.

Example:

DIM array(15) ′define file array, valid 15 arrays, number 0~14

GLOBAL array2(10) ′define global array, valid 10 arrays, number 0~9

?*max can check the max array size parameter “max_arrayspace”, and it equals to the value that is

gained by adding self-defined array and TABLE. However, the space except TABLE is real max

space can be used by self-defined array, the max number of arrays to be self-defined is determined

by max_array parameter.

68

◼ Data Type

 Inside a computer, data is stored and operated in binary form, and a bit in binary data is the

smallest unit in which a computer stores data.

 A binary bit can only represent two states of 0 or 1. To represent more information, it is

necessary to combine multiple bits into a whole, generally 8-bit binary constitutes a basic

unit byte (Byte).

 Byte is the most basic unit of computer data processing, and mainly interprets information in

bytes. In general, one ASCII code occupies one byte, and one Chinese character international

code occupies two bytes. Different computer models have different word lengths. Commonly

used word lengths are 8, 16, 32 and 64 bits.

 Unit conversion: 1Byte=8bit, 1KB=1024B, 1MB=1024KB, 1GB=1024MB.

 Common bases are binary, octal, decimal, and hexadecimal. The parameters of various

motion instructions are decimal data by default.

Name Description

Bit Bit is the most basic unit of binary value, its state is 0/1.

Nibble
It consists of 4 consecutive bits (such as bit3～bit0), one bit represents

decimal numbers 0～15 or hexadecimal 0～F

Byte
It consists of 2 consecutive nibbles (8 bits, bit7～bit0). Represent

decimal numbers 0～255 or hexadecimal 00～FF

Word
It consists of 2 consecutive bytes (16 bits, bit15～bit0). Represent

decimal numbers 0～65535 or 4 bits hexadecimal 0000～FFFF

Double Word
It consists of 2 consecutive words (32 bits, bit31～bit0). Represent

decimal numbers 0～232-1 or 8 bits hexadecimal 00000000～FFFFFFFF

 The data type refers to the specific provisions on the form and range of the value represented

by the variable. When the variable is declared, the size of the data type is determined

according to the size of the data range in the memory. The larger the data range in the

memory, the larger the range of values that can be represented.

Data Type Description

Boolean Value is 0/1

Integer Value is integer

Real number Value is real number

Date In date form, DD: MM: YYYY

Time In time form, hh: mm: ss

Character Value is character string

 The data types of variables input or output by instructions are determined by instruction.

69

 The data type of self-defined variable belongs to dynamic type. When integer is assigned to

variable, the variable is integer type. When floating type is assigned to variable, the variable

is floating point type.

 Self-defined array’s data types are single-precision floating point and double-precision

floating point. Please refer to below floating point introduction.

Single-precision floating point 32-bit:

Single-precision floating point data format: VR, MODBUS_IEEE, TABLE and self-defined array

and variable (ZMC3XX series controller and former series)

Double-precision floating point 64-bit:

Double-precision floating point data format: TABLE and self-defined array and variable

(ZMC4XX series controller and following series)

Common register data type form:

Register Type Data

Type

Value Range

MODBUS_BIT Boolean 0 or 1

MODBUS_REG 16 bits

integer

-32768 to 32767

MODBUS_LONG 32 bits

integer
-2147483648 to 2147483647

VR_INT

MODBUS_IEEE

32 bits

floating
-3.4028235E+38 to -1.401298E-45

VR

TABLE and array

(ZMC3XX series and its former)

TABLE and array

(ZMC4XXseries and its after)

64 bits

floating
1.7E-308 to 1.7E+308

VRSTRING character one character occupies one VR address

MODBUS_STRING character One character occupies 8 bits

 The memory capacity required for all data does not match the total data size (capacity value)

of each data because the head position of the data allocated to the memory is automatically

70

allocated to the multiple position of the "calibration value (boundary value)" for each

whitespace occurs between data types. Even if the kinds of data types are the same, the

overall occupied data size still varies depending on the order of the data types.

◼ Data Operation

Pay attention the data type when operating data of different types. Below problems will appear if

types are not matched:

◆ Data Loss

Decimal part will loss when data type is from floating to integer.

Routine:

VR(0)=10.314

MODBUS_REG(0)=0

MODBUS_REG(0)=VR(0)

?MODBUS_REG(0) 'the result is 10

◆ Force Conversion

After the integer type is stored in the floating-point type register, it will become a floating-point

type, and then using the integer type to manipulate the data may be incorrect.

◆ Common Usage Problem

When obtaining the date, do not use single-precision floating-point storage, because the date

format is 8-bit, and the single-precision floating-point number has only 6 valid bits. It is

recommended to directly use the 32-bit integer MODBUS_LONG to store.

Some parameters must use string type constants or variables, various strings can be combined by

"+", and the operation of a single byte of a string needs to be performed using an array.

Instructions related to character string：

Instruction Description

DIM Defined array can be used as character string directly, each

element represents a byte.

71

“” Use “” to define constant type character string directly.

CHR Convert ASCII to a character string, it only occupies one byte.

MODBUS_STRING Standard MODBUS protocol defines character string, each 16-

bit register stores 2 bytes.

VRSTRING VR list acts as character string, 1 VR stores 1 byte.

+ Operational character, which is used to combine two characters.

VAL Convert Number character string to numerical.

TOSTR Convert numerical to number character string.

STRCOMP Compare different character strings

DMCPY Array copy function, also can copy character string.

HEX Return hexadecimal value, only for print purpose.

DATE$ Return date in “dd: mm: yyyy” format.

DAY$ Return the English name of today's week

TIME$ Return the current time of 24 hours type in “hh:mm:ss” format.

◆ Parameter

 There are axis parameters, task parameters, system parameters, etc. Parameters can be read or

be written (except a little parameter only be read).

 Configure axis parameters (axis type, pulse equivalent, axis speed, etc.) well before motion.

Relative safety configuration (positive and negative hardware/software position limitation,

alarm signal, emergency stop, deceleration, etc.) should also be set well.

 There are two types, auto-save and nonauto-save.

→ For auto-save parameter, it will be saved after modification, and won’t recover the default

value when powers on again. Relative instructions: axis parameter instruction,

IP_ADDRESS, APP_PASS and LOCK these kinds of password instructions,

CANIO_ADDRESS, etc.

→ For nonauto-save parameter, it will recover default value when it powers on again, which

means it needs to be modified. For example, use SETCOM instruction to set serial port

parameters, needing to set again after power-on each time, so SETCOM instruction

should be put the beginning of program.

◆ Power Failure Storage

 The controller has protection on register VR and multiple sector storage FLASH blocks when

power-down.

 Check FLASH sector amounts through ZDevelop online command “?FLASH_SECTES”.

Command “?FLASH_SECTSIZE can see the size of sector, and can save power-down data.

72

 ONPOWEROFF when power-down interrupting, written program can be used to record the

position of power-off to VR. When system powers on again, use program for recovering VR

data into current position, because executing time is very short when power-down, it is

recommended to only save several data.

 Use SETCOM instruction to match VR with MODBUS_REG registers, and set instruction

parameter “variable”. Please see SETCOME instruction for details.

Routine:

Set variable = 3, and one VR_INT should be mapped into two MODBUS_REG addresses.

Conversion Relation: VR_INT(num) =MODBUS_REG(num)*2^16+MODBUS_REG(num+1)

SETCOM(38400,8,1,0,0,0,3) 'configure as power failure storage

VR_INT(0)=0

MODBUS_REG(0)=1 'low 16-bit value is 1

MODBUS_REG(1)=2 'high 16-bit value is 2

?VR_INT(0) 'result: 131073

END

 VR is not easily to lose when power down, it can be read and written infinite times. The data

storage time is 10 years. It is recommended to store the key parameters of the machine and

equipment in FLASH. The FLASH space is larger. When the power is turned on, the data is

read from the FLASH and written to each variable.

 FLASH has a write life limit and cannot be erased and written indefinitely. It is

recommended to write to VR for frequently rewritten data.

3.2 Three Programming Methods of Zdevelop

3.2.1 Hybrid Programming

 ZDevelop software supports 3 kinds of programming methods, they are ZBASIC, ZPLC

ladder diagram and ZHMI configuration. It also supports these 3 languages hybrid

programming. The programmed procedure through ZDevelop can be downloaded to

ZMOTION motion controller.

 ZBSIC, ZPLC and ZHMI can run multi-task among them. ZBASIC can run multi-task, ZPLC

and ZHMI both only can run one task.

 For example, see the below, two different BASIC files in one project can set different task

73

numbers to run separately. PLC/HMI file in the same project only can have one task number.

 Both ZPLC programming and ZBASIC programming are easy to understand and clear in

logic structure, which can meet various programming requirements and are widely used at

present. The HMI configuration programming is suitable for ZMOTION ZHD series teaching

box, and teach pendant of other companies can also be connected to the controller, please use

the teaching box programming software provided by the company.

3.2.2 PLC and BASIC Call Each Other

Relation of PLC and BASIC registers:

PLC BASIC

Input relay X

X0-X7
Input port IN

MODBU_BIT

(10000-10527)

IN(0)-IN(7)

X10-X17 IN(8)-IN(15)

X20-X27 IN(16)-IN(23)

X1770-X1777 IN(1016)-IN(1023)

Output relay Y

Y0-Y7

Output port OP

(20000-20527)

OP(0)-OP(7)

Y10-Y17 OP(8)-OP(15)

Y20-Y27 OP(16)-OP(23)

Y1770-Y1777 OP(1016)-OP(1023)

Auxiliary relay M

M0
MODBUS_BIT (0-

4095)

MODBUS_BIT(0)

M1 MODBUS_BIT(1)

M1023 MODBUS_BIT(1023)

Special relay D

D0 MODBUS_REG

MODBUS_LONG

MODBUS_IEEE

MODBUS_REG(0)

D1 MODBUS_REG(1)

D1023 MODBUS_REG(1023)

Floating register DT

DT0

TABLE (0-5999)

TABLE(0)

DT1 TABLE(1)

DT1023 TABLE(1023)

State register S S0 ~ S999
MODBUS_BIT

(30000-30999)

Analog output

register
D13000 ~ D13127

MODBUS_REG

(13000-13127)

Analog input register D14000 ~ D14255
MODBUS_REG

(14000-14255)

PLC Command EXE @BASIC Command

74

 Input Relay X is related to IN, under PLC programming, X is octal system (X0~X7,

X10~X17, …), but controller’s input port IN is decimal system, so decimal conversion is

needed when programming. For example, IN2 is relative to X24, IN8 is relative to X10.

 Output Relay Y is related to OP, under PLC programming, Y is octal system (Y0~Y7,

Y10~Y17, …), but controller’s output port OUT is decimal system, so decimal conversion is

needed when programming. For example, OUT2 is relative to Y24, OUT8 is relative to Y10.

 Auxiliary Relay M is related to MODBUS_BIT.

 Special Relay D is related to MODBUS_REG.

 Floating Register DT is related to TABLE, which can be used to transfer data between

ZBASIC.

 “EXE@BASIC instruction expression” in PLC can be used to call BASIC instructions.

 Basic can use command “RUN “xxx.plc”, task number” to start PLC task.

 “CALL SUB_FUNC” or “RUNTASK_RUNC” can be used to call PLC subprogram LBL.

Please see “ZMotion PLC Programming Manual” for more details.

3.3 Register

There are several main registers of controller, such as, TABLE, FLASH, VR, MODBUS, etc. After

connecting ZDevelop software to controller, size of each register on this controller can be checked

through ZDevelop software "Controller” – “State the controller”. Also it can input “?*max” in

online and output window to see the amount of each register. Different controllers have different

store space.

3.3.1 Table

TABLE is a very large array that comes with the controller, the data type is 32-bit floating point (4

series and above are 64-bit floating point), and it will not be saved when power off. When writing

a program, the TABLE array does not need to be defined again and can be used directly. The index

subscript starts from 0.

Some instructions of ZBasic can directly read the values in TABLE as parameters, such as CAM,

CAMBOX, CONNFRAME, CONNREFRAME, MOVE_TURNABS, B_SPLINE, CAN, CRC16,

DTSMOOTH, PITCHSET, HW_PSWITCH, etc.

75

Parameters sampled by the oscilloscope are also stored in TABLE. Therefore, in the development

and application, pay attention to the allocation and use of multiple TABLE areas, and do not

overlap with the data storage area sampled by the oscilloscope.

1) TABLE instruction reads and writes data:

TABLE(0) = 10 ′TABLE(0) assigns 10

TABLE(10,100,200,300) ′Mass assignment, assign TABLE(10) as 100, assign TABLE(11)

as 200, assign TABLE(12) as 300

2) TABLE size can be read by TSIZE instruction, and can be modified (can’t be over TABLE max

space).

PRINT TSIZE ′print controller TABLE size

TSIZE = 10000 ′set TABLE size, which can’t be over max controller TABLE size

3) TABLESTRING instruction prints data in TABLE according to character string format.

TABEL(100,68,58,92)

PRINT TABLESTRING(100,3) ′print data in string form, then convert to ASCII code.

PTINT RESULT: D:\

When TABLE is used as parameter to pass, uses are basically same. Next take CAM as the

example:

CAM(start point, end point, table multiplier, distance)

start point: the starting point TABLE number, where the first point is stored

end point: the end point TABLE number

table multiplier: the position is multiplied by this ratio, generally set to the pulse equivalent

distance: the distance of the reference movement

Example of usage:

TABLE(10,0,80,75,40,50,20,50,0) 'TABLE starts to store data from 10, assign TABLE (10) as

0, assign TABLE (11) as 80

CAM(10,17,100,500) 'Motion track is from TABLE(10) to TABLE(17)

There are two ways to view the data in TABLE:

→ enter “?*TABLE(10,8)” on the online command, starting from TABLE(10), 8 data in turn.

76

→ Check the DT (TABLE) data in the register, starting from 10, and there are 8 numbers.

3.2.2 FLASH

 Strictly speaking, FLASH is closely related to the register, but is is not a register, so it is

described in this chapter.

 FLASH has a power-down storage function, and the number of reading and writing limit is

100,000 times, and data will not be lost if it is not powered on for a long time. It is generally

used to store large data that does not require frequent reading and writing, such as processing

files.

 When reading and writing, pay attention to ensure that the names and order of variables,

arrays, etc. to be operated are highly consistent. If they are inconsistent, data will be cluttered.

 When FLASH is used, it is viewed according to the block number, and the number of blocks

is checked through FLASH_SECTES instruction. The number of FLASH blocks and block

data sizes of different controllers are different, and the data size of each block is checked

through FLASH_SECTSIZE instruction.

 Also view it on the online command line, as shown below.

77

 Parameters set by CAN communication, IP address, APP_PASS, LOCK password and other

system parameters are stored in FLASH.

 Note: FLASH must be written before reading, otherwise an alarm WARN will be prompted.

 How to use FLASH:

GLOBAL VAR ′variable definition

GLOBAL ARRAY1(200) ′array definition

DIM ARRAY2(100)

′data is stored in FLASH block: Write VAR, ARRAY1,

ARRAY2 data into FLASH block 1 in turn

FLASH_WRITE 1, VAR, ARRAY1, ARRAY2

′FLASH block data read: read the data of FLASH block 1 into

VAR, ARRAY1, ARRAY2 in sequence

FLASH_READ 1, VAR, ARRAY1, ARRAY2

'The reading order is consistent with the writing order

3.3.3 VR

 The VR register has a power-down storage function and can be read and written infinitely,

but the data space is small, generally only 1024 or less. The VR space of the latest series of

controllers is 8000, which is used to save data that needs to be modified continuously, such as

axis parameters, coordinates, etc., the data type is 32-bit floating point (4 series and above are

64-bit floating point).

 Use VR_INT to force an integer, and VRSTRING to force a string. VR, VR_INT,

VRSTRING share a space, and the address space is overlapping. VR and VR_INT have the

same read and write methods. VRSTRING saves ASCII code, and one character occupies one

VR.

 The principle of VR's power-off storage is that the controller has a power shortage memory

inside, but the data capacity is small, so the data with a large amount of data or data that

needs to be saved for a long time is best to be written into the FLASH block or exported to a

U disk.

78

 The VR register can also be used for the RTEX controller to transmit reading and writing

data, write the DRIVE_WRITE parameter, and read the DRIVE_READ parameter. For

details, see Chapter 16 RTEX instruction.

 Use CLEAR instruction to clear all data in VR, CLEAR_BIT instruction will set a certain

position of VR to 0, READ_BIT instruction will read a certain bit data of VR register,

SET_BIT instruction will set a certain position of VR to 1.

Example 1: VR usage method

VR(0) ′assign

aaa = VR(0) ′read

Example 2: data conversion in VR register

VR(100)=10.12

VR_INT(100) = VR(100) ′data conversion

?VR_INT(100) ′print result: 10, from floating to integer type

Example 3: VRSTRING stores character string

VRSTRING(0,4) = “abc” ′save character string, starting from VR(0)

PRINT VRSTRING(0,4) ′print result: abc

3.3.4 MODBUS

 MODBUS register conforms to MODBUS standard communication protocol, there are bit

register and word register. MODBUS register doesn’t support power failure storage.

 Bit register: MODBUS_BIT, for touch screen, it is called MODBUS_0X, Boolean type.

Word register: MODBUS_REG, MODBUS_LONG, MODBUS_IEEE, MODBUS_STRING.

For touch screen, it is called MODBUS_4X, see the below:

79

 The MODBUS word register in the controller occupies the same variable space, one LONG

occupies two REG addresses, and one IEEE also occupies two REG addresses. When using,

pay attention to stagger the word register number address.

→ MODBUS_LONG(0) occupies two REG addresses, MODBUS_REG(0) and

MODBUS_REG(1).

→ MODBUS_LONG(1) occupies two REG addresses, MODBUS_REG(1) and

MODBUS_REG(2).

→MODBUS_IEEE(0) occupies two REG addresses, MODBUS_REG(0) and MODBUS_REG(1).

→MODBUS_IEEE(1) occupies two REG addresses, MODBUS_REG(1) and MODBUS_REG(2).

 So pay attention not to overlap MODBUS_REG, MODBUS_LONG, MODBUS_IEEE

addresses in users application programs.

 Calculation method: MORBUS_REG(1) is high bit, MODBUS_REG(0) is low bit,

MODBUS_LONG (0) = MODBUS_REG(1) * 2^16 + MODBUS_REG(0).

 4X space diagram:

Routine:

MODBUS_REG(0)=0 ′initialize as 0

MODBUS_REG(1)=0 ′initialize as 0

MODBUS_LONG(0)=70000 ‘assign modbus_long as 70000, range of modbus_reg is

80

32768~32767

?MODBUS_REG(0),MODBUS_REG(1)

′print reg(0) is 4464, reg(1) is 1, long(0)=reg(1)*2^16+reg(0)

 In the process of serial port setting (SETCOM parameter), when the register is selected as VR,

a VR is mapped to a MODBUS_REG at this time, where VR is a 32-bit floating point type,

and MODBUS_REG is a 16-bit integer type with signs. The data transmitted from VR to

MODBUS_REG will lose the fractional part. When VR data exceeds plus or minus 15 digits,

the MODBUS_REG data will be changed. MODBUS_REG transmits data to VR without

problems, see the following routines, and see the SETCOM instruction for more information.

Routine:

VR(0)=0 ′initialize VR(0) and MODBUS_REG(0) as 0

MODBUS_REG(0)=0

SETCOM(38400, 8,1,0,0,4,0) ′VR is mapped into MODBUS_REG

VR(0)=100.345 ′set VR(0) = 100.345

?MODBUS_REG(0) ′print result is 100, VR had been mapped to REG, but REG

is integer type, which means fractional part will lose

MODBUS_REG(0)=200 ′set REG(0) as 200

?VR(0) ′print result is 200, REG changes, VR also changes.

 When using the MODBUS protocol to communicate with other devices, it is necessary to

transfer data in the MODBUS register, such as communication with a touch screen. When

MODBUS communication is not performed, the MODBUS register can also be used as a

local array of the controller.

 The controller directly corresponds to the input IN port from the MODBUS_BIT address

10000, 20000 corresponds to the output OUT port (note that the read IO is the original state,

the INVERT_IN inversion input instruction does not work), 30000 corresponds to the S

register programmed by the PLC.

 MODBUS_IEEE addresses starting from 10000 correspond to the axis DPOS range, starting

from 11000 correspond to the axis MPOS range, starting from 12000 correspond to the axis

VP_SPEED range, MODBUS_REG addresses starting from 13000 correspond to the analog

DA output range, and starting from 14000 correspond to the analog AD input range.

81

MODBUS_BIT Address Meaning

0~7999 Customized use for users

8000~8099 special M register programmed by PLC

8400~8199 IDLE signs of axis 0-99

8200~8299 BUFFER reminding signs of axis 0-99

10000~14095 Relative input IN port

20000~24095 Relative output OUT port

30000~34095 Relative S register programmed by PLC

MODBUS Word

Register Address
Meaning

0~7999
Customized use for users, MODBUS_REG, MODBUS_IEEE and

MODBUS_LONG can be used together

8000~8099 special D register programmed by PLC

10000~10198 Corresponds to DPOS of each axis, use MODBUS_IEEE to write and read

11000~11198 Corresponds to MPOS of each axis, use MODBUS_IEEE to write and read

12000~12198 Corresponds to VPSPEED of each axis, use MODBUS_IEEE to read

13000~13127 Analog output AOUT, use MODBUS_REG to read and write

14000~14255 Analog input AIN, use MODBUS_REG to read

3.4 Multi-task Program

3.4.1 Concept of Muti-task

 Task is the function to execute a series of instructions processing, such as, I/O refresh, user

program, etc. One task means one program that is running.

 If multiple program modules can run at the same time without interruption, which is called

multi-task. And multi-task program can be achieved in the ZDevelop software.

 Multi-task takes a complex program apart several parts, which means it starts task separately

and tasks are executed simultaneously, each task is in independent. In this way, the

complicated motion process of equipment will be simpler, programming is more flexible.

Program only can be executed in sequence when there is no multi-task, the executing

efficiency is extremely low.

 ZMC motion controller supports multi-task programming, every task has own unique number.

These numbers don’t have priority, they are just identification that the task of the current

program.

 Different models support different task amounts. After connecting to controller, “State the

controller” in ZDevelop menu bar can check the exact task amounts. Also, it can be known

through sending “?*max” in “command”. As shown in the figure below, the controller

82

supports 22 tasks, and the task number range is 0-21.

 Each motion control cycle (Servo Period) of the motion controller includes the operation of

MC, SS, and user multi-task program, as shown in the following figure:

→ MC: achieve Motion Control, EtherCAT communication and interruption. Motion Control

includes: single-axis motion control, multi-axis interpolation motion, robot positive and

negative algorithm. EtherCAT communication includes PDO and SDO.

→ SS: System Service includes RS232, RS485 serial communication, CAN, EtherNET

(MODBUS master and slave communication and ZDevelop service of corresponding

software).

→ TASK1, …, TASKn: this relates to operation of each task, from task 1 to task n.

→ In one control period, if tasks execute different instructions currently, then occupied time

also is different, it is not totally the same. There is no priority of task in default situation, but

one certain task can be set the priority through PROC_PRIORITY instruction.

 All tasks in Basic are scanned to run once (unless there is an endless loop in the program). A

Basic file under one project supports multiple auto-run tasks at the same time.

 The PLC main task is executed cyclically, and the PLC subprogram task only runs once. It is

recommended to set only one Auto-run task number in the PLC file under one project.

 The HMI program needs to set the auto-run task number, and the initialization function only

scans and executes once, and the periodic function scans cyclically. One HMI file is

supported under one project, and the configuration program can run only by setting the auto-

run task number for the HMI file.

 The controller processed 4 tasks at the same time, like the above figure. Among task 0, 1, 2, 3,

83

they don’t disturb each other. After controller downloaded the program, 4 tasks start

simultaneously, and when file task executing, SUB subprogram task or marking task will

start by using task instruction. Once SUB subprogram task or marking task are opened, they

become no relation with main program. Tasks can be triggered to execute again after task

stopped.

 Advantages of controller multi-task:

→ Program modular: user can write several small and specific programs to achieve assigned

functions that are consistent with customer’s equipment.

→ Concurrency: every task can run independently. When task starts, it won’t be influenced

by

other tasks.

 → Simplify the error process: Error handling becomes simple after dividing the multitasking

operation, and only the task with error is processed.

 → Command interaction: when program is running, users can do command interaction in any

time, such as, online modify motion parameters, send commands in

online command bar, etc. And other programs don’t be affected.

3.4.2 Check Multi-task Status

Task has three states, they are Running, Stopped and Paused. Followings are 3 ways to see the

state.

➢ Task instruction

PROC_STATUS: which means checking the task status, parameter only can be read. Return value:

0-task stops, 1-task is running, 3-task pauses.

Example:

PRINT PROC_STATUS(0) ′print status of task 0

?*PROC_STATUS ′print status of all tasks supported by controller

➢ Task window

Open task window through “Debug” – “Start/Stop Debug”, like the below figure.

Task number and running status of started task, current file and operation line number can be

viewed through this window, but tasks that don’t start can’t be known.

84

When Basic tasks finished scanning in the program, the task will become Stopped state. But PLC

main task is always the Running state because it scans round.

➢ Open menu bar “Debug” – “Bus state diagnosis” window

Status of all task numbers, current file and running line number all can be checked.

This window also shows all tasks error information.

3.4.3 Multi-task Start and Stop

➢ First, multi-task operation instructions

END: the current task ends normally.

STOP: stop the running task of assigned file.

STOPTASK: stop assigned task.

HALT: stop all tasks.

RUN: start a new task and run a file.

RUNTASK: start a new task and run one SUB or one program with labels.

PAUSETASK: pause assigned task.

RESUMETASK: resume assigned task, then task will execute from that pause position.

Task operations in Basic and PLC both use above instructions.

85

“State the controller” and “?*MAX”: check task total amounts and file total amounts supported by

controller.

➢ Second, start multi-task

There are 3 methods, they are auto-running task number configuration, RUN instruction and

RUNTASK instruction. When using instructions to start task, task will be opened after this

instruction is scanned by program.

Pay attention to the task number writing when starts task, tasks can’t be opened repeatedly.

1) Auto-running task number:

set auto-running task number through "FileView" window. After the controller is powered on, the

file with the auto-running task number will be executed first. Basic file can set several AutoRun

task numbers, but only one PLC file and HMI file are supported. The auto-run files are run in

parallel, and they are turned on at the same time after power-on.

2) The file as one task is turned on through RUN instruction:

Example:

RUN "TuXing_001.bas",2 ′set the file TuXing_001.bas as task 2, and start

3) SUB subprogram or signed program are set as one task and are turned on through RUNTASK

instruction. Start global SUB subprogram through cross-file, and the label program that needs to

start task only can exist in this file.

Example:

RUNTASK 1,task_home ′set as task 1 to start the task_home subprogram

➢ Stop multi-task

Instructions to stop multi-task: STOPTASK, STOP, HALT.

Task stops, then restarts it, it will execute from the beginning.

When starts task, usually use STOPTASK to stop the task firstly. Then start through RUNTASK

for avoiding errors caused by start repeatedly.

1) STOPTASK supports stop file taskm SUB subprogram task and labelled task.

Example:

STOPTASK2 ′stop task 2

86

2) STOP instruction supports stop Basic file task. It is recommended to use STOPTASK

instruction, because the operation is simpler.

3) HALT instruction stops all tasks.

Example:

HALT ′stop all tasks in project

Also “Emerge Stop” button can be used to stop all tasks rapidly.

Example:

There are 2 tasks in project, after they are downloaded, task 0 and task 1 are running.

Send online command: STOPTASK 0

Stop task 0

When restarts the task, program can be downloaded again.

The above program cannot use the RUN command to start the auto-running file task 0, because

the automatically opened task 1 in task 0 is still running. If the command is used to start task 0

again, it will cause task 1 to be opened repeatedly. If task 1 is stopped, start task 1 independently

through RUNTASK instruction.

3.4.4 Pause and Resume of Task

Use PAUSETASK command to pause task, and use RESUMETASK command to resume task.

After resuming, the task continues to execute from where it was suspended. And paused tasks

87

support stopping.

1) PAUSETASK: pause assigned task

Example:

PAUSETASK 1 ′pause task 1

2)RESUMETASK: resume assigned task

Example:

RESUMENTASK ′continue to running task 1

Example: there are 2 tasks in project, after they are downloaded, task 0 and task 1 are running.

Send online command to control task is paused or resumed.

Send: PAUSETASK 0

Task 0 is paused.

Send: RESUMETASK 0

Task 0 resumes the operation state.

3.4.5 Basic and PLC Task Call Each Other

➢ First, Basic calls PLC task.

1) Basic file uses RUN instruction to call PLC file.

88

2) Basic file uses RUNTASK instruction to call subprogram defined by LBL instruction in PLC.

➢ Second, PLC calls Basic task.

For PLC, using EXE or EXEP (pulse execution) instructions to call Basic task, then calling Basic

file task or subprogram task.

3.4.6 Multi-task Routine

The following routine, there are 4 tasks, one main file task 0 and 3 module files 123. Start

single-step debugging, check effects of multi-task running, and observe the direction of the cursor

on the left. After the program scans to RUNTASK1, it starts the task taskA. After it starts, it

continues to scan the next line, RUNTASK2, task B also starts, RUNTASK3 starts task taskC, and

it will stop scanning until meeting END main task 0. taskA, taskB, and taskC are executed

separately as independent tasks. The program execution can be seen in the program debug window.

89

There is only auto-task 0 when power-on

Task 0 starts task 1 to run

90

Task 0 starts task 1 and task 2 to run

Task 0 starts task 1, task 2 and task 3 to run

3.5 Three Kinds of Interruption

 There are 3 types of ZBasic interruption, power failure interruption, external interruption and

timer interruption.

 Main switch of interruption must be turned on before using interruption, in this way, entering

interruption when program has initialized well. And the interruption switch is closed state by

default when controller powers on.

 When these three kinds of interruptions are running, the interruption function independently

occupies one task number, which means there isn’t push stack situation.

➢ Precautions of interruption usage

→ There is no priority among these interruptions.

→ Interrupt nesting is supported, multiple interrupts can be executed at the same time, but

too many interrupt functions should not be processed at the same time.

→ There is only one task inside the controller that processes all interrupt signal responses,

and there is a fixed interruption task number. If interruptions handle too many functions and

the code of the interrupt handling function is too long, all interrupt responses will be slowed

down, or even interruption blocked, affecting execution of other interruptions.

➢ Solutions:

→ Decrease the number of interruption in a way, actually many applications can be achieved

through cyclic scan.

→ If the interruption processes an extremely long function, it is recommended to call one

91

independent task to handle the complex task in interruption, then other interruption responses

won’t be blocked.

92

3.5.1 Power Failure Interruption

 It must be a global SUB function. The controller has only one power failure interruption. The

execution time of power failure is very limited, and only a few commands can be written to

store the data in the VR.

 Relative function: INT_ENABLE, ONPOWEROFF.

Example:

INT_ENABLE=1

DPOS(0)=VR(0) 'read saved value when power-on, recover coordinate

DPOS(1)=VR (1)

DPOS(2)=VR(2)

END 'main program ends

GLOBAL SUB ONPOWEROFF() 'power failure interruption

VR(0) = DPOS(0) 'save coordinate into VR

 VR(1) = DPOS(1)

 VR(2) = DPOS(2)

END SUB

3.5.2 External Interruption

 Rising edge trigger or falling edge trigger can be set, it must be a global SUB function,

currently only interrupt IN ports 0-31 can be used. Only firmware that supports PLC function

can be used. For details, please consult ZMOTION technicians.

 Relative function: IN_ONn, INT_OFFn.

Example:

INT_ENABLE=1 'Open interruption

END 'main program ends

GLOBAL SUB INT_ON0() 'external rising edge interrupt program

 PRINT "triggered when meeting rising edge of IN0"

END SUB

GLOBAL SUB INT_OFF0() 'external falling edge interrupt program

 PRINT " triggered when meeting falling edge of IN0"

END SUB

93

2.5.3 Timer Interruption

 The function to be executed after reaching the set time must be a global SUB function. Timer

interruptions can start several functions simultaneously. And the number is determined by the

number of timers. The number of timers depends on the controller model. Use ?*max to print

and view.

 Relative function: ONTIMERn.

Example:

INT_ENABLE=1 'start interruption

TIMER_START(0,100) 'timer 0 open, cycle time is 100ms

END 'main program ends

GLOBAL SUB ONTIMER0() 'interruption program

PRINT "ontimer0 enter"

 'TIMER_START(0,100) 'execute interruption periodically, open timer again in SUB

END SUB

3.6 Motion Buffer

3.6.1 The Concept of Motion Buffer

 When running the motion instruction, in order to prevent the program from being blocked,

the controller provides a buffer to save the motion buffer queue entering the motion buffer.

This function is called motion buffer, so that the program can scan down normally without

blocking.

 ZMotion motion controller has multilevel motion buffer. When the motion buffer is turned on,

and when the program scans and recognizes the first motion instruction of the program task,

it will assign the motion instruction to the motion buffer of the specified axis, and the motor

starts to move. At this time, the program continues to scan down to the second motion, then it

is stored in the motion buffer, and while the motion instructions are continuously scanned and

stored, the motion commands are sequentially taken out from the motion buffer and executed.

 MTYPE is the current running motion instruction and NTYPE is the first buffer motion

instruction.

 Motion instructions of any program can enter motion buffer of any axis, which is assigned by

axis number.

 Motion buffer areas of each axis are independent, they don’t bother each other.

94

3.6.2 Motion Buffer

 During the program scanning, the scanned motion instructions are stored in the motion buffer

of the corresponding axis, and the motion instructions are fetched and executed from the

motion buffer in the order of first-in, first-out. In addition, it also includes a series of output

instructions in motion buffer.

 MOVEMODIFY and MOVEMODIFY2 are special, they will not enter the motion buffer.

 Interpolation motion buffer is in the motion buffer of main axis.

 When buffering multiple motion instructions, in order to judge the current executing motion

instruction, there are MOVE_MARK motion label and MOVE_CURMARK current motion

label instructions to check. MOVE_MARK motion label will add one when scanned one

motion instruction; MOVE_CURMARK instruction is the current motion label, indicating

which motion instruction the current motion reaches, and -1 after all motions are completed.

 When the current motion finished, it will automatically execute the next motion of motion

buffer. When all instructions are executed, the motion buffer is blank, or use

CANCEL/RAPIDSTOP instruction to clear motion buffer.

95

 SP instruction is also called SP motion instruction, when using SP motion instructions

(MOVESP, MOVECIRCSP, etc. Only add SP behind the motion instruction directly.), the

motion of SP instruction moves as the SP speed, not the SPEED speed. SP speed includes

FORCE_SPEED, ENDMOVE_SPEED and STARTMOVW_SPEED, they will follow SP

motion instructions to be written into motion buffer.

 The operation effect of SP instruction and non-SP instruction is as follows, the speed of

MOVE(100) is SPEED=100, and the speed of MOVESP(100) is FFORCE_SPEED=150.

 Each axis of the ZMC4 series motion controller can support up to 4096 motion buffers (the

number of buffers varies for different models of controllers, see the controller hardware

manual for details or use ?*max to print to view the max_movebuff parameter). And

LIMIT_BUFFERED motion buffer limit can be set manually.

 Each axis’ motion buffer is independent, they won’t disturb each other, and the size of axis’

motion buffer are the same. The number of remain buffer of one certain axis can be checked

through REMAIN_BUFFER(MTYPE) AXIS(N).

96

 The buffer space occupied by different motion commands is different, and the more complex

motion occupies, the more motion buffer space is occupied. For example, ZMC432 controller,

the size of the motion buffer is 4096, and the number of MOVE linear interpolation

instructions and MOVECIRC circular interpolation instructions that can be buffered at one

time in the buffer is different.

3.6.3 Motion Buffer Blocked

 Since the motion buffer space of each axis is limited, when too many motion instructions are

scanned into the motion buffer, the multi-level motion buffer will be full. If the program

continues to scan more motion instructions, the program will also be blocked. Until the

motion commands are completed and exited in sequence, and the motion buffer has a vacancy,

the motion command will continue to enter the motion buffer.

Example:

Take V3.10 version simulator as an example, the default is 4096 motion buffers, the routine in the

following figure shows that the motion buffer of the controller can store up to 459 circular

interpolation instructions, and the value of i is 485 after downloading the program, which means

that the current FOR loop has not been executed and the program is blocked.

97

Motion Buffer Block Effect – Circular Interpolation

Motion Buffer Block Effect – Linear Interpolation

 As shown in the figure below, when some arc motion commands are taken out from the

motion buffer and are executed, the buffer has space, FOR loop continues to execute, and

saves the motion command into the motion buffer. After the instruction is executed and exits

the motion buffer, as long as there is enough space in the motion buffer, new motion

instructions will be stored in the motion buffer one by one.

 In order to prevent the program from being unable to continue to scan down due to the

98

blockage of the motion buffer, we can add a judgment processing program when scanning

motion instructions to confirm that there is space in the buffer before scanning motion

instructions.

3.6.4 Output in Motion Buffer

 The output command in the motion buffer can enter the motion buffer. In the motion buffer, it

can start the OP port, delay, output parameters, output PWM, start tasks, etc. For detailed

instructions, please refer to the Chapter Motion Instruction.

 The difference between normal output and output in motion buffer:

→ Ordinary output instruction program scans this line of instructions and executes the output.

→ The output instruction in the motion buffer is stored in the motion buffer after the program

is scanned, and the motion buffer is fetched and executed in the order of first-in, first-out, and

the output will not be executed until the output instruction is fetched.

Example:

RAPIDSTOP(2)

WAIT IDELE(0)

BASE(0) 'select axis 0

DPOS=0

UNITS=100 'pulse equivalent

SPEED=100 'speed

ACCEL=1000 'acceleration

DECEL=1000 'deceleration

SRAMP=100 'S curve

TRIGGER 'Trigger oscilloscope sampling

OP(0,3, $0) 'close output port 0-3

DELAY(1000) 'delay

MOVE(100)

MOVE_OP (0,ON) 'output in motion buffer

OP(0,ON) 'output normally

END

Running effect of the example:

After delaying 1s, program scans OP instruction, then output 0 is executed to output immediately.

MOVE_OP fills the IO operation command into the motion buffer, so after MOVE(100) is

executed, the output port 1 will be output.

99

Chapter IV Communication Method

4.1 Serial Port Communication

4.1.1 The Serial Port Type

Controller includes 3 types of serial ports, RS232, RS485 and RS422. And all controllers have

RS232, most controllers have RS485, only a few controllers have RS422.

Controller’s serial port protocols are MODBUS_RTU, they are as slave station by default. RS232

and RS485 can be set as master station through SETCOM instruction, and communication rate

and other parameters are configured through SETCOM instruction.

Controller serial port default parameter: Baud rate 38400, data-bit 8, stop-bit 1, no parity bit, not

support power failure storage.

➢ RS232

The RS232 interface of the controller can be used as a MODBUS master station or a slave station,

supporting 1 master station to send data and 1 slave station to receive data. When used as the

master station, it can be connected to a driver, inverter, temperature controller, etc. to control data

read and write. When used as a slave station, it can be connected to the HMI to monitor the

running status, and is often used to connect to a PC or HMI.

RS232 controller uses DB-9 interface, below is the pin signal description:

Pin Number Name Description

100

RS232 only needs

to wire 3 cables, 2

data signal TXD

and RXD, 1 ground cable GND. Data signal RXD and TXD are cross connected, then connecting

with GND together.

Wiring reference:

➢ RS485

It mainly provides the connection of multiple communication devices of the master/slave station,

and theoretically supports 128 nodes, one master and multiple slaves. When it is used as a master

station, it can be connected to drives, converters, temperature controllers, etc. to control data read

and write; when used as a slave station, it can communicate with PLC, and can be connected to a

HMI to monitor the running status.

RS485 interface uses differential transfer method, and judges the high-level electricity or low-

level through voltage difference between A and B.

Pin Name Description

485B 485-

485A 485+

EGND Power ground

The RS485 interface of the controller adopts a simple wiring method. As shown in the figure

below, 485A, 485B, and GND ground wires of the controller are respectively connected to the A,

B, and ground wires of the first slave station, and then connected to the second slave station. A, B,

ground wire (A to A, B to B, signals share ground), and 485A and 485B of the controller and the

2 RXD Receive data pin

3 TXD Send data pin

5 EGND Power ground

9 E5V External power 5V output

101

last slave station should be connected in parallel with 120Ω resistance to prevent signal reflection,

the cable needs to use shielded twisted pair, to avoid signal interference, the distance of each node

branch line should be less than 3m.

➢ RS422

Some model controllers of ZMC3XX series have RS422.

RS422 data transmission characteristics are the same as 485. RS422 adopts a four-wire system,

marked as RX+/RX- (receive signal), RT+/RT- (send signal), one signal ground wire, a total of 5

wires. The four-wire interface uses separate sending and receiving channels, therefore it is not

necessary to control the data direction.

Pin Name Description

422TX- Send data -

422TX+ Send data +

422RX- Receive data -

422RX+ Receive data +

EGND Power ground

The RS422 interface of the controller adopts a simple wiring method, but compared with RS485

and RS232, the wiring cost is high, and the wiring is easy to make mistakes. The RS422 interface

of the controller only supports access to one device.

4.1.2 Serial Connection Method

The serial port supports the MODBUS communication protocol RTU mode, which is often used to

connect to a computer or touch screen. When communicating, pay attention to the matching of the

serial port parameters. No matter which serial port, except for the port number and wiring method,

the default parameters and operation instructions are the same.

Below is the way for PC to use serial connect and control:

→ Connect the cable first, click "Controller" → "Connect" in the ZDevelop menu bar, open the

102

following window to connect to the controller, it will automatically list the serial port numbers

available on this computer, select the serial port number to be connected, and set the baud rate,

parity bit and stop bit, click connect, and the connection status and the corresponding information

will be print out automatically in the software output window.

The default parameters of the serial port of the controller: Baud rate 38400, data bit 8, stop bit 1,

no parity bit. If the serial port connection fails, check whether the serial port number is correct,

and modify the configuration of the communication port COM of the computer to make it match

the default parameters of the controller.

The serial port parameters are set through SETCOM instruction. The serial port parameters don’t

support power failure storage. After the controller is powered on again, the SETCOM parameters

will recover their default values, so please write SETCOM configuration at the beginning of the

program.

The serial port is MODBUS slave by default. It can be set as master station by modifing the

MODE=14 of the SETCOM instruction, or set MODE=0 to open the serial port custom

communication, namely, no protocol mode. In the serial port custom communication mode, use

the GET # command to read data from the customized serial channel. PRITNT # command

outputs strings from the customized serial channel, PUTCHAR # command outputs characters

(ASCII code) from the customized serial channel.

SETCOM instruction mode parameters configuration protocol:

Mode Value Description

0 RAW data mode, no protocol, at this time, data can be read through GET#.

Send data through PRINT#. PUTCHAR# instructions.

4 (default) MODBUS master station (16-bit integer)

14 MODBUS slave station (16-bit integer)

15 Direct command execution mode, now input character string command from

serial port directly (newline ends)

If the connection fails, check the following methods:

→ Check whether the serial port cable is a crossover cable.

103

→ Whether the COM port number and parameters in "Connect to Controller" are correct.

→ Open the computer "Device Manager" - "Port" - "Communication Port (COM)" - "Port Setting"

to check whether the COM port setting is correct. The default parameters of the controller serial

port: Baud rate 38400, data bit 8, stop bit 1, no parity bit.

The com port number can be changed in the "Port Settings" - "Advanced" option, which can be

selected through the drop-down list.

→ When connecting to the controller through the serial port, the corresponding serial port of the

controller must be configured as MODBUS slave protocol mode (default mode), which can be

restored after power off and restart.

→ Whether the COM port is occupied by other programs, such as serial debugging assistant, etc.

→ Whether there is enough serial port hardware on the PC side.

→ Replace the serial cable/computer test.

4.2 Net Port Communication

Controller network port is EtherNET interface, which supports MODBUS_TCP communication

104

protocol, and it is usually used to connect to computer or touch screen. Generally, the controller

has one EtherNET interface, but there are at least 2 network port channels at the bottom. When net

port is needed to connect to multiple equipment, the switch can be used. The number of net port

channel can be viewed through ?*PORT instruction.

It is recommended to use twisted pair cable with shield layer for good quality of communication.

In ZDevelop menu bar, click “Controller” – “Connect”, open the window like the below figure,

and IP address is selected from the list. It will automatically find valid IP address within the

current LAN, then select correct IP and click “Connect”.

When using network port, controller IP address and computer IP address must be the same

network segment, which means first three segments are the same and the last segment is different.

Otherwise, it will fail to connect, for this situation, modifying controller IP or computer IP.

The controller factory IP is 192.168.0.11, and if IP address is modified, it will be stored forever.

Controller network port also supports self-defined communication, using OPEN # instruction to

open the self-defined network port communication, using GET # instruction to read data from the

channel, using PRINT # instruction to output character string from the channel, using PUTCHAR

#instruction to output character string (AACII code) from self-defined net port channel.

Item Trouble Description Solutions

1 When the controller connected

with power, POWER and RUN

indicator lights don’t light.

 Check the power supply.

 If the power is normal, check whether the

controller is burned out or not.

2 When the controller powered on

and connected cable, but the net

port indicator light doesn’t work.

 Check whether the two sides of net segment

are plugged well or not.

 Check whether the net cable is damaged or

105

not.

 Check whether the cable insert slot is

damaged.

 Note: the cable is connected to EtherNET, not

EtherCAT.

3 Fail to connect to the controller. Check whether controller IP address is the

same as PC IP address, they must be at the

same net segment, see next for details of

modification.

 If controller net port channels are occupied, it

is recommended to close some channels that

are not used now, trying to connect again.

 If the computer is stuck seriously, please try

several times to connect with software.

 Restart the controller, then do above

connection steps again.

4 Succeed in connecting, but

sometimes it loses connection

when using.

 It is recommended to use metal interface with

shielded cable. In the case of serious

interference, using a crystal head network

cable with no shielding layer will cause

unstable communication and occasional

disconnection.

 Modify controller IP address:

Use serial port to connect with controller firstly, then obtain controller IP address, modifying it

now.

→ Method 1:

“Controller” – “Modify IP address” window can modify controller IP address directly.

→ Method 2: send online command to modify through IP_ADDRESS command.

After modifying successfully through instruction, it will disconnect automatically. Then online

command print controller connection error information, using net port connection and selecting

new IP address 192.168.0.23 to connect with controller again. Modified IP address is valid forever.

106

 Modify computer IP address

First, see the address 4 of computer native IP protocol is 192.168.0.xxx or not, the first three

segments are the same as controller and the last segment can’t be the same, the controller factory

default IP address is 192.168.0.11. If the third address is different, relative subnet mask should be

modified as 0.

Then, open “Connect to controller” window to connect again.

4.3 CAN Bus Communication

4.3.1 CAN Wiring

Controller CAN bus interface is used to connect with ZCAN expansion module or controller. And

their connection method is the same, the difference is the board doesn’t integer a 120Ω resistor, so

CANH and CAHL two sides both need one 120Ω resistor. For wiring reference of CAN bus and

expansion module, please see “Chapter ZCAN Expansion Module”.

107

When controller uses CAN bus connection, now communication between controllers can be

achieved through CAN instruction, and data is transferred through TABLE.

Controller is the master station of CAN communication by default. When controllers are doing

CAN communication, one controller should be configured as slave station, using

CANIO_ADDRESS command to configure the master station and slave station,

CANIO_ADDRESS=32 means master station, when CANIO_ADDRESS=other values, which

means slave station.

Command Grammar: CAN (channel, function, tablenum)

→ channel: CAN channel, 0 means the first channel, -1 means the default channel.

→ function: function number (see the below form, mode 6/7 suits to standard frame, mode 16/17

suits to expand frame)

→ tablenum: TABLE position of saving data

Value Description

6 Receive, when there is no data, identifier < 0

7 Send

16 (needs to upgrade

firmware)

Support receive with expansion, when there is no data,

identifier < 0

17 (needs to upgrade

firmware)

Send expanded data, use 7 to send normal data

Example:

′send station: the first controller

TABLE(0,1,8,1,2,3,4,5,6,7,8) ′send cobid = 1, 8 bytes (1-8)

CAN(0,7,0) ′send data

′receive station: the second controller

CANIO_ADDRESS = 1 ′set as CAN slave station, and this only is set once

CAN(0,6,0) ′receive data

?TABLE(0)

108

4.4 U Disk Interface

 Most ZMOTION motion controllers have one standard U disk interface.

 When there is no controller, new build one udisk folder in ZDevelop root directory for

simulating U disk, then connect to simulator, debug U disk instruction.

 U disk interface has three aspects usage:

1. Program Update

Download packaged zar program package through U disk interface, which is convenient for

customer to update system program.

Before program updating, zar program package should be downloaded into program. To load

U disk file through FILE instruction successfully, then zar program will operate automatically.

Example:

DIM result ′define variable

IF U_STATE=TRUE THEN ′U disk plug and judge

result = FILE “find_first”,“zar”,10 ′scan the first zar file, and the fie name is saved VR

IF result=TRUE THEN ′scan file and judge successfully

 File”load_zar”, VRSTRING(10,20) ′download the same filename file as zar file stored in

VR

 ENDIF

ENDIF

END

2. Upload three file

Use FILE command to upload the three file that is saved in U disk and execute it.

Example:

IF U_STATE=TRUE THEN ′judge U disk is plugged or not

 FILE “FIND_FIRST”,“Z3P”,800 ′find Z3P file

 ?”file name: ”VRSTRING(800,20), “wait to downloading”

 FILE “COPY_TO”, VRSTRING(800,20), VRSTRING(800,20) ′download Z3P file

 ?“complete to download Z3P file”

ENDIF

3. U disk and register data interaction

The U disk supports reading and writing variables and arrays.

FLASH data copy: The data stored in FLASH in multiple controllers can be transferred to

109

each other through U disk.

Data in VR register, TABLE register and U disk can be transferred to each other.

The read-write file type is SD(filenum).BIN or SD(filenum).CSV, and the file types that can

be operated by different commands are different.

Different types of controllers have the same usage of the U-disk interface. Just insert the U-

disk into the UDISK port on the controller. After the controller is powered on, when a U-disk is

inserted, the U-disk indicator will light up.

Before operating U disk, first to judge U disk status through U_STATE instruction for

ensuring successful communication, then use U disk relative instructions to operate.

Example:

DIM a,array1(2) 'variable, array definition

a=123

array1(0)=10

array1(1)=20

IF U_STATE = TRUE THEN 'judge U disk is plugged or not

U_WRITE 0,a,array1 'write variable and array into U disk SD0 file

 a=456

array1(0)=11

U_READ 0,a,array1 'read U disk file SD0 data

PRINT a,array1(0) 'result: 123, 10

IF a <> 123 THEN 'judge U disk is written and read successfully

PRINT "U disk read wrongly"

ELSE

PRINT "U disk succeeds in reading"

ENDIF

ELSE

PRINT "U disk isn’t inserted"

ENDIF

END

For more operations of U disk, please refer to “chapter U disk relative instructions”

110

4.5 EtherCAT Bus communication

4.5.1 EtherCAT Bus Initialization

The EtherCAT bus interface can be used to connect the EtherCAT servo drive and the

EtherCAT expansion module. No matter what module is connected, the EtherCAT bus needs to

write an EtherCAT bus initialization program to enable the motor and the EtherCAT expansion

module. The application after enabling is the same as that of the pulse motor, and the motion

instructions are the same.

Normal process of initialization program:

1. Use SLOT_SCAN to scan the device to determine whether the RETURN is correct, and no

error will be reported when the device is not connected.

2. The device type and information are judged by NODE_INFO/ NODE_AXIS_COUNT, etc.

3. Set AIXS_ADDRESS, ATYPE, DRIVE_PROFILE, DRIVE_IO, etc. in turn.

4. Start the device through SLOT_START.

5. Set AXIS_ENABLE=1 for each axis to enable the axis, and set WDOG=1 to enable all

axes. (some drives need use DRIVE_CONTROLWORD instruction to clear drive alarms)

6. After building connection, master station and slave station can exchange data periodically.

The general process of EtherCAT initialization program: refer to routine.

111

Basic concepts involved:

1. NODE node number: arranged according to the wiring sequence of EtherCAT devices, the

number starts from 0 and decreases by 1 for the number of devices.

2. drive number: according to the wiring sequence of EtherCAT devices, the number starts

from 0 to the number of EtherCAT drives minus 1. It only works when AXIS_ADDRESS is

configured, that is, only the drive device is counted, other extended IO and other devices are not

counted in the drive number.

3. axis number: the number set by the controller to the drive motor device connected to the

controller. The number starts from 0 to the total number of connected devices minus 1. The axis

number can be mapped to any connected drive device through the AXIS_ADDRESS command

(pulse type controllers do not support local axis number mapping).

Precautions when setting:

1. The device number is sequentially incremented according to the connection sequence

followed by the number 0, which needs to support the EtherCAT bus.

2. The axis number of the pulse axis on the bus controller is fixed. The bus can also call the

axis number of the pulse axis. When ATYPE=65, the bus is called. Note that DPOS will change

112

when switching, so it is best not to make the axis number conflict.

3. After clearing the drive alarm through DRIVE_CONTROLWORD (axis number), a delay

of 200ms is required, and then DATUM(0) is used to clear the controller alarm. Without the delay,

it may be necessary to download the program twice to clear the alarm.

4. If DRIVE_CONTROLWORD (axis number) is used to operate a drive, then all drives after

this drive will inherit this setting. So it's better to set it once for each drive.

5. Connecting or disconnecting a device during operation requires rescanning to update the

status. For example, NODE_COUNT(0) returns the number of currently connected devices, and

the number returned will change after rescanning.

6. AXIS_ADDRESS(i)=1, the first drive is selected, not the first device. For example, after

connecting two expansion boards and then connecting two drives, the device numbers are

expansion board A: 0, expansion board B: 1, drive A: 2, and drive B: 3. At this time,

AXIS_ADDRESS(i)=1 selects drive A, and AXIS_ADDRESS(i)=2 selects drive B.

Please do continuous selection in order, don’t choose 2 first and then choose 1, don’t choose

1 skip 2 and choose 3.

The controller must support EtherCAT to use related commands. It uses a set of program

instructions with the RTEX bus, but the functions are different. For details, please refer to the

description of the bus instructions chapter.

Related EtherCAT instructions:

Instruction Meaning

SLOT_SCAN Scan the devices

SLOT_START Start the EtherCAT connection

SLOT_STOP Stop the EtherCAT connection

ATYPE Axis Type, when value is 65, it stands for EtherCAT period

position control

AXIS_ADDRESS Axis address configuration

WDOG Total enable control of axes

SERVO_PERIOD Refresh rate

AXIS_ENABLE Axis enable

SDO_WRITE SDO writing

SDO_READ SDO reading

SDO_WRITE_AXIS SDO writing of drives

SDO_READ_AXIS SDO reading of drives

?*ETHERCAT Bus information output

NODE_COUNT Devices quantity

NODE_STATUS Devices status

NODE_AXIS_COUNT Drive quantity the devices contain

NODE_IO IO serial number setting of devices

113

NODE_AIO AIO serial number setting of devices

NODE_INFO Get devices information

NODE_PROFILE Set profile of device, choose PDO message.

DRIVE_FE Error of drive

DRIVE_FE_LIMIT Set error of drive

DRIVE_STATUS Status of drive

DRIVE_TORQUE feedback of drive torque

DRIVE_MODE motion mode of the drive

DRIVE_PROFILE Set profile of drive, choose PDO message.

DRIVE_CONTROLWORD Control word of drive

DRIVE_CW_MODE operation mode of drive control word.

DRIVE_IO serial number setting of remote IO

AXISSTATUS Axis status

The EtherCAT configuration matches the actual connection mechanism:

After the master station initialized the slave station, no matter whether the number of slave

stations configured in the software is consistent with the actual connection of the EtherCAT

communication port, the successfully configured slave station can be controlled by the master

station. If two EtherCAT slave stations are configured in the software, and one is actually

connected, the connected one can be controlled by motion commands. After the master station and

the slave station are connected, even if another slave station configured in the software is

connected to the network, the master station also does not establish a connection with the slave

station that is later connected to the network.

EtherCAT slave disconnection and recovery mechanism:

After the EtherCAT slave station is connected to the master station, if the communication of

some EtherCAT slave stations is dropped due to external reasons such as the unplugging of the

communication cable, the master station will not re-establish the connection with the dropped

slave station, and the dropped slave station can’t be controlled through motion instructions. Still

connected EtherCAT slaves are not affected. If it is unable to communicate with the bus due to

internal reasons such as drive error, check whether the error can be cleared. After clearing, re-

enable it and use it. If it cannot be cleared, power off and re-execute the bus initialization process.

If the disconnected slave needs to reconnect to the master, unplug the EtherCAT cable

between the controller and the first servo drive and plug it in again, or power on the controller

again. If the above operation is performed, the normal running of slave station will be affected.

And normal running slave station will re-establish the connection with the master station. If any

axis is running, it will cause the axis to stop immediately.

114

4.5.2 EtherCAT Bus and Drive Communication

The rule for wiring of servo drive is the same as the controller or the EtherCAT expansion

module, using a network cable to connect the EtherCAT bus port of the controller to the EtherCAT

port of other devices.

Note that there are two EtherCAT ports on the servo drive. Some drives can be connected to

these two ports at will, and some are divided into EtherCAT IN and EtherCAT OUT. The IN port

is connected to the upper-level device and the OUT port is connected to the next-level device. The

two cannot be mixed. Pay attention to the connection order.

In multi-axis control, the EtherCAT OUT port of the servo drive is connected to the

EtherCAT IN port of the next-level drive device, and so on.

The wiring configuration of the EtherCAT bus is as follows:

EtherCAT bus slot number is 0 by default.

The device number (node), also known as the node, refers to the number of all devices

connected to a slot, starting from 0, and automatically numbered according to the connection order

of the devices on the bus.

The controller will identify the drive on the slot, starting from 0, and it makes number

automatically according to connection sequence of drive on the bus. The drive number is different

from device number, it only makes number for device on the slots, ignoring others.

The rule for making numbers of EtherCAT bus and RTEX bus are the same.

The motor connected to EtherCAT bus needs to write one EtherCAT bus initialization

program to enable. After enabled, if it is ATYPE=65 position mode, the usage is the same as pulse

motor, including motion instructions. If it is ATYPE=66 speed mode or ATYPE=67 torque mode,

now motion instructions can’t be used, but DAC command can be used to control axis continuous

115

motion, when DAC=0, it will stop.

4.5.3 EtherCAT Bus Connect to Expansion Module

EtherCAT expansion module can expand IO and pulse axis. And the wiring rule is the same

as EtherCAT Drive, wiring refers to the former content. Please note that EtherCAT IN and

EtherCAT OUT on expansion module can’t be mixed when wiring.

After the wiring is completed as required, first initialize the EtherCAT expansion module.

During the initialization process, it is necessary to map the extended IO and extended pulse axis

resources before they can be used. The extended resource mapping is performed after the bus scan

and before the bus is turned on according to the following method.

The IO mapping on the EtherCAT bus is set through NODE_IO instruction (digital quantity)

and NODE_AIO instruction (analog quantity), and the axis mapping uses the AXIS_ADDRESS

instruction to map the axis number.

Expanded resource mapping method:

1. IO mapping

The slot number and node device number are automatically numbered from 0 according to

the sequence of connection with the controller.

The NODE_IO instruction sets the starting number of the digital IO of the device, and the

starting number of the input and output of a single device is the same. It is set after bus scan, and

the NODE_AIO instruction is basically the same as the NODE_IO instruction.

Grammar:

NODE_IO(slot, node)=iobase

slot: the slot number, 0 means default number.

node: the device number, starts from 0

ioBASE: the starting number of mapping IO, and the result is only the multiple of 8.

NODE_AIO(slot, node[,idir])=aiobase

slot: the slot number, 0 means default number.

node: the device number, starts from 0

idir: AD/DA selection. O means default, AIN and AOUT are set simultaneously, only AIN is

read. 3-AIN, 4-AOUT.

IO mapping example:

SLOT_SCAN(0) ′scan bus

IF NODEZ-COUNT(0)>0 THEN ′judge whether the slot number 0 has device

116

NODE_IO(0,0)=32 ′set IO starting number of interface device 0 slot 0 is 32

NODE_AIO(0,1,3)=8 ′set AIO starting number of interface device 1 slot 0 is 8

ENDIF

2. Axis mapping

The bus axis needs to perform axis mapping operation through AXIS_ADDRESS command.

The operation method is as follows:

AXIS_ADDRESS(axis number)=(slot number<<16)+drive number+1

The axis map is written in the bus initialization routine, after scanning the bus and before

turning on the bus.

Example:

AXIS_ADDRESS (0)=(0<<16)+0+1 'The first ECAT drive, drive number 0, bound as axis 0

AXIS_ADDRESS (2)=(0<<16)+1+1 'The second ECAT drive, drive number 1, bound as axis 2

AXIS_ADDRESS (1)=(0<<16)+2+1 'The third ECAT drive, drive number 2, bound as axis 1

ATYPE(0)=65 'Set to ECAT axis type, 65-position 66-speed 67-torque ATYPE(1)=65

ATYPE(2)=65

4.6 RTEX Bus Communication

RTEX is a high-end bus technology independently developed by Panasonic to meet the high-

speed real-time requirements of motion control. By simplifying data communication packets,

high-speed communication can be achieved with a speed of 100Mbps. Only supports connecting

to Panasonic drives. Before using it, a bus initialization program should be written to enable it.

The controller RTEX bus communication has two interfaces, namely RX and TX. When

wiring, controller RX——driver TX, controller TX——driver RX.

RTEX wiring method refers to below figure:

117

The control word of the RTEX driver will be set automatically, please set DRIVE_CW_MODE

first if needs to set it manually.

The initialization process is completed by the controller, which means users don’t need to operate,

and the program starts to execute after power-on.

The general process of the initialization program: see the routine for the initialization program

118

1. Use SLOT_SCAN to scan the device to determine whether the RETURN is correct, and an

error will be reported when the device is not connected.

2. The device type and information are judged by NODE_INFO/ NODE_AXIS_COUNT, etc.

3. Set AIXS_ADDRESS, ATYPE, DRIVE_PROFILE, DRIVE_IO, etc. in turn.

4. SLOT_START start the device.

5. After the connection is established, the master and slave can exchange cyclic data.

Basic concepts involved:

1. NODE node number: arranged according to the wiring sequence of RTEX devices, the

number starts from 0 and decreases by 1 for the number of devices.

2. drive number: according to the wiring sequence of RTEX devices, the number starts from

0 to the number of RTEX drives minus 1. It only works when AXIS_ADDRESS is configured,

that is, only the drive device is counted, other extended IO and other devices are not counted in the

drive number.

3. axis number: the number set by the controller to the drive motor device connected to the

controller. The number starts from 0 to the total number of connected devices minus 1. The axis

number can be mapped to any connected drive device through the AXIS_ADDRESS command

(pulse type controllers do not support local axis number mapping).

The controller must support RTEX to use related commands. It uses a set of program

instructions with the EtherCAT bus, but the functions are different. For details, please refer to the

description of the bus instructions chapter.

Related RTEX instructions:

Instruction Meaning

SLOT_SCAN Scan the devices

SLOT_START Start the EtherCAT connection;

SLOT_STOP Stop the EtherCAT connection;

ATYPE Axis Type, when value is 50, it stands for position control in

period(RTEX)

AXIS_ADDRESS Axis address configuration

WDOG Total enable control of axes

SERVO_PERIOD Refresh rate

AXIS_ENABLE Axis enable

?*Rtex RTEX information output

NODE_COUNT Devices quantity

NODE_STATUS Devices status

NODE_AXIS_COUNT Drive quantity the devices contain

NODE_IO IO serial number setting of devices

NODE_AIO AIO serial number setting of devices

119

NODE_INFO Get devices information

DRIVE_STATUS Status of drive

DRIVE_TORQUE feedback of drive torque

DRIVE_PROFILE Set profile of drive, choose PDO message.

DRIVE_CONTROLWORD Drive control word

DRIVE_CW_MODE Control mode of drive control word

DRIVE_IO serial number setting of remote IO

DRIVE_CLEAR Alarm of drive error clear, if no error, the controller will warn.

DRIVE_READ parameters of drive writing

DRIVE_WRITE parameters of drive reading

AXISSTATUS Axis status

RTEX slave drop and recovery mechanism is the same as EtherCAT, please refer to the last

description about EtherCAT.

120

Chapter V Motion Control Function

5.1 Common Motion Mode

There are three common motion modes:

➢ 1. Jog motion: only the end position is required, and it has nothing to do with the

intermediate process of the movement, that is, the movement trajectory. The positioning

speed is required to be fast, and different acceleration and deceleration control strategies are

used in the acceleration section and deceleration section of the movement, which are divided

into three categories: JOG jogging, MOVE inching motion and VMOVE continuous motion.

➢ 2. Continuous trajectory motion: this control is also called interpolation. In the case of high-

speed motion, the system must not only ensure the contour accuracy of the system processing,

but also ensure that the movement speed of the axis is not affected. When processing small

line segments, there is a preprocessing function of trajectory look-ahead. For the description

of interpolation motion, please refer to the next section.

➢ 3. Synchronous motion: it refers to the coordinated motion control of multiple axes, which

can be synchronized during the entire motion of multiple axes, or local speed synchronization

during the motion process. It is mainly used in system control with electronic gear and

electronic cam functions. In the industry, there are printing and dyeing, printing, papermaking,

steel rolling, synchronous shearing and other industries.

5.1.1 Single-axis Jog Motion

Related instructions:

Instruction Description Usage

VMOVE Continuous motion, positive or negative direction VMOVE(motion direction)

CANCEL Single-axis stops, 4 kins of stop mode CANCEL(mode)

JOGSPEED The motion speed when JOG JOGSPEED=speed value

FWD_JOG Positive JOG input relative input number FWD_JOG=input number

REV_JOG Negative JOG input relative input number REV_JOG=input number

FHSPEED Keep the speed when FHOLD_IN is buttoned FHSPEED=speed value

FHOLD_IN Keep inputting relative number FHOLD_IN=input number

FAST_JOG Jog fast, input number FAST_JOG=input number

VMOVE is a single-axis continuous motion command. After VMOVE is executed, it will

keep running unless CANCEL or RAPIDSTOP is used to clear the motion buffer. Otherwise, it

will operate all the time.

121

When the preceding VMOVE motion does not stop, the following VMOVE instruction will

automatically replace the preceding VMOVE instruction and modify the direction, so there is no

need to CANCEL the preceding VMOVE instruction.

In JOG motion mode, each axis can independently set target speed, acceleration, deceleration,

speed smoothing and other motion parameters, and can move or stop independently.

The JOG movement is controlled by the switch signal, and it can move in the positive and

negative directions. The FWD_JOG command maps the positive jog switch, and the REV_JOG

command maps the negative jog switch. When the controller receives the signal input, the relative

axis will move slowly according to the JOGSPEED speed. The axis decelerates and stops when

the signal input is interrupted. When continuous JOG movement is required, keep the input state

of the switch.

The controller also supports fast jog. The FAST_JOG instruction sets the fast jog switch.

When the fast jog switch is pressed, the axis moves with SPEED. When the switch is not pressed,

the axis moves with JOGSPEED.

The FHOLD_IN mapping keeps the input setting. When there is an input signal, the speed of

the motion axis continues to execute the current motion according to the speed parameter of

FHSPEED. When FHOLD_IN cancels the input, the axis continues to move, but the motion speed

changes back to the SPEED speed.

When REV_JOG and FWD_JOG both have signal input at the same time, the axis runs in the

forward direction according to FWD_JOG.

The MOVE instruction controls the inching motion of the axis, sets the distance of inching

motion, and sends a limited number of pulses to the target axis. It can be used in single-axis or

multi-axis motion occasions. It can send pulses to multiple axes at one time. The controller for jog

motion only can control each axis to move independently, cannot interpolate jointly.

Single axis jog example 1: VMOVE continuous motion

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0) ′select axis number

ATYPE=1 ′axis type configuration

UNITS=100 ′pulse equivalent configuration

SPEED=100 ′speed configuration

ACCEL=1000 ′acceleration configuration

DECEL=1000 ′deceleration configuration

122

SRAMP=100 ′S curve

DPOS=0 ′the current position clear out

TRIGGER

WHILE 1 'cycle motion

IF MODBUS_BIT(0) = ON THEN 'MODBUS_BIT(0) valid motion to left

VMOVE(-1)

ELSEIF MODBUS_BIT(1) = ON THEN 'MODBUS_BIT(1) valid motion to right

VMOVE(1)

ELSEIF MODBUS_BIT(0) = OFF OR MODBUS_BIT(1) = OFF THEN

CANCEL 'MODBUS_BIT is invalid, stop motion ENDIF

WEND

Single axis jog example 2: JOG jog motion

Note that after mapping the JOG switch, the level of INVERT_IN must be reversed, because

the OFF signal is valid for the ZMC series controller. If it is not reversed, the signal will be OFF

when it is connected. The controller judges that there is an input and immediately controls the axis

movement.

BASE(0) ′select axis 0

ATYPE=1 ′pulse axis type

DPOS=0 ′the coordinate clears out

UNITS=100 ′pulse equivalent

SPEED=100 ′main axis speed

ACCEL=1000 ′acceleration

DECEL=1000 ′deceleration

SRAMP=100 ′S curve

TRIGGER ′trigger oscilloscope automatically

JOGSPEED=50 ′JOG speed is 50

FWD_JOG=0 ′IN0 is the positive JOG switch

REV_JOG=1 ′IN1 is the negative JOG switch

INVERT_IN(0,ON) ′input 0 signal invert

INVERT_IN(1,ON) ′input 1 signal invert

Operation effect:

→ When input 0 has signal input, axis 0 moves in positive direction, the speed is 50.

→ When input 1 has signal input, axis 0 moves in negative direction, the speed is 50.

→ When input 0 and input 1 both have signal input, axis 0 moves in positive direction.

123

5.1.2 Electronic CAM

Related instructions:

Instruction Description Usage

CAM Cam watch moves CAM(start and end position of CAM watch,

proportion, motion distance)

CAMBOX Follow cam watch Refer to instruction chapter

TABLE Save cam watch data TABLE(data starting address, data area)

MOVELINK Automatic cam Define reference axis, follow axis and

synchronous motion mode MOVESLINK Automatic cam 2

The mechanical cam is mainly composed of an active part and a driven part, which converts

the rotary motion into a linear motion. The basic structure is as shown in the left figure below. The

active part is the contour curve processed on the metal plate, which generally rotates at a uniform

speed; the driven part is generally in contact with the contour of the cam. When the active part is

in motion, the driven part reciprocates, and the motion trajectory is determined by the cam contour.

Because the mechanical cam mechanism is a high-level mechanism, there is point or line

contact between the cam and the driven part, which is inconvenient for lubrication, easy to wear,

and noisy, and the processing and manufacturing requirements of the disc are relatively high, the

maintenance is complicated. Therefore, in many applications, mechanical cams are replaced by

124

electronic cams.

The electronic cam means users construct the cam curve, as shown in the right figure above,

then the mechanical cam can obtain a rotation angle and the movement trajectory of the

processing position according to the contour of the cam. This trajectory is an arc, and the arc is

decomposed into countless linear or circular trajectory. The arc trajectory can be combined to

obtain a series of motion trajectories that are close to the arc. Then electronic cam directly loads

the motion parameters of this trajectory into the motion command, and can control the axis to

walk out of the target trajectory to reach the relationship between the driving part and the driven

part. The cam motion can be completed without the assistance of additional mechanical structure.

The software is used to control the signal, and the motion curve can be changed by changing the

relevant motion parameters of the program. This application is extremely flexible, reliable and

easy to operate.

ZMotion controller provides multiple electronic cam motion form for users:

CAM: cam watch motion

CAMBOX: follow cam watch motion

MOVELINK, MOVESLINK: Specific track cam motion, also known as flying shearing

motion, which is generally used in flying shearing applications.

FLEXLINK: Specific track cam motion, also known as chasing shear motion, is generally

used in chasing shear applications.

Motion pause is not supported during the cam motion, and the cam instruction will stop after

the execution of the cam instruction. Use the CANCEL or RAPIDSTOP instruction to forcibly

cancel it.

After the multi-segment cam command is stored in the motion buffer, the next cam will start

immediately after the previous cam is completed to ensure synchronization.

If the cam command is not stored in the motion buffer, there will be a waiting time between multi-

125

segment cams, and the motion will not be continuous. See: CAM, CAMBOX.

5.1.3 Electronic Gear

Related instructions:

Instruction Description Usage

CONNECT connection axis motion CONNECT (rate, axis number of connection axis)

CONNPATH connection axis motion CONNPATH (rate, axis number of connection axis)

CANCEL Cancel connection It can be used directly without parameters

Gear is different from the cam, the connection of the electronic gear is linear. And the

electronic gear function is used for the connection of two axes. The master axis and the slave axis

are connected according to a constant gear ratio. No physical gear is required. Set electronic gear

ratio directly through the instruction. Since it is implemented in software, the electronic gear ratio

can be changed at any time, and one master can drive multiple slave axes.

The electronic gear function is realized by the commands CONNECT and CONNPATH. One

axis is connected to the other axis according to a certain ratio for follow-up motion. One motion

command can drive the operation of two motors, then test these two motor-axis’ movement

numbers. Feedback the displacement deviation to the controller and obtain synchronous

compensation, so that the displacement deviation between the two axes can be controlled within

the allowable range of accuracy.

The electronic gear is connected to the number of pulses. For example, the master-slave axis

connection ratio is 1:5, and one pulse is sent to the master axis. At this time, 5 pulses are sent to

the slave axis.

The role of electronic gear:

1. Pulse compensation to reduce the burden on the upper computer (because the components

currently used to send pulses have limitations on the frequency of sending pulses).

2. Matching the number of pulses sent by the motor and the minimum movement of the

machine, the movement of the workpiece (or motor) corresponding to one pulse of command

input can be set to any value. It can realize the stepless speed change of the motor. When the

motor starts and stops, it can prevent the motor from losing step and overshooting, so that the

potential of the motor can be fully utilized.

3. It transmits synchronous motion information, realizes the linkage of coordinates, the

transformation between motion forms (rotation-rotation, rotation-straight line, straight line-straight

line), simplified control, etc.

The same point between CONNPATH and CONNECT:

126

the syntax of the two is the same, the number of pulses is connected, and the effect of

connecting CONNPATH to the motion of a single axis is the same as that of CONNECT.

Difference between CONNPATH and CONNECT:

CONNECT connects the target position of a single axis. CONNPATH connects the vector

length of the interpolated axis. At this time, it needs to be connected to the main axis of the

interpolated motion, and it cannot follow the interpolated motion when connected to the

interpolated slave axis. CONNPATH tracks XY interpolated vector length changes, not individual

X or Y axes.

5.1.4 Handwheel

Related instructions:

Instruction Description Usage

CONNECT Connect to handwheel CONNECT (rate, axis number of connection axis)

CANCEL Cancel connection It can be used directly without parameters

Handwheel is also called pulse generator, hand pulse, hand pulse generator, etc. It belongs to

a kind of encoder and is used for zero correction and signal division of CNC machine tools,

printing machinery, etc. When the handwheel rotates, the encoder generates a signal corresponding

to the movement of the handwheel, selects the coordinates and locates the coordinates.

The handwheel function refers to using a specific encoder as the handwheel pulse change

input source to detect the encoder pulse input change, use the CONNECT command to establish

the connection between the handwheel axis and the follow axis, and drive the handwheel to follow

the axis. This function is mainly used for auxiliary motion in interpolation motion. The encoder

can be the encoder on the terminal board or the encoder module on the EtherCAT bus.

The handwheel following movement belongs to the position-following type, that is, the

handwheel pulse changes n, and the following axis follows n*ratio pulses, and the speed and

acceleration are planned according to the parameters of the main axis.

Conditions for entering the handwheel motion:

the axis following the handwheel is in a static state means there is no movement. The encoder

is in an unbound axis means it can be used for axis position feedback. The following axis is in the

enabled state. The following axis is not set to handwheel mode.

To exit handwheel mode by using CANCEL command. The handwheel connection ratio can

be switched at any time.

Use process:

Set the type of handwheel axis and follow axis, set various basic motion parameters, use the

127

CONNECT command to connect the handwheel and follow axis according to a certain ratio, then

the handwheel can drive the follow axis to move, and CANCEL cancels the handwheel connection

after the movement is completed.

Routine: Follow handwheel motion

RAPIDSTOP(2)

WAIT IDLE(0)

ERRSWITCH = 3

CONST axishand = 0

BASE(axishand) ′select axis 0 connect to handwheel

ATYPE=6 ′pulse + directional handwheel, for quadrature input handwheel, using 3

BASE(1) ′axis 1 is controlled by handwheel

ATYPE=1 ′configure as pulse axis

DPOS = 0,0

UNITS = 100,100 'pulse equivalent, 100 pulses per mm100

SPEED = 200,200

ACCEL = 2000,2000

DECEL = 2000,2000

SRAMP = 20

CLUTCH_RATE = 0 'use speed and acceleration to limit

DIM poslast

poslast = DPOS

WHILE 1

IF IN(0) = ON AND IN(1) = OFF THEN

 CONNECT(1, axishand) ′link to axis 0, the ratio is 1

ELSEIF IN(1) = ON AND IN(0) = OFF THEN

CONNECT(1, axishand) ′link to axis 0, the ratio is 10

ELSEIF IN(0)= ON AND IN(1) = ON THEN

CONNECT(50, axishand) ′link to axis 0, the ratio is 50, for step motor, if the

ration is too high, it will lose steps or it ends for a

long time.

ELSEIF MTYPE = 21 THEN

 CANCEL ′cancel CONNECT

ENDIF

IF poslast <> DPOS THEN

poslast = DPOS

128

TRACE DPOS

ENDIF

WEND

END

5.2 Interpolation Motion

5.2.1 Concept of Interpolation

The interpolation is the process to determine the tool movement path by using machine tool

CNC system according to certain methods. Interpolation is a real-time data densification process.

No matter what kind of interpolation algorithm, the operation principle is basically the same. Its

function is to perform digital calculation according to the given information, and continuously

calculate the feeding instruction of each coordinate axis participating in the movement, and then

drive their respective execution components to produce coordinated motions, so that the controlled

mechanical components move according to the ideal route and speed.

The most common interpolations are linear interpolation and circular interpolation. The

interpolation at least needs 2 axes, and when interpolating, first to build the coordinates, then map

axis into corresponding coordinate, the motion controller controls each axis’ motion to achieve

required motion path according to the coordinate mapping relation.

The interpolation motion instruction is stored into motion buffer, then be taken out in turn

from the buffer for executing, until all interpolations are executed.

➢ Linear Interpolation:

In the linear interpolation, the interpolation between two points closes to each other along the

group point of line. Firstly, assume the real contour starting point moves a short distance in X

direction (give one pulse equivalent, the axis will move a fixed distance). Then, find the terminal

point is below the real contour, the next segment will move s short distance in Y direction, if the

terminal is also below now, continuing to move in Y, it will move s short distance in X until it is

above the real contour. The motion cycles like this, until it arrives the contour terminal point. In

this way, the actual contour is formed by splicing a segment of polylines. Although it is a polyline,

each segment of the interpolation segment is very small within the allowable accuracy range, so

this segment of the polyline can still be approximately regarded as a straight line, which is linear

interpolation.

ZMotion controller uses hardware interpolation, and the interpolation precision is within one

pulse, so it is still smooth when the path is amplified.

129

If the axis needs to move from point (X0,Y0) to point (X1,Y1) in the XY plane, the

processing process of linear interpolation is like the below figure:

➢ Circular Interpolation

Circular interpolation is similar to linear interpolation. The interpolation digital information

between the two ends is given, and the point group approximating the actual arc is calculated by a

certain algorithm. The control axis moves along these points to process arc curves. Circular

interpolation can be a plane arc (at least two axes) or a space arc (at least three axes). Assuming

that the axis needs to travel an inverse arc in the first quadrant of the XY plane, the center of the

circle is the starting point, and the processing process of the arc interpolation is shown in the

figure below.

The space arc interpolation function of the controller is based on the current point and the end

point and the middle point (or center point) set by the arc command parameters to determine the

circular arc and realize the spatial circular arc interpolation movement. The coordinates are three-

dimensional coordinates, and at least three axes are required to move along the X axis, the Y axis

130

and the Z axis respectively.

➢ Interpolation mode of motion controller

Motion controller’s interpolation motion mode has below functions:

1) it can achieve interpolation of linear, circular, space arc, helical, ellipse, etc.

2) it can do multi-axis interpolation in several coordinate systems multiple channels, single

channel only supports at most 16 axes combined interpolation.

3) each axis has motion buffer, which can be used to achieve motion pause, resume and other

functions. And the interpolation motion of one axis stops, other axes also stop.

4) it has delay in buffer and synchronously output digital in buffer functions.

5) it has the pre-process function, the controller analyzes and calculates target trajectory

automatically, so that high speed and smooth continuous motion in small segment can be

achieved.

➢ Two-axis linear interpolation

Axis 0 and axis 1 participate in the linear interpolation motion, as shown in the figure below.

The linear interpolation motion of these 2 axes moves from point A to point B, the XY axes start at

the same time, and reach the end point at the same time. Set the motion distance of axis 0 as ΔX,

and the motion distance of axis 1 is ΔY, the main axis is the first axis of BASE (now the master

axis is axis 0), the motion speed of the main axis interpolation is S (the set speed of the main axis),

and the actual speed of each axis is the sub-speed of the main axis, but it is not equal to S, at this

time:

Main axis’ motion distance: X=[(∆X)2+(∆Y)2]½

Axis 0 actual speed: S0=S×∆X/X

Axis 1 actual speed: S1=S×∆X/X

➢ Three-axis linear interpolation

Axis 0, axis 1 and axis 2 participate in the linear interpolation motion, as shown in the figure

below. The linear interpolation motion of these 3 axes moves from point A to point B, the XYZ

131

axes start at the same time, and reach the end point at the same time. Set the motion distance of

axis 0 as ΔX, and the motion distance of axis 1 is ΔY, the main axis is the first axis of BASE (now

the master axis is axis 0), the motion speed of the main axis interpolation is S (the set speed of the

main axis), and the actual speed of each axis is the sub-speed of the main axis, but it is not equal

to S, at this time:

➢ Multi-axis linear interpolation

Multi-axis linear interpolation can be understood as multiple degrees of freedom of an axis,

which is linear interpolation in three-dimensional space. Taking four-axis interpolation as an

example, generally three axes run a straight line on the XYZ plane, and the other axis is a rotation

axis, which does follow motion with a certain proportional relationship.

5.2.2 Continuous Interpolation

If the MERGE continuous interpolation is not turned on, after the previous interpolation

movement is completed, when executing the next interpolation, it will first decelerate to stop, and

then re-accelerate to execute the interpolation movement. In actual application, this situation will

lead to low processing efficiency, so it is necessary not to use deceleration between consecutive

interpolation movements, which is the continuous interpolation function.

To make the interpolation action continuous, after setting MERGE=ON, the interpolation

motion of the same main axis will be automatically continuous, and there will be no deceleration

between two consecutive motions, and the SP instruction can manually set the motion speed and

end speed. Refer to some instructions, MERGE, SP, CORNER_MODE, ENDMOVE_SPEED,

FORCE_SPEED, etc.

132

5.3 Look-ahead processing

Related instructions:

Instruction Description Usage

CONNER_MODE Corner mode configuration COERNER_MODE=mode value

MERGE Continuous interpolation MERGE=ON

DECEL_ANGLE Start deceleration angle When using,

STOP_ANGLE Stop deceleration angle

ZSMOOTH Chamfer radius ZSMOOTH=chamfer radius value

FULL_SP_RADIUS Speed limit radius

FORCE_SPEED Force speed

In the actual processing process, continuous interpolation will be turned on for pursing

processing efficiency. If the corner of the motion trajectory is not decelerated, and when the corner

is large, it will cause a greater impact on the machine and affect the machining accuracy. If the

continuous interpolation is turned off and the deceleration at the corner is 0, although the machine

is protected, the machining efficiency is greatly affected, so a look-ahead command is provided to

automatically determine whether to reduce the corner speed to a reasonable value at the corner,

which will not affect the processing accuracy but also improve the processing speed. This is the

role of the trajectory look-ahead function.

The trajectory look-ahead of the motion controller can automatically calculate a smooth

speed plan according to the user's motion path, reduce the impact of the machine, and improve the

machining accuracy. The inflection point will appear when automatically analyzing the command

trajectory of the motion buffer, and automatically calculate the motion speed at the corner

according to the corner conditions set by the user, and also calculate the speed plan according to

the maximum acceleration value set by the user, so that acceleration and deceleration value in any

acceleration and deceleration process in the machine do not exceed ACCEL and DECEL, so as to

prevent the damage to the mechanical part.

133

Speed planning situation with trajectory look-ahead or without trajectory look-ahead:

If the motion trajectory is like the left figure, it moves a rectangle trajectory, and there are 4

linear interpolation motions.

Mode 1: after opening continuous interpolation, obtained the speed of main axis changes

with time, please see the right figure. The speed of main axis is consecutive, and it doesn’t

decelerate at the corner position. The corner has

a big shock when running in high-speed.

Mode 2: under the condition of mode 1, close continuous interpolation, obtained changing

curve of main axis speed with time is the below left figure. A straight line is completed, it will

decelerate to 0, then start the second straight motion, therefore the processing efficiency is not

high.

Mode 3: under the condition of mode1, open continuous interpolation, and set trajectory

look-ahead parameters, obtained changing curve of main axis speed with time is the below right

figure. The corner position decelerates according to one certain proportion, the processing

efficiency is higher than mode 2.

For above modes, speed is set as S curve through SPAMP instruction, so that the speed curve

will be softer.

The main command CORNER_MODE of trajectory look-ahead is used for speed planning at

corners. There are three commonly used modes, and different modes are selected according to the

actual requirements of the processed trajectory.

This parameter takes effect before the interpolation motion command is called. Generally, the

134

corner mode is set in the parameter initialization. Because the look-ahead motion parameters

varying with the motion commands are stored in the motion buffer together. The look-ahead

motion parameters can be called multiple times, and different modes can also be mixed, such as

CONNER_MODE=2+8, which means automatic corner deceleration and small circle speed limit

are used at the same time, set the appropriate look-ahead mode according to the requirements of

the trajectory segment, and automatically optimize the trajectory when executing the motion

command.

Note: Once the CORNER_MODE mode is set, the parameters will be stored in the controller.

Set CORNER_MODE=0 to cancel it. Otherwise, CORNER_MODE set before will take effect.

CORNER_MODE instruction parameter description:

Bit Value Description

0 1 Reserve

1 2 Decelerate automatically at the corner position.

Accelerate and decelerate as ACCEL and DECEL.

This parameter takes effect before calling MOVE function.

The deceleration angle is set through DECEL_ANGLE and STOP_ANGLE

instructions.

The reference speed of deceleration corner refers to FORCE_SPEED, so

please set reasonable FORCE_SPEED.

2 4 Reserve

3 8 Automatic small circle speed limit, speed limit when the radius is less than

the set value, no speed limit when the radius is greater than the limit value.

This parameter is modified before the MOVE function is called.

The speed limit is related to FORCE_SPEED.

Limit speed = FORCE_SPEED * actual radius/FULL_SP_RADIUS

Speed limit radius FULL_SP_RADIUS setting.

4 16 Reserve

5 32 Automatic chamfer settings.

This parameter is modified before the MOVE function is called.

This MOVE motion is automatically chamfered with the previous MOVE

motion, and the chamfer radius refers to ZSMOOTH.

COR_MODE=2 corner deceleration application: do not change motion trajectory, just

automatically judge whether there is deceleration at the corner, which is usually used to improve

shaking problem of machine. For those places need trajectory precision and no speed requirements.

CORNER_MODE=8 small circle speed limit application: do not change the motion trajectory,

generally used in arc processing, calculate the current limit speed according to the radius of the arc.

CORNER_MODE=32 automatic chamfering application: change the motion trajectory, this

will not slow down the speed. For the occasions with large track corners, the motion track at the

chamfer is automatically smoothed, so it is generally used in the occasions where the speed is fast

135

and the track accuracy is not high.

See the CONNER_MODE instruction for the application routine of the track look-ahead.

5.4 Origin Point Homing

Related instructions:

Instruction Description Usage

DATUM Origin point homing mode selection DATUM(homing mode value)

DATUM_IN The switch to map the origin point DATUM_IN=input number

FWD_IN Mapping positive limit position switch FWD_IN=input number

REV_IN Mapping negative limit position switch REV_IN=input number

SPEED Fast speed for finding the origin point Set the value of speed

CREEP Inverse cramp speed for finding origin point Set the value of speed

INVERT_IN Input signal inverse INVERT_IN=

(input number, ON/OFF)

High-precision automation equipment has its own reference coordinate system. The

movement of the workpiece can be defined as the movement on the coordinate system. The origin

of the coordinate system is the starting position of the movement. All kinds of processing data are

based on the origin as the reference point. Therefore, before starting the controller to execute the

motion command, the device must perform the zero-returning operation to return to the origin of

the set reference coordinate system. If it is not performed, the subsequent motion trajectory will be

wrong.

Zmotion controller provides a variety of homing methods, which are set through the DATUM

instruction. Different mode values can choose different homing methods. Each axis automatically

returns to the origin according to the homing method set before. This command is a single-axis

homing command. When multi-axis homing, the DATUM command needs to be used for each

axis.

When returning to zero, the platform needs to be connected to the origin switch (indicating

the position of the origin) and the positive and negative limit switches (both are sensors., after the

sensor detects a signal, it indicates that there is an input signal, which will be sent to the controller

for processing).

When single axis finds the origin, the origin switch is set by DATUM_IN, and the positive

and negative limit switches are set by FWD_IN and REV_IN respectively. After the

positive/negative limit signal of the controller takes effect, the axis will stop immediately, and the

stop deceleration is FASTDEC.

When the ZMC motion controller is 0, the trigger is valid, and when the input is in the OFF

state, it means that the origin/limit is reached. The normally open type signal needs to use the

136

INVERT_IN inversion level.

DATUM instruction supports below homing mode:

Value Description

0 Clear error status of all axes.

1 The axis runs forward at CREEP speed until the Z signal appears.

It will stop directly when it touches the limit switch.

The DPOS value is reset to 0 and the MPOS is corrected.

2 The axis runs reversely at CREEP speed until the Z signal appears.

It will stop directly when it touches the limit switch.

The DPOS value is reset to 0 and the MPOS is corrected.

3 The axis runs forward at SPEED until it touches the home switch. Then, the axis

reverses at CREEP speed until it leaves the home switch.

In the process of finding the origin, it will stop directly when it encounters the

positive limit switch.

When the crawling stage encounters the negative limit switch, it will stop directly.

DPOS value reset to 0 while correcting MPOS

4 The axis runs reversely at SPEED until it touches the home switch. Then, the axis

runs forward at CREEP speed until it leaves the home switch.

In the process of finding the origin, it will stop directly when it encounters the

positive limit switch.

When the crawling stage encounters the negative limit switch, it will stop directly.

DPOS value reset to 0 while correcting MPOS

5 The axis runs forward at SPEED until it touches the home switch. Then, the axis

reverses at CREEP speed until it leaves the home switch.

In the process of finding the origin, it will stop directly when it encounters the

positive limit switch.

It will stop directly when it touches the limit switch.

The DPOS value is reset to 0 and the MPOS is corrected.

6 The axis runs reversely at SPEED until it touches the home switch. Then, the axis

runs forward at CREEP speed until it leaves the home switch.

In the process of finding the origin, it will stop directly when it encounters the

positive limit switch.

It will stop directly when it touches the limit switch.

The DPOS value is reset to 0 and the MPOS is corrected.

8 The axis runs forward at CREEP speed until touching the origin switch.

It will stop directly when it touches the limit switch.

9 The axis runs reversely at CREEP speed until touching the origin switch.

It will stop directly when it touches the limit switch.

21 Use the zero-return function of the EtherCAT drive, and now mode2 is valid.

Set the drive's zero-return mode (6098h). The default value of 0 means to use the

drive's current zero return mode.

It will use the SPEED, CREEP, ACCEL, DECEL of the axis, multiply it by

UNITS, and automatically set the 6099h, 609Ah action sequence of the drive:

6098h homing mode→6099h speed→609Ah acceleration→6060h switch the

137

current mode

 Z signal homing must be configured with Z signal ATYPE.

For the case the origin is in the middle of the positive and negative limits, add 10 to each

mode, which means that the movement will not be canceled if the limit is encountered during the

zero-return process, but will continue to search for the origin in the reverse direction. Other

conditions are the same as the original mode. Since the origin is between the positive and negative

limit switches, one limit switch only is met during homing. The following zero-return methods

5~8 all plus 10 modes.

After the bus controller uses the above controller to find the origin mode, it needs to

manually reset the MPOS. Add 100 to zero return mode (modes 100+n and 110+n correspond to n

and 10+n respectively), indicating that MPOS can be automatically cleared after connecting to the

encoder (only for 4 series, ATYPE=4)

Detailed explanation of common zero return methods:

Mode 1: Z signal mode

The axis runs at CREEP speed until the Z signal appears. The DPOS value is automatically

reset to 0 and the MPOS is corrected. It is only valid when ATYPE is set to 4 or 7 and the

corresponding axis encoder Z is connected. It stops directly when it encounters the positive and

negative limit switches on the way of returning to zero. When mode=1, it returns to zero in

positive direction, and when mode=2, it returns to zero in negative direction.

Mode 2: the origin + find inversely mode

The axis runs to the origin point at SPEED speed until touching the origin switch. Then, the

axis runs inversely at CREEP speed until leaving the origin switch. The DPOS value is

automatically reset to 0 and the MPOS is corrected. It stops directly when it encounters the

positive and negative limit switches on the way of returning to zero. When mode=3, it returns to

zero in positive direction, and when mode=4, it returns to zero in negative direction.

138

Mode 3: mode = 5, the origin + find inversely + Z signal mode

The axis travels towards the origin at SPEED until it touches the home switch. Then, the axis

reverses at CREEP speed until it leaves the home switch, and continues to reverse at CREEP

speed until it touches the Z signal. The DPOS value is automatically reset to 0 and the MPOS is

corrected. It is only valid when ATYPE is set to 4 or 7 and the corresponding axis encoder Z is

connected. It stops directly when it encounters the positive and negative limit switches on the way

of returning to zero. mode=5 returns to zero in positive direction, mode=6 returns to zero in

negative direction.

Mode 4: mode=8, the origin point returns to zero once mode

The axis runs at the speed of SPEED until it hits the origin switch. The DPOS value is

automatically reset to 0 and the MPOS is corrected. It stops directly when encountering the

positive and negative limit switches on the way to zero. mode=8 returns to zero in positive

direction, mode=9 returns to zero in negative direction.

Mode 5: mode=11, Z signal mode,

The axis runs at the CREEP speed, it won’t stop when encountering the limit switch, and it

will continue to run at the CREEP speed direction until the Z signal appears.

Mode 6: mode=13 forward running, origin + reverse search mode + limit reverse

The axis runs to the origin at SPEED speed, and it does not stop when meeting the forward

limit switch, and then runs in reverse at SPEED speed until it hits the limit switch. Then, the axis

139

moves slowly at CREEP speed until it leaves the origin switch.

Mode 7: mode=15, origin + reverse search + Z signal mode

The axis runs to the origin at the speed of SPEED, and it does not stop when encountering the

limit switch, but it continues to move in the reverse direction at the speed of SPEED until it hits

the origin switch. Then, the axis moves to the origin at the speed of SPEED. The CREEP speed

reverses movement until it leaves the home switch, and then continues to reverse at the creep

speed until the Z signal is encountered.

Mode 8: mode=18, one-time homing mode

The axis runs at the speed of SPEED, and it does not stop when encountering the limit switch,

but it continues to move in the reverse direction at the speed of SPEED. It stops when it hits the

home switch.

140

5.5 Related Limit Position Instructions

Instruction Description Usage

FS_LIMIT Positive software limit setting FS_LIMIT = positive limit position

RS_LIMIT Negative software limit setting RS_LIMIT= positive limit position

FWD_IN Mapping the positive limit input FWD_IN = input number

REV_IN Mapping the negative limit input REV_IN = input number

The motion controller can limit the motion range of each axis by installing limit switches or

setting software limits. Hardware limit switches and software limit switches are used for the

permissible movement range and working range of the axes of the technology object.

 Hardware limit switches are limit switches that limit the maximum "permissible travel range" of

an axis. A hard limit switch is a physical switching element, and it is mapped to the corresponding

input switch signal through instruction. According to whether the switch signal is normally open

or normally closed to determine whether to flip the signal. After it is set, and when hitting the

hardware limit switch, the corresponding axis stops immediately, and the stop deceleration is

FASTDEC.

The soft limit switch id different from the hard limit switch, it is only realized by the

software program setting, without the help of external switching elements. The software limit

switch will limit the "working range" of the axis, and the limit position is directly set by the

instruction. After the axis reaches the set position, the motion will stop with deceleration

FASTDEC immediately. They should be located inside the relevant hardware limit switch that

limits the travel range of the machine tool. Since the position of the software limit switch is more

flexible, the working range of the axis can be adjusted according to the current running track and

specific requirements.

When the worktable hits the limit switch or the planned position exceeds the software limit,

the motion controller stops the motion of the worktable in an emergency. After the limit is

triggered, the axis cannot continue to move. At this time, the position of the axis needs to be

adjusted so that it is far away from the limit position to restart the movement.

The axis will only generate a stop signal when it hits the limit. At this time, since it takes a

certain time to decelerate, the actual position of the axis will exceed the limit by a certain distance.

141

Assume that the SPEED speed is v0 when it stops, and the fast deceleration FASTDEC is a. The

calculation formula: vt2-v02=2as, bring in the following data: 0-1002=2*(-1000)*s, the overshoot

distance s=5, which can be known, reduce overshoot by increasing FASTDEC and decreasing

SPEED.

Example:

BASE(0) ′select axis 0

ATYPE=1 ′axis type setting

UNITS=100 ′pulse equivalent 100

SPEED=100 ′speed 100units/s

ACCEL=500 ′acceleration

DECEL=500 ′deceleration

FASTDEC=1000 ′fast deceleration 100units/s/s

DPOS=0 ′the coordinate is cleared

FS_LIMIT=200 ′set positive software limit position is 200units

MOVE(300) ′moves 300units

WAITIDLE(0) ′wait until axis stopped

?DPOS(0) ′print result: 205units

The value of positive/negative software limit FS_LIMIT and RS_LIMIT needs to be between

-REP_DIST and +REP_DIST, the software limit parameters will take effect. Otherwise, the

positive/negative software limit setting will be invalid. When canceling the software limit, it is

recommended not to modify the value of REP_DIST, but to set FS_LIMIT and RS_LIMIT to a

larger value.

Routine: the application of positive and negative limit position

ERRSWITCH = 3

RAPIDSTOP(2)

WAIT IDLE

BASE(0) ′select axis X move

DPOS = 0

ATYPE=1 ′pulse stepper or servo

UNITS = 100 ′pulse equivalent, 100 pulses per mm

SPEED = 200

ACCEL = 20000

DECEL = 20000

TRIGGER

'set software limit position

142

REP_DIST = 100000000 ′the default, don’t modify this value

RS_LIMIT = -50 ′negative software limit position, it takes effect when it exceeds -REP_DIST

FS_LIMIT = 100 ′positive software limit position, it takes effect when it is below -REP_DIST

VMOVE(1) ′continue to move in positive direction

WAIT UNTIL AXISSTATUS AND (512) 'judge positive limit position generates or not

PRINT "SOFTLIMT FS", *DPOS

DELAY(200)

VMOVE(-1) ′continue to move in negative direction

WAIT UNTIL AXISSTATUS AND (1024) 'judge negative limit position generates or not

PRINT "SOFTLIMT RS", *DPOS

RS_LIMIT = -200000000 'close software limit position

FS_LIMIT = 200000000

END

Print result:

Axis:0 AXISSTATUS:200h,FSOFT

SOFTLIMT FS 101

Axis:0 AXISSTATUS:400h,RSOFT

SOFTLIMT RS -51

The motion trajectory is as follows, the positive software limit is set to 100, so that the axis is

forced to stop after moving to the 100, and the negative software limit is set to -50, the axis cannot

continue to move after moving to this position in the negative direction.

5.6 Position Latch

Related instructions:

143

Instruction Description Usage

REGIST Set latch method REGIST (method value)

REG_INPUTS Latch input mapping REG_INPUT=$input number

MARK Judge latch is triggered or not WAIT UNTIL MARK

MARKB Judge the second latch is triggered or not WAIT UNTIL MARKB

MARKC Judge the third latch is triggered or not WAIT UNTIL MARKC

MARKD Judge the forth latch is triggered or not WAIT UNTIL MARKD

REG_POS Save latched measurement feedback position Print REG_POS

REG_POSB Return latch 2 measurement feedback

position

Print REG_POSB

REG_POSC Return latch 3 measurement feedback

position

Print REG_POSC

REG_POSD Return latch 4 measurement feedback

position

Print REG_POSD

OPEN_WIN Latch triggered start coordinate range point OPEN_WIN=POS

CLOSE_WIN Latch triggered end coordinate range point CLOSE_WIN=POS

The latch function of the controller is mainly used to latch the position of the encoder MPOS

(the latest firmware of the 4 series and above controllers supports virtual axis and pulse axis latch).

When the latch signal is triggered, the current position information is immediately captured in the

position latch, and clear the previous latched position coordinates. When reading latch position

information, the position information latched when the last latch signal is triggered will be read.

The number and position of the latched channel ports of different types of controllers are different,

please refer to the hardware manual of the corresponding type of controller.

It should be noted that the operation interface of position latch is accessed according to the

axis number. Different types of axes have different latch parameters. Before use, first determine

the type of axis. The types of axes that support latch are divided into the following types: local

pulse axis, EtherCAT axis, RTEX axis, also need to pay attention to the number of latch ports to

avoid errors caused by overflow of latch data.

The pulse axis type generally adopts three latches of R0, R1, and Z pulse; the bus axis type

generally adopts R2, R3 latch.

In addition to supporting controller latching, the EtherCAT bus controller also supports driver

latching. At this time, the driver IO points are used to achieve latching. For the specific mode, see

the command syntax. RTEX only supports controller latches.

When supporting the simultaneous use of EtherCAT drive latch and controller latch, 4 latch

channels are required. The 4 channels refer to MARK, MARKB, MARKC, MARKD, and the

latch channel corresponding to the latch input port is specified by REG_INPUTS. When the latch

is generated, the axis state MARK will be set to ON, and the latched position will be stored in the

parameter REG_POS.

144

The input signals R0, R1 and Z signals of each axis can use the latch function, and the R0

and R1 inputs generally correspond to input ports 0 and 1. When using two signal latches, the

second signal latch uses MARKB and REG_POSB, MARK and REG_POS need to be paired, that

is, the numbers are the same.

The rising edge/falling edge refers to the internal state of the controller. Different types of

input ports may be inconsistent, and it is necessary to confirm the actual latched edge.

How to use the latch function:

1) Determine whether the current hardware conditions meet the latching requirements, and

determine the axis that needs to be latched;

2) Set the latch input mapping port REG_INPUT, the input port needs to support the latch

function;

3) Set the latch mode REGIST and wait for the latch to trigger MARK;

4) Latch completes print latch position information REG_POS;

5) The start and end coordinates of the latched position can be read, and the latched position

can be called by other instructions.

Refer to the description of the REGIST instruction for the latch method of the controller.

5.7 Hardware Comparison Output

Related instructions:

Instruction Description Usage

HW_PSWITCH Hardware position comparison output Set the comparison point

HW_PSWITCH2 Bus hardware position comparison

output

Set the comparison point and the

comparison output port

HW_TIMER Hardware timer output Output in periodically

There is a position comparison unit in the motion controller. The hardware comparison output

is to operate the output port action by comparing whether the axis reaches the set position.

Generally, the encoder position is compared with the set position. When the encoder position

reaches a set position When comparing the position, trigger the level of the corresponding output

port to flip once.

As shown in the figure below, when the set position 1 is reached, the level of the specified

output port is flipped, the level of the designated output port is flipped again when it reaches

position 2, and the level is flipped again when it reaches position 3. After all points are compared,

the level remains the same as after the last flip. state.

145

Hardware comparison output needs to be supported by some models of 3 series and 4 series

and above controllers. It is necessary to operate the output port that supports this function. The

controller supports software comparison output PSWITCH command, hardware comparison

output HW_PSWITCH command (only supports pulse axis), HW_PSWITCH2 command (Both

pulse axis and bus axis are supported).

For the pulse axis, the difference between HW_PSWITCH and HW_PSWITCH2 is that there

is a one-to-one correspondence between the axis and output of HW_PSWITCH, and there is no

need to specify the output axis number; HW_PSWITCH2 can be specified in the output port that

supports this function. The HW_PSWITCH command can operate multiple output ports at the

same time to output simultaneously. The HW_PSWITCH2 instruction supports more controller

models.

Comparing the feedback MPOS of the encoder, the position accuracy is higher. When the

encoder is connected (the pulse axis axis type ATYPE is 4 or the bus axis type), the encoder

feedback position MPOS is compared. When the encoder is not connected (the pulse axis axis type

ATYPE is 1 or 7) Compare the target position DPOS.

If the comparison position is a large number of continuous equidistant outputs, the

HW_TIMER hardware timing output can be used. At this time, it is necessary to set the starting

comparison output position, interval distance and repetition period.

If the comparison position is a non-equidistant position value, use the HW_PSWITCH and

HW_PSWITCH2 commands to specify the position in the TABLE table for output, and store the

position data that needs to be compared and output in the TABLE table. At this time, it is

necessary to ensure that the TABLE position data is not modified before all comparison points are

completed, and the data in the TABLE table is a monotonically increasing positive distance value

or a monotonically decreasing negative distance value, otherwise an error will occur.

When comparing the spindle with encoder input, the encoder position is automatically used

to trigger, and the MOVEOP_DELAY parameter can be used to adjust the output exact moment.

Different bus drivers may have different effects, which can also be adjusted by the

146

MOVEOP_DELAY parameter.

5.8 Precision Output

Related instructions:

Instruction Description Usage

MOVE_OP Output in buffer MOVE_OP(number, state)

AXIS_ZEST Start precision output Set the function according to bit

MOVEOP_DELAY Delay output in buffer Output in advance or delay

The MOVE_OP instruction defaults to normal output. The normal output operation needs to

wait for one controller cycle to execute, while the precise output operation can respond within one

pulse sent by the motor, which can greatly improve the accuracy of the process. At the same time,

the MOVEOP_DELAY instruction can be used to adjust the response time (earlier or later).

The minimum error of precision output pulse output mode is 1 pulse, and the minimum error

of bus control mode is within 1us.

Only controllers that support the hardware comparison output function can use the precision

output function, and both use the same hardware resources.

Use the AXIS_ZSET command to set whether to enable precise output, and then use the

MOVE_OP command to enable the precise output to take effect. Note that the output channel

should select the channel that supports precise output, that is, the channel that supports hardware

comparison output. The number of different models is different, generally special function starts

from IO number 0.

There are two trigger modes for precision output, target position DPOS trigger or encoder

feedback MPOS trigger.

When there is no encoder feedback, the precision output function automatically uses the

command position DPOS to compare the trigger. The motor always has a certain following error

(following error = DPOS-MPOS). When the encoder feedback is used, the encoder feedback

MPOS trigger will be more accurate. Precisely, whether to start the encoder position is also

configured through the AXIS_ZSET instruction. According to the different effects of different

drives, you can also use the MOVEOP_DELAY parameter to adjust the exact timing of the IO

output.

147

5.9 Galvanometer Control System

5.9.1 The Description of Galvanometer

1. The galvanometer working principle

Laser galvanometer is a special motion device specialized for laser processing field. It

reflects the laser through two galvanometers, forming the motion in XY plane. Laser

galvanometer is different from general motor, the inertia is extremely small, and the load is

small in motion. There are two small reflection lens, X and Y use different motors to control

deviation, the system response is very fast.

 There are two basic movements of laser galvanometer movement: jump movement and the

marking movement.

During the jump movement, the axis moves to the position to be processed, and the laser is

turned off, which does not affect the processing of the trajectory, so it can move at a high speed.

During the marking movement, the laser is turned on to process the trajectory, so the user needs to

set the appropriate movement speed according to the actual processing requirements.

Galvanometer is an excellent vector scanning device. It is a special oscillating motor (laser

galvanometer), the basic principle is that the energized coil generates torque in the magnetic field,

but different from the rotating motor, the rotor is added with a reset torque by mechanical springs

or electronic methods, the size and the angle deviating from the equilibrium position is

proportional. When the coil is supplied with a certain current and the rotor is deflected to a certain

angle, the electromagnetic torque is equal to the restoring torque, so it cannot rotate like an

ordinary motor, but can only be deflected. The deflection angle is proportional to the current.

2. Basic Structure of Galvanometer Control System

148

The galvanometer system consists of the above parts to form a basic system, in which the

main components of the galvanometer are two X/Y reflection lens, two motors that control the

rotation of the X/Y mirrors respectively, and a man-machine operating system, encoder and others

can also be added according to actual needs.

3. Basic Requirements for The Controller

Because the laser marking machine relies on the deflection of the X/Y galvanometer, the laser

is reflected on the work surface for precise engraving. The control of the galvanometer is

controlled by the open-loop controller, so it must be linear, that is, there is a linear relationship

between the input signal and the deflection angle. Because the galvanometer is a fast and precise

machine, it is required that the acceleration be as large as possible from one working state to

another, so that the marking space time is infinitely small.

The galvanometer movement adopts the buffer movement method, that is, the user needs to

transmit the movement and process data to the axis movement buffer, and then start the buffer

movement, and the motion controller will continuously execute the movement data transmitted by

the user in sequence until all the movement data are complete.

In the laser galvanometer motion control system, there are not only motion control, but also

laser control. How to effectively deal with the cooperation between the galvanometer movement

and the laser switch is a very important issue. Coordinating the relationship effectively between

the laser and the movement, the movement trajectory can be precise.

Motion control: During the marking movement, the laser will move along the given marking

trajectory at the set marking speed. When executing the relevant marking instructions, the laser

galvanometer motion controller will automatically turn on the laser. If the next is still a marking

instruction, the laser is always on until the last marking instruction ends, or instructions in buffer

area are executed. The laser will be turned off automatically if encountering the jump instruction

in buffer area. The laser will be turned on again only when meeting the marking instruction.

Before starting the movement, the galvanometer coordinates should be adjusted to ensure the

correct marking trajectory, and the buffer should be cleared at the same time.

Laser control: It mainly includes controlling the on/off control of the laser and the duration of

the laser, and using the OP command to control the on-off of the laser. The laser energy can be

149

controlled according

to the difference of

the laser,

corresponding to the

analog quantity,

digital quantity

output port, and the

duty cycle of output

port PWM

correspond to the

amount of control

energy.

4. Applications

It is mainly used for laser marking, including laser cutting, stage lighting control, laser

drilling, etc. It is a non-contact, non-polluting and non-wearing new marking process. It adopts

automatic control and greatly improves the reliability. Laser marking uses a high-energy-density

laser beam. With the regular movement of the laser beam on the surface of the material, the on-off

of the laser beam is controlled at the same time, so that physical or chemical changes occur on the

surface of the target material, and the laser beam can be processed a specified pattern on the

surface of the material.

Compared with the traditional marking process, laser marking has the following advantages:

The marking speed is fast and the handwriting is clear.

Non-contact processing, pollution is less and no wear.

It is convenient to work and has strong anti-counterfeiting ability.

High-speed automatic operation, low production cost and reliable operation.

5. ZMC120SCAN Controller Galvanometer Interface Signal

ZMC420SCAN is the controller that supports laser galvanometer control, each general output

of the controller all supports PWM function.

The local axis 4/5 can be configured as the first galvanometer through ATYPE=21, The local

axis 6/7 can be configured as the second galvanometer through ATYPE=21, and the axis number

can be changed through AXISZ_ADDRESS instruction.

Pin No. Signal Description

1 CLOCK- Clock signal -

2 SYNC- Synchronization signal -

3 X channel- Galvanometer X channel signal -

150

6. XY2-100 Galvanometer Protocol

ZMC420SCAN supports XY2-100 galvanometer protocol.

In the galvanometer control system, the XY2-100 protocol is widely used as the interface

definition and communication protocol of the digital laser scanning galvanometer. Communication

protocol refers to the rules and conventions that must be followed by both entities to complete

communication or services. The XY2-100 protocol includes four signals: SENDCK (clock signal),

SYNC (synchronization signal), CHANNEL X (X channel data), CHANNEL Y (Y channel data),

these four signals are a synchronous serial transmission process.

The SENDCK signal is a clock signal with a frequency of 2MHz. When it transitions from

low level to high level, the data bit is written; when it transitions from high level to low level, the

data bit is reflected by the system sampling.

The SYNC signal is used to provide synchronization information for data conversion. When

it goes from low level to high level, the first bit of data is sent; when it goes from high level to low

level, the last bit of parity is sent.

CHANNEL X/Y is the data signal, which consists of 20 bits, among which C2, C1, C0 are

the moving direction value of the galvanometer, the reference value is 001, D15 ~ D0 are the data

bits, which are 16-bit binary numbers, used to control the vibration. The angle that the mirror

rotates, the last bit P is the parity check bit, when there is an even number of "1" in the sent data,

the corresponding check bit is "0", and when there is an odd number of "1" in the sent data, the

4 Y channel- Galvanometer Y channel signal -

5 NC Reserve

6 STATUS Galvanometer status signal -

7 NC Reserve

8 GND Digital ground

9 CLOCK+ Clock signal +

10 SYNC+ Synchronization signal +

11 X channel+ Galvanometer X channel signal +

12 Y channel+ Galvanometer Y channel signal +

13 NC Reserve

14 STATUS+ Galvanometer status signal +

15 GND Digital ground

151

corresponding check digit is "1"

7. Galvanometer Correction

The galvanometer is generally realized by correcting the galvanometer to control the exact

position distance of the galvanometer. The galvanometer correction is actually to establish a

corresponding relationship between the theoretical galvanometer moving distance and the actual

galvanometer moving distance, and then the corresponding moving distance is combined with the

established relationship in the process of moving, so as to achieve the purpose of accurately

moving the galvanometer and achieve the effect of galvanometer correction.

Below are galvanometer correction instructions:

ZSCAN_CORRECT(ixy,imode,imaxline,imaxrow,x1,y1,x2,y2,tableindex)

 ixy: the value is 0/1, there are 2 galvanometers to be selected: 0-the first galvanometer, 1- the

second galvanometer.

 imode: 0-turn off the correction function, 1- use correction for different areas.

 imaxline: line number, the point in Y direction is the line number

imaxrow: row number, the point in X direction is the row number

x1, y1, x2, y2: the theoretical coordinates of the lower left corner and the lower right

corner

tableindex: table index is to be stored by measured real coordinate, first X, then Y, the first

line (stored as the row number), then the next line.

 Galvanometer supports a maximum of 64*64 correction points to establish the theoretical

coordinates of the lower left corner and the upper right corner, and the theoretical coordinates and

the measured actual graphic coordinates written in the corresponding TABLE array are processed

correspondingly. The galvanometer axis currently connected to the galvanometer interface. The

galvanometer correction parameters are not saved after power off, so it should be noted during use

that the galvanometer needs to be corrected again after the power is turned on again.

The galvanometer is an absolute value system. After the power is turned on, the controller is

always in the state of communication with the motor. Modifying the DPOS of the galvanometer

axis will cause the offset of the galvanometer. Therefore, do not modify the DPOS value of the

galvanometer axis casually during the use of the galvanometer. It can move to the corresponding

position through MOVEABS.

5.9.2 Galvanometer Application Process

1. When using the galvanometer axis, please set the axis type of corresponding galvanometer

152

axis 4, axis 5, (axis 6, 7) to be connected as 21.

2. Set the axis parameters for the corresponding galvanometer axis. The set axis pulse will

affect the movement distance of the galvanometer during motion. Therefore, the pulse

equivalent can be fixed as a size, and then the galvanometer axis at the current position can

be corrected to the correct distance through the galvanometer correction command.

3. If the laser needs to be switched on and off during the movement of the galvanometer, the

high-speed output port should be selected to control the switch light, and the corresponding

precise output setting should be turned on, so that the output port can emit light in a short

time after reaching the position, and achieve accurately control for the laser.

4. If the galvanometer axis needs to return to zero, the galvanometer axis can be moved to

position 0 through MOVEABS command, and the DPOS value of the galvanometer axis

cannot be modified casually during the movement of the galvanometer, otherwise it will

cause the offset of the galvanometer axis, the corresponding galvanometer motor will also

vibrate.

5. The galvanometer axis can be exchanged by the axis mapping instruction AXIS_ADDRESS,

and the galvanometer axis can be operated by other axis numbers to change the axis. In

addition, the current direction of the galvanometer axis cannot be modified by the command.

In order to correct the direction of the galvanometer, it is necessary to invert the coordinates

of the galvanometer that need to be reversed in the correction part of the galvanometer, and

then correct it again to modify the direction of the galvanometer axis.

6. It can operate the galvanometer axis and the common motor axis to establish continuous

interpolation, establish the linkage between the galvanometer axis and the ordinary axis, and

realize hybrid interpolation.

Laser Control Notes:

The energy control of the laser has the following control methods:

1. The analog quantity controls the energy: the precision of analog is 10 bits, 0-10V. The

value of 0-4096 controls corresponding energy.

2. Digital signal combination to control energy: it is combined with output signals, the energy

selects the energy corresponding to each combination.

3. Control energy output through PWM duty cycle.

Example: The energy combination of Lianpin laser mopa laser is as follows:

Pin No. Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

Pin 1 0 0 0 0 1

Pin 2 0 0 0 0 1

Pin 3 0 0 0 0 1

153

Pin 4 0 0 0 0 1

Pin 5 0 0 0 1 1

Pin 6 0 0 1 1 1

Pin 7 0 1 1 1 1

Pin 8 1 1 1 1 1

Current 50% 75% 87.5% 93.75% 100%

Laser work 52% 77% 89% 93% 100%

Galvanometer Routine:

Example 1: two galvanometer axes interpolation

Description: two galvanometer axes achieve mark 5 5mm small segment round in one line.

′set axis number of galvanometer axis, and configure the axis type

BASE(4,5)

ATYPE=21,21

′set basic parameters

UNITS=300,300

SPEED=5000,5000

ACCEL=SPEED*20,SPEED*20

DECEL=SPEED*20,SPEED*20

MOVEABS(0,0)

FORCE_SPEED=5000

'start continuous interpolation

MERGE=ON

AXIS_ZSET(4)=3 'start MOVE_OP precision output function

'set frequency

PWM_FREQ(2)=2000

WHILE 1

IF MODBUS_BIT(0)=ON THEN

 MODBUS_BIT(0)=OFF

OP(0,OFF)

BASE(4,5)

'energy switch

OP(11,ON)

'MO switch

OP(1,ON)

'marking 5 small segment round, the trajectory moving data

 FOR j = 0 TO 4

154

 MOVE(-15, 0)

MOVE_OP(0,ON)

MOVE(-0.038, 0.434)

MOVE(-0.113, 0.421)

MOVE(-0.184, 0.395)

MOVE(-0.250, 0.357)

MOVE(-0.308, 0.308)

MOVE(-0.357, 0.250)

MOVE(-0.395, 0.184)

MOVE(-0.421, 0.113)

MOVE(-0.434, 0.038)

MOVE(-0.434, -0.038)

MOVE(-0.421, -0.113)

MOVE(-0.395, -0.184)

MOVE(-0.357, -0.250)

MOVE(-0.308, -0.308)

MOVE(-0.250, -0.357)

MOVE(-0.184, -0.395)

MOVE(-0.113, -0.421)

MOVE(-0.038, -0.434)

MOVE(0.038, -0.434)

MOVE(0.113, -0.421)

MOVE(0.184, -0.395)

MOVE(0.250, -0.357)

MOVE(0.308, -0.308)

MOVE(0.357, -0.250)

MOVE(0.395, -0.184)

MOVE(0.421, -0.113)

MOVE(0.434, -0.038)

MOVE(0.434, 0.038)

MOVE(0.421, 0.113)

MOVE(0.395, 0.184)

MOVE(0.357, 0.250)

MOVE(0.308, 0.308)

MOVE(0.250, 0.357)

155

MOVE(0.184, 0.395)

MOVE(0.113, 0.421)

MOVE(0.038, 0.434)

WAIT IDLE

MOVE_OP(0,OFF)

 NEXT

ENDIF

WEND

Motion efficiency figure:

Example 2: Mixed interpolation motion of galvanometer axis and common axis

Description: The galvanometer axis and the rotation axis establish an interpolation two-axis

coordinated motion to mark and clean the graphics.

The cleaning length is 58, and the cleaning width is 30. The workpiece to be cleaned is

placed on the rotating axis 0, the axis 5 controls the laser movement, and the Y axis reciprocates

for cleaning.

BASE(0,5)

ATYPE=7,21

UNITS = 10000/360,10000/18

SPEED=1000,5000

ACCEL=SPEED*5, SPEED*5

DECEL=SPEED*5, SPEED*5

MOVEABS(0,0)

MERGE=ON 'start continuous interpolation

AXIS_ZSET(0)=3 'start main axis MOVE_OP precision output function

OP(12,ON) 'enable pulse axis axis 0

156

PWM_FREQ(2)=2000 'set DB25 the frequency of external control laser

PWM_DUTY(11)= 0.8 'set energy

PWM_FREQ(11) = 2000

WHILE 1

LOCAL i 'cycle condition

LOCAL sum 'accumulate the rotation angle

IF MODBUS_BIT(0)=ON THEN

 sum = 0

 MODBUS_BIT(0)=off

OP(0,OFF)

OP(11,ON) 'energy switch

OP(1,ON) 'mo switch

WA 100

MOBE_OP(0,ON)

TRIGGER

MOVE(0,-30)

WAITIDLE

MOVE(58,0)

WAITIDLE

MOVE(0,30)

WAITIDLE

MOVE(-58,0)

WAITIDLE

′when rotation axis rotated one certain angle, clean the marked graphics on rotation axis.

FOR i = 0 TO 57.6 STEP 0.4 'clean

 sum = sum + 0.4

MOVE(0,-30)

MOVE(0.4,0)

MOVE(0,30)

 NEXT

 ?“cylinder rotation angle”, sum

 MOVE_OP(0,OFF)

 MOVE(-58,0)

ENDIF

157

WEND

END

Motion efficiency figure:

5.10 Robotic Arm

Zmotion controller supports more than 30 kinds of manipulator algorithms. It can be used after

establishing a manipulator connection according to the type of manipulator frame. It can control

the motion of the manipulator smoothly and accurately. For detailed instructions, please refer to

the "ZMotion Robot Manual Instruction".

5.10.1 Related Concept of Robot

1. Joint-axis and Virtual-axis

158

1) Joint axis

The joint axis refers to the rotation joint in the actual mechanical structure, and in the

program it is generally displayed the rotation angle. Since there is a reduction ratio between the

motor and the rotating joint, the units should be set according to the actual joint rotation for one

circle. At the same time, when filling in the structural parameters in the table, the calculation

should be based on the center of the rotating joint instead of the center of the motor axis.

2) Virtual axis

The virtual axis does not actually exist, it is abstracted as 6 degrees of freedom of the world

coordinate system, which are X, Y, Z, RX, RY, RZ in sequence. It can be understood as the three

linear axes of the space rectangular coordinate system and the three rotation axes around the axes,

which are used to determine the processing track and coordinates of the working point at the end

of the manipulator.

2. Coordinate System

1) Joint coordinate system

The absolute angle of each axis is relative to the origin position, including all joints of the

robot, each joint is independent of each other, and the coordinate unit is angle. Manipulating one

of the joints does not affect the other joints.

2) Cartesian coordinate system

World coordinate system: The world coordinate system is a standard Cartesian coordinate

system fixed in space, the chassis of the robot is the coordinate origin, and its position is

determined according to the type of robot. The virtual axis is operated according to the world

coordinate system. At this time, each joint will automatically calculate the angle that needs to be

rotated.

User coordinate system: the Cartesian coordinate system defined by the user for each work

space, which is used for teaching and executing the position register, executing the position

compensation command, etc. When not defined, the coordinate system will be replaced by the

world coordinate system.

The main purpose of the manipulator algorithm is to connect the joint coordinate system with

the Cartesian coordinate system.

Coordinate system transformation refers to the transformation from the original coordinate

system to another coordinate system when describing the same space. In the use of the

manipulator, it is often used to determine the coordinate system of the workpiece.

The workpiece coordinate system is a Cartesian coordinate system fixed on the workpiece,

and there is a transformation between the workpiece coordinate system and the world coordinate

system. Each manipulator can have a Nuogan workpiece coordinate system to represent different

159

workpieces, or to represent the same workpiece at different positions.

Virtual axis of the robot type meeting XYZ three axes supports this function.

3. Attitude

Mathematically speaking, the attitude of the manipulator is the solution of multiple sets of

joint axes from the same set of virtual axis values. That is, when the manipulator moves to a

certain coordinate point in the Cartesian coordinate system, it can have various motion trajectories,

and these motion trajectories correspond to different attitudes. For the two attitudes of SCARA as

shown in the figure below, when moving in the X direction, joint-axis has two ways to do motion.

4. Singularity

In the inverse solution mode, when the robot moves to a certain position, it will lose a certain

degree of freedom, and this position is called the singular point, and it should be avoided to move

to the singular point in the actual use process. For example, when the SCARA manipulator is fully

straightened, it cannot translate in the X direction at this time. And when it needs to operate to

move in the negative direction of X, the structure cannot judge which posture motion to use, and

the manipulator cannot move at this time. Adjust the position of the joint axis in the forward

solution mode, and then switch to the inverse solution mode for use.

5.10.2 Forward and Inverse Solution Motion

The establishment of the manipulator is set by the CONNREFRAME (positive solution)

instruction and the CONNREFRAME (inverse solution) instruction. The virtual axis MTYPE

(motion type) value is 34 in CONNREFRAME, and the joint axis MTYPE value is 33 in

CONNREFRAME. Check whether a specific axis is located in the corresponding mode through

MTYPE.

Joint axes and virtual axes are specified by the CONNREFRAME or CONNFRAME

instructions, and the controller supports multiple robots as long as the number of axes is sufficient.

The program can control the movement of the joint axis or the virtual axis through the motion

command, but only the virtual axis or the joint axis can be operated at the same time, and the two

160

cannot be operated at the same time.

When operating the joint axis movement, the virtual axis needs to be in the

CONNREFRAME mode, so that it automatically points to the current spatial coordinate. When

operating the virtual axis movement, the joint axis needs to be in the CONNREFRAME mode, so

as to automatically point to the current joint axis coordinate.

Robot mode can be cancelled through CANCEL or RAPIDSTOP instruction.

1. Inverse Solution Motion

The motion corresponding to CONNFRAME is the inverse solution motion, and this

instruction acts on the joint axis. At this time, only the virtual axis can be operated. The virtual

axis can be moved in the Cartesian coordinate system such as straight line, circular arc, space arc,

etc. The joint axis will automatically move to the position after the inverse solution under the

action of CONNFRAME.

The inverse motion modes refer to the two motion modes of the controller. Under the premise

of ensuring the accurate position of the end point, the manipulator will make a trade-off between

the accurate trajectory of the motion process and the smooth speed.

Inverse solution motion mode is achieved by connecting to speed through CLUTCH_RATE,

the CLUTCH_RATE default value of the controller is 1000000.

CLUTCH_RATE of joint axis Motion mode description

0 Smooth mode: In this mode, the joint axis uses its own speed

and acceleration for speed planning, and the trajectory will be

deformed at high speed. It is suitable for occasions where the

precision of motion trajectory is not high.

Non-0 Forced mode: In this mode, the joint axis is completely

planned according to the speed and acceleration of the virtual

axis. This mode can accurately return to the set position, but it

will shake when moving at high speed.

2. Forward Solution Motion

The motion corresponding to CONNREFRAME is the positive solution motion, and this

instruction acts on the virtual axis. At this time, only the joint axis can be operated, and the joint

axis can also perform various movements, but the actual movement trajectory is not a straight arc.

This mode is generally used to manually adjust the joint position or return the power-on point to

zero.

The joint interpolation motion is the interpolation motion of the manipulator in the positive

solution mode, which controls the end point to go straight line, circular arc, etc.

161

5.10.3 Functions Supported by Robot

1. Robot control

Control the end point of the manipulator to move in the world coordinate system. Multiple

manipulator types are supported, and one controller can control multiple manipulators at the same

time. The manipulator has several motors, which are called several-joint manipulators. The motor

axis that controls the actual mechanical joint movement is called the joint axis of the manipulator.

All the joint axes consist of the joint coordinate system, and the joint axis rotates according to the

angle in this coordinate system.

2. Coordinate System Rotation

The coordinate system of the movement of the manipulator's working point is rotated and

offset with reference to the world coordinate system. A user coordinate system can be constructed.

Control the end point of the manipulator to move in the world coordinate system. The coordinate

axis of the world coordinate system is assumed to be a virtual axis and moves according to

distance units.

3. Mechanical Parameter Correction

The current manipulator parameters are automatically corrected according to the coordinates

and characteristics taught by the manipulator joints.

4. Robotic Calculation

Calculation between the coordinates of the end work point and the coordinates of the joint

axis.

5. Manipulator Motion Simulation

ZRobotView simulation software shows the movements of the manipulator.

6. Controller Simulate

Support offline simulation, which means it can be used when there is no controller.

5.10.4 Application Cases of Robot

Generally speaking, the inverse solution mode is selected during production and processing,

and the movement of the robot is controlled by sending the coordinate position to the virtual axis.

During the movement of the robot, corners will appear. It is necessary to set the corner

deceleration to prevent the machine from shaking at high speed.

Programming reference steps:

1. Parameter definition: Define the joint length and the distance between each axis, and set

the pulse equivalent of each axis.

162

2. Joint axis setting: Select the axis number of the joint axis, set the axis type, pulse

equivalent (the pulse equivalent of the joint axis needs to be converted into an angle), speed

parameters, set the inverse motion mode (CLUTCH_RATE), corner deceleration, etc.

3. Virtual axis setting: Select the virtual axis number, set the axis type (ATYPE=0) and pulse

equivalent.

4. Store robot parameters in TABLE.

5. Establish the forward and reverse connection of the robot.

Six degrees of freedom manipulator routine:

'''''''''''''''''''''parameter definition''''''''''''''''''''

DIM LargeZ ′vertical height of the base

DIM L1 'The X offset from axis 1 to axis 2; the offset from the center of the

turntable to the center of the large swing arm

DIM L2 'the length of large swing arm

DIM L3 'the distance between axis 3 center and axis 4 center

DIM L4 'The distance from axis 4 to axis 5.

DIM D5 '5 means turn one cycle, 6 means the number of turns, 0 means no

association.

DIM PulesVROneCircle 'the pulse number when virtual attitude axis turns one round

DIM SmallZ 'The vertical distance from the end to the axis 5

DIM SmallX, SmallY 'XY offset of end to center of turntable

DIM InitRx, InitRy, InitRz 'Initial attitude, (0, 0, 0) points to z positive direction

''''''''''''''''''''parameter assignment''''''''''''''''''''

LargeZ=50

L1=0

L2=100

L3=0

L4=60

D5=0

SmallZ=10

SmallX=0

SmallY=0

InitRx=0

InitRy=0

InitRz=0 PulesVROneCircle=360*1000

DIM u_m1 'The number of pulses per round of the motor 1

163

DIM u_m2 'The number of pulses per round of the motor 2

DIM u_m3 'The number of pulses per round of the motor 3

DIM u_m4 'The number of pulses per round of the motor 4

DIM u_m5 'The number of pulses per round of the motor 5

DIM u_m6 'The number of pulses per round of the motor 6

u_m1=3600

u_m2=3600

u_m3=3600

u_m4=3600

u_m5=3600

u_m6=3600

DIM i_1 'transmission ratio of joint 1

DIM i_2 'transmission ratio of joint 2

DIM i_3 'transmission ratio of joint 3

DIM i_4 'transmission ratio of joint 4

DIM i_5 'transmission ratio of joint 5

DIM i_6 'transmission ratio of joint 6

i_1=1

i_2=1

i_3=1

i_4=1

i_5=1

i_6=1

DIM u_j1 'The actual number of pulses per round of joint 1

DIM u_j2 'The actual number of pulses per round of joint 2

DIM u_j3 'The actual number of pulses per round of joint 3

DIM u_j4 'The actual number of pulses per round of joint 4

DIM u_j5 'The actual number of pulses per round of joint 5

DIM u_j6 'The actual number of pulses per round of joint 6

u_j1=u_m1*i_1

u_j2=u_m2*i_2

u_j3=u_m3*i_3

u_j4=u_m4*i_4

u_j5=u_m5*i_5

u_j6=u_m6*i_6

164

'''''''''''''''''''''joint axis setting'''''''''''''''''''''

BASE(0,1,2,3,4,5) 'select joint axis 0,1,2,3,4,5

ATYPE=1,1,1,1,1,1 'set axis type as pulse axis

UNITS = u_j1/360,u_j2/360,u_j3/360,u_j4/360,u_j5/360 ,u_j6/360

'set as pulse per º

DPOS=0,0,0,0,0,0 'set joint axis position, now it should be modified according to actual

situation

 SPEED=100,100,100,100,100,100 'speed parameter setting

ACCEL=1000,1000,1000,1000,1000,1000

DECEL=1000,1000,1000,1000,1000,1000

CLUTCH_RATE=0,0,0,0,0,0 'use speed and acceleration of joint axis to for limitation

MERGE=ON 'start continuous interpolation

CORNER_MODE = 2 'start corner deceleration

DECEL_ANGLE = 15 * (PI/180) 'start deceleration angle 15 degrees

STOP_ANGLE = 45 * (PI/180) 'reduce the angle to the lowest speed 45 degrees

'''''''''''''''''''''virtual axis setting'''''''''''''''''''''

BASE(6,7,8,9,10,11)

ATYPE=0,0,0,0,0,0 'set as virtual axis

TABLE(0,LargeZ,L1,L2,L3,L4,D5,u_j1,u_j2,u_j3,u_j4,u_j5,u_j6,PulesVROneCircle,SmallX,

SmallY,SmallZ,InitRx,InitRy,InitRz) 'fill the parameters according to manual

UNITS=1000,1000,1000,1000,1000,1000 'motion precision is set before, it can’t change

during the process

'''''''''''''''''''''establish robot connection'''''''''''''''''''''

WHILE 1

 IF SCAN_EVENT(IN(0))>0 THEN 'input o, falling edge trigger

 BASE(0,1,2,3,4,5) 'select joint axis number

CONNFRAME(6,0,6,7,8,9,10,11) 'start reverse solution connection

WAIT LOADED 'Wait for the motion to load, now the position of the virtual

axis is automatically adjusted.

?"reverse solution mode"

 ELSEIF SCAN_EVENT(IN(0))<0 THEN 'input 0, falling edge trigger

 BASE(6,7,8,9,10,11) 'select virtual axis number

CONNREFRAME(6,0,0,1,2,3,4,5) 'start forward solution connection

WAIT LOADED 'wait for the motion to load

?"forward solution mode"

165

 ENDIF

WNED

END

The ZRobotView software simulation can be enabled. How to use it: After downloading this

program to the controller, first establish a forward or reverse solution connection (the robot cannot

be displayed on the ZRobotView software if it is not established), open the ZRobotView software,

and click the "Connect" button on the right, select the connection method with the controller and

confirm the connection (select the same IP network segment as the controller for network port

communication, and select the same serial port number and baud rate as the controller for serial

port communication), now the simulation robot will be built automatically for simulation motion.

Also, it can use the "manual motion" function of ZDevelop software, in this interface, simulating

the motion of the robot by manually changing the coordinates of the axes.

→6 DOF robot ZRobotView software simulation graphic:

166

5.11 G Code

As a multi-axis motion controller, ZMC series motion controller supports standard

Computerized Numerical Control (CNC) function to realize simple CNC machine tool control,

and it can be applied to other positioning and paths through G codes planning occasion.

G-code (G-code) is the most widely used computer numerical control programming language,

and it is mainly used in computer-aided manufacturing to control automatic machine tools.

ZBasic supports SUB procedure in G code form and supports G code in standard form. The

G code function can be customized according to the actual processing requirements, and the CNC

file can be parsed in the form of GSUB. It supports NC machining codes generated by various

CAD/CAM software such as UG, MasterCam, ArtCAM, etc., which can be applied to machine

tool processing occasions such as engraving and milling machines, precision engraving machines,

drilling and tapping centers and machining centers.

For the usage of G code, please refer to the chapter "Self-defined G code" in the simple

routine.

Chapter VI Description Related to Axis

6.1 The Concept of Axis

In the motion control system, the object controlled by motion is called “axis”, and the motion

platform controlled by one motor is called a motion axis. Each motion axis only has one DOF,

which can do linear interpolation or rotation motion. Below is the classification of axis:

Axis Type Description

Motor axis Use controller’s pulse axis interface, EtherCAT bus or RTEX bus interface

to connect to drive, then assign the axis number for equipment, one motor

is used as one axis.

Virtual axis The virtual axis built in motion controller, not to use actual drive, or as a

virtual spindle for synchronous control and as a Cartesian axis in the robot

algorithm.

Encoder axis Use the controller native encoder axis interface, and assign it as actual

encoder input for using.

Motor axis: active operation, the motor moves according to the pulses sent by the controller,

the number of pulses sent is determined according to the movement parameter change *UNITS,

and the target demand position is reflected by the DPOS parameter.

Encoder axis: passive operation, the encoder rotates with the motor, generates pulses, and

167

feeds back to the controller. The number of pulses received by the controller is determined by

checking the ENCODER command, and the encoder feedback position is reflected by the MPOS

parameter.

6.2 Axis Number Description

1. Pulse axis number

Pulse motor axis: it runs actively and moves according to the pulses sent by the controller. It

is generally divided into servo motors and stepper motors. The number of pulses sent is

determined according to the movement parameter variation *UNITS, and the target demand

position is reflected by the DPOS parameter.

Encoder axis: it runs passively, follows the motor rotation, generates pulses and feedbacks to

the controller, the number of pulses received by the controller is determined by checking the

ENCODER command, and the encoder feedback position is reflected by the MPOS parameter.

When using the pulse axis, the motor axis number is the number of the DB axis terminal

interface connected to it, which is printed on the shell, in the form of Axis0, Axis1... (If there is no

DB interface, please check the corresponding controller hardware manual to determine the axis

number).

 Take the following controller status as an example. For what type of axis each pulse axis

interface supports, please refer to the description of the Axis features list in the "State the

Controller" window. Step is pulse output, and Encoder is encoder feedback.

If the axis number is marked as “Step Encoder”, it can be configured to have both pulse

output Step and encoder feedback input Encoder. When ATYPE=4, the pulse output and encoder

feedback are on the same axis number. At this time, DPOS and MPOS are real. When ATYPE=1

or 7, there is only pulse output at this time, and the feedback of the connected encoder is on other

axis numbers. See the rules below, DPOS is true, and MPOS copies the value of DPOS.

If there only is "Encoder" behind the axis number, which means it feedbacks occupied axis

number. For example, axis 6, the default ATYPE of the feedback axis is 3 (when ATYPE is 3, it

corresponds to the quadrature encoder, which can be changed to 6, corresponding to the pulse

direction type Encoder).

As shown in the figure below, the motor axis number is axis 0, the corresponding encoder

axis number is axis 6, the motor axis 1 corresponds to encoder axis 7, and so on. Assuming that

the motor pulse and encoder are both connected to the Axis0 interface, then the motor axis number

168

is 0, the encoder axis number is mapped to axis 6. Assuming the motor is connected to the Axis1

interface, encoder is connected to Axis2 interface, then the motor axis number is 1, and the

encoder axis number is 8.

2. Bus Axis Number

Axis number of bus axis maps to axis number of connected drive equipment through

AXIS_ADDRESS instruction. Pulse axis number is the same as pulse controller axis number, and

the motor and encoder share one axis number.

3. Ways to modify the motor motion direction

Pulse axis:

 1) select pulse mode through INVERT_STRP instruction

 2) set denominator as negative value through STEP_RATIO

 3) drive modifies the round direction

Bus axis:

 1) set denominator as negative value through STEP_RATIO

 2) drive modifies the round direction

6.3 Axis Status

Check various states of axis through AXISSTATUS instruction. It shows the value in decimal

system, and it judges the state according to relative value in binary system, several errors can be

made at the same time.

Axis parameter window shows the value in octal system, but the value printed by PRINT

command is decimal system.

Bit Description Print value

169

1 Follow-up error over-limit alarm 2 2h

2 Error communicating with remote axis 4 4h

3 Remote drive error 8 8h

4 Forward hardware limit position 16 10h

5 Reverse hardware limit position 32 20h

6 Be finding the origin point 64 40h

7 HOLD speed, keeping signal input 128 80h

8 Follow-up error over-limit error 256 100h

9 Over the forward software limit position 512 200h

10 Over the reverse software limit position 1024 400h

11 CANCEL in the execution 2048 800h

12 When pulse frequency exceeds MAX_SPEED limits,

deceleration or MAX_SPEED should be modified.

1096 1000h

14 Robot instruction coordinate error 16384 4000h

18 Power appears error 262144 40000h

19 Precise output buffer overflow 524288 80000h

21 Fail to trigger special motion instruction in motion 2097152 200000h

22 Alarm signal input 4194304 400000h

23 Axis enters pause state 8288608 800000h

AXIS_STOPREASON the historical stop reason of the axis is latched, write 0 to clear it,

latch by bit, and latch the information of AXISSTATUS.

The IDLE command is used to judge whether the motion command added to the axis is

completed. It returns 0 during motion and -1 when the motion ends. Generally, the WAIT IDLE

(axis number) statement is used in the program to judge the state of the axis.

The MTYPE instruction is used to judge the current motion type of the axis. For example, the

return value of MTYPE is 1, which means that the MOVE motion is in progress.

6.4 Axis Speed

6.4.1 Speed Curve

There are 3 stages, acceleration stage, constant speed stage and deceleration stage.

170

When the displacement is short, there may not be a constant speed stage, but only an

acceleration and deceleration stage, as shown in the figure below.

Commonly used speed commands include SPEED motion speed, ACCEL acceleration,

DECEL deceleration, FASTDEC rapid deceleration, etc., which are set when the axis parameters

are initialized and used as the speed reference for motion commands.

1. Trapezoidal Curve

If SRAMP is not set (set SRAMP equal to 0), the speed curve is a trapezoidal curve. In this

speed planning mode, the speed curve changes according to a trapezoidal curve. Keep the

parameters such as speed, acceleration and deceleration unchanged.

After the speed reaches the set value, it will move at a constant speed. If only the acceleration

is set, when the deceleration is 0, the deceleration will be automatically equal to the acceleration

value. Generally, the corresponding acceleration and deceleration are set before the movement. Do

not modify it during the movement. The adjustment during the movement will cause the

movement track to change.

Below is the routine:

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

MPOS=0

DPOS =0

UNITS = 100

SPEED = 1000

ACCEL = 10000

DECEL = 10000

SRAMP=0

TRIGGER

171

MOVE(300)

At this time, obtain the below speed curve: now, the acceleration and deceleration process is

faster, and the speed change has a greater impact on the machine tool.

2. S Curve

By setting the value of SRAMP to set the appropriate rate of change of acceleration and

deceleration, the speed curve will be smooth, and the jitter is reduced during mechanical start-stop

or acceleration and deceleration. The range of SRAMP value is between 0-250 milliseconds. After

setting, the acceleration and deceleration process will be longer correspondingly. The longer the

time, the smoother the speed curve. If the setting time exceeds 250 milliseconds, it will be

smoothed according to 250 milliseconds.

Routine:

RAPIDSTOP(2)

WAIT IDLE

BASE(0)

DPOS = 0

MPOS = 0

UNITS = 100

SPEED = 1000

ACCEL = 10000

DECEL = 10000

SRAMP=50

TRIGGER

MOVE(300)

When SRAMP=50, obtain the below S curve: it is softer when accelerating and decelerating.

172

When SRAMP=100, obtain the below S curve: acceleration and deceleration process become

longer.

3. SS curve

S curve and SS curve both can smooth the speed parameter, difference refers to below

graphics. “jerk” parameter value of S curve is constant in acceleration and deceleration stages, but

SS curve makes jerk parameter change according to acceleration and deceleration stages, speed

curve is smoother than S curve, which means it can decrease axis shake. SS curve is configured by

VP_MODE instruction, there are several modes to be selected.

 Routine: compare S curve with SS curve

 BASE(0,1)

 ATYPE=1,1

 UNITS-100,100

 DPOS=0,0

173

 MPOS=0,0

 SPEED=100,100

 ACCEL=1000,1000

 DECEL=1000,1000

 SRAMP=100,100

 VP_MODE=7,0

 TRIGGER

 MOVE(25) AXIS(0)

 MOVE(25) AXIS(1)

 END

Speed curve: mode7 processed acceleration and deceleration stages.

MSPEED(0) = 50 (vertical scale), start and end stages of SS curve acceleration and deceleration

are smoother.

MSPEED(0) = 50 (vertical scale), S curve.

6.4.2 SP Speed

The SP speed is applied to the interpolated motion commands with SP suffixes (such as

MOVESP, MOVECICRSP), and the motion speed uses the FORCE_SPEED parameter instead of

the SPEED parameter.

Start speed STARTMOVE_SPEED: the start speed of the SP movement of the custom speed.

End speed ENDMOVE_SPEED: the end speed of the SP movement of the custom speed.

Forced speed FORCE_SPEED: forced speed of SP motion for custom speed.

174

The above three parameters are valid only when the motion command with SP is used, and all

parameters are brought into the motion buffer.

When not in use, please set STARTMOVE_SPEED and ENDMOVE_SPEED to a larger

value, otherwise the next motion instruction will continue to use this parameter.

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1) ′select XY axis

DPOS = 0,0

MPOS = 0,0

ATYPE=1,1 ′pulse step or servo

UNITS = 100,100 ′pulse equivalent

SPEED = 100,100

ACCEL = 200,200

DECEL = 200,200

SRAMP=100,100 ′S curve

MERGE= ON ′start continuous interpolation

TRIGGER

′the first segment

FORCE_SPEED=50 ′the first speed is 50

STARTMOVE_SPEED=20 ′the first start speed is 20

ENDMOVE_SPEED=10 ′the first end speed is 10

MOVESP(40,40)

′the second segment

FORCE_SPEED=60 ′the second speed is 60

STARTMOVE_SPEED=30 ′the second start speed is 30

ENDMOVE_SPEED=40

MOVESP(50,50)

′the third segment

FORCE_SPEED=80 ′the third speed is 80

STARTMOVE_SPEED=30 ′the third start speed is 30

ENDMOVE_SPEED=20

MOVESP(60,60)

END

175

Speed change curve: start moving from speed 0, STARTMOVE_SPEED = 20 of the first

segment has no effect, and the end speed of the first segment ENDMOVE_SPEED = 10 means

that the first segment of motion is completed after the speed drops to 10. The second segment of

motion actually starts the movement at the speed of 10 and end at ENDMOVE_SPEED = 40. The

start speed of the third segment is STARTMOVE_SPEED = 30, which is less than the end speed

of the second segment of 40. After the second segment is completed, the speed will drop to 30.

After the third segment is completed, there is no movement command behind it. So the speed

drops to 0 and ENDMOVE_SPEED has no effect.

6.5 Axis Mapping

When using the local pulse axis of the controller, no axis mapping is required, and the default

axis number can be used, please refer to the section on axis number description.

When using the bus axis and the extended pulse axis, the bound axis number should be

mapped before use. If you want to change the default axis number of the pulse axis, you can

remap and configure the axis number. The mapped axis number uses the AXIS_ADDRESS axis

mapping command, the grammar for axis mapping is different.

The axis numbers can be mapped at will, but they must be within the range of the number of

axes supported by the controller, and the mapped axis numbers cannot be repeated. Generally, they

are mapped in sequence, which is not easy to make mistakes. Different types of axis channel

numbers are sorted independently, and the axis numbers are all from 0 to start.

Supports mixed interpolation of local pulse axis and EtherCAT axis. After the axis number is

mapped, the extended axis resource can be called.

The axis number of EtherCAT and the axis number of the local pulse axis are independent

176

coding sequences. For example, in a certain configuration, two local pulse axes and two EtherCAT

axes need to be used. The axis mapping relationship during configuration is as follows:

AXIS 0——local pulse axis 0

AXIS 1——local pulse axis 1

AXIS 2——EtherCAT axis 0

AXIS 3——EtherCAT axis 1

Before configuration, set AXIS 0-3 as virtual axis ATYPE=0, and then use AXIS_ADDRES

instruction to map the axis number of the drive. After the configuration is completed, configure

ATYPE according to the characteristics of the axis, and then send commands to axes 0-3.

The default configuration file is configured according to the total number of channels of the

connected hardware resources. If the hardware resources are greater than the software resources,

the default mapping is to map all the software resources to the corresponding hardware resources

in sequence, and the redundant unmapped hardware resources are uncontrollable.

Note that multiple motors can be connected to a multi-axis drive, one motor represents one

axis, and each motor requires axis number mapping, which is equivalent to that the drive can

control multiple axes.

6.6 Axis Type

Use the ATYPE instruction to configure the axis type according to the characteristics of the

current axis. When the user program is initialized, the configuration of the axis type should be

completed as soon as possible. If the type does not match, an error will be reported.

All unassigned axes default to virtual axes, and the value of ATYPE is 0.

The axis types supported by the controller are as follows:

Atype Type Description

0 Virtual axis

1 Servo or stepper of pulse direction

2 Servo analog signal control method

3 Quadrature encoder

4 output in pulse direction + quadrature encoder input

5 output in pulse direction + quadrature encoder input in pulse direction

6 Encoder of pulse direction

7 Servo or stepper of pulse direction + EZ input

8 Servo or stepper of pulse direction through ZCAN

9 Quadrature encoder through ZCAN

10 Encoder of pulse direction through ZCAN

20 Galvanometer type with galvanometer status feedback.

If galvanometer links with AXISSTATUS bit2 unsucessfully, it will set,

177

ENCODER returns to the original sending position, pulse unit.

ZMC408SCAN supports.

21 Galvanometer axis type, it needs support of controller.

The default system period is 250us, galvanometer refresh period is 50us,

which are related to firmware.

All motion control instructions of ordinary axes can be used, and support

galvanometer axis mixed interpolate with other axis types.

22 Galvanometer type with galvanometer status feedback.

If galvanometer links with AXISSTATUS bit2 unsucessfully, galvanometer

warnning AXISSTATUS bit3 will set.

MPOS returns to reflection position, and does the reverse correction.

ENCODER returns to original feedback position, pulse unit.

ZMC408SCAN supports.

24 Remote encoder axis type.

ZHD 500X handwheel using, need 5 series controllers with firmware version

above 20180404.

50 RTEX period position mode, available in RTEX controller

51 RTEX period speed mode, available in RTEX controller.

52 RTEX period torque mode, available in RTEX controller.

Do close 2 DOF mode in connected drive, and set speed limit.

65 ECAT period position mode, available in EtherCAT controller

66 ECAT period speed mode, available in EtherCAT controller.

DRIVE_PERIOD should be set as 20 or above.

67 ECAT period torque mode, available in EtherCAT controller.

DRIVE_PERIOD should be set as 30 or above..

70 Sef-defined ECAT mode, only read encoder value. available in EtherCAT

controller.

1. ATYPE=0 Virtual axis

It can be the main axis when in the multi-axis synchronization motion, and slave axes all

follow this virtual axis.

As the superposition axis for other axes, it superposes a virtual axis to axes that really move.

These virtual axes can be set through ADDAX command (axis superposition), then the motion of

each virtual axis is superposed to actual-axis.

2. ATYPE=1 or 7 Pulse axis

The motion of axis is controlled by pulse sent from the controller, and the direction of pulse

determine the direction of motor rotation. The axis motion speed (fast or slow) is controlled

according to frequency for sending pulse.

There are 3 modes of controller pulse output: pulse + direction, dual-pulse, orthogonal pulse.

They are configured through INVERT_STEP instruction, the default is pulse + direction mode.

1) pulse + direction mode

178

PUL+, PUL- output instruction pulse string, the number of pulse is relative to motion running

distance, and the pulse frequency is relative to motion running speed.

DIR+, DIR- output direction signal, different levels of this signal are relative to different

rotation direction. This mode occupied the most in drive.

 2) CW/CCW: dual-pulse work mode

Two lines both output pulse signal, CW means output pulse signal in positive direction, CCW

means output pulse signal in negative direction. Usually, they are differential output, the phase

difference angle between the two signals is determined by the phase lead or lag.

3) AB Phase: orthogonal pulse work mode

It refers to two identical pulse signals (both are square waves) that are independent of each

other. The positive direction pulse signal is generated before the negative direction pulse signal,

and the phase difference between the two is 90 degrees. At this time, it is a positive rotation. The

negative direction pulse signal is generated before the positive direction pulse signal, and the two

are 90 degrees out of phase, which is negative rotation at this time.

The function of counting or encoding is achieved by the phase difference between the two

pulses.

Polarity reversal

If the positive and negative of the pulse line are switched, that is, the original positive

direction pulse signal becomes a negative direction pulse signal, and the negative direction pulse

179

signal becomes a positive direction pulse signal, and the movement direction at this time will be

opposite to the above situation.

1) pulse + direction mode

2) CW/CCW: dual-pulse work mode

3) AB Phase: orthogonal pulse work mode

The criterion for judging the rotation direction in this mode is to observe which direction

sends out the pulse signal first, and the rotation direction is the negative direction.

The negative direction pulse signal is generated before the positive direction pulse signal, and

the phase difference between the two is 90 degrees. At this time, it is a negative direction rotation.

The positive direction pulse signal is generated before the negative direction pulse signal, and the

phase difference between the two is 90 degrees. At this time, it is a positive direction rotation.

In the above modes, pulse + direction mode and dual-pulse two polarities are related to 8 different

motion states. AB phase/BA phase mode is the customized mode of some controllers (ZMC4XX

series or above).

3. ATYPE=3 or 6 encoder axis

When encoder separately occupies one axis number, axis type can be selected as 3 or 6

according to encoder type.

4. ATYPE=4 pulse axis and encoder axis share the axis number

When the current pulse axis with encoder feedback, the axis type is set as 4, and the signal

output by pulse and the signal input by encoder both are on the same axis number.

180

5. ATYPE=8 CAN expand axis

When expanding axis through CAN bus, set the axis type of expanded pulse axis as 8, and set

the axis type of connected encoder axis on expanded axis as 9.

6. ATYPE=21 galvanometer axis number

When galvanometer equipment is connected, the axis type of galvanometer should be set 21,

and galvanometer axis is supported by some models.

7. ATYPE=50,51,52 RTEX bus axis number

When using the RTEX bus driver, the axis type can only be selected from the above three,

among which ATYPE=50 is the position mode, the motion command is used to control the motor

running. ATYPE=51 speed mode in the speed mode, the DAC command is used to set the running

speed of the motor, and continue to run. ATYPE=52 torque mode uses DAC command to set the

motor torque in torque mode, and continue to run, motion command cannot be used in speed and

torque mode, so there is no need to set axis parameters, stop running with DAC=0.

To switch modes in speed and torque mode, in order to prevent accidents, first set the DAC to

0 and then use the ATYPE command to switch.

Note: Before modifying ATYPE to switch to torque mode, please set the first position of the

drive parameter Pr6.47 to 0 and turn off the 2-DOF control mode. Then set the speed limit through

parameter Pr3.17. When the set value of Pr3.17 (speed limit selection) is 0, set the speed limit

through Pr3.21, and when the set value is 1, you can switch between Pr3.21 or Pr3.22 for the

speed limit value during torque control through SL_SW.

8. ATYPE=65,66,67 EtherCAT bus axis number

When using the EtherCAT bus driver, the axis type can only be selected from the above three,

among which ATYPE=65 is the position mode, the motion command is used to control the motor

operation. ATYPE=66 speed mode is in the speed mode, the DAC command is used to set the

running speed of the motor, and continue to run, there are two speed units, the number of pulses /S

and R/MIN are determined by the drive. ATYPE=52 is torque mode, using the DAC command to

set the torque of the motor in torque mode, and continue to run, the range of DAC value is 0-1000

in torque control mode, corresponding to 0-100%, such as DAC=10, the motor torque is 1% at this

time, and motion commands cannot be used in speed and torque mode, so there is no need to set

axis parameters, and DAC=0 to stop running.

To switch modes in speed and torque mode, in order to prevent accidents, first set the DAC to

0 and then use the ATYPE command to switch.

181

Chapter VII Motion Instructions

When the current motion command is being executed, the subsequently called motion

commands will be automatically buffered. Each axis of the ZMotion motion controller can support

up to 4096 levels of motion buffers (the number of buffers varies with different models of

controllers). When all the buffers are occupied, the subsequent call of the motion instruction will

block the current task, and the task will continue to run until there is a space in the buffer.

Each motion instruction has a MOVE_MARK parameter, and which motion buffer is

currently running can be known through MOVE_CURMARK.

Single-axis motion commands such as MOVE use the axis parameters of the respective

single-axis, such as SPEED of this axis.

The multi-axis interpolation motion commands such as MOVE use the SPEED and other axis

parameters of the BASE spindle as the vector composite speed, but they have corresponding SP

commands, which can specify various speed parameters for each movement, such as,

FORCE_SPEED, STARTMOVE_SPEED, ENDMOVE_SPEED, see the corresponding *SP

instruction.

The axis parameter MERGE is used to set whether to decelerate to zero in the middle of the

single-axis positioning or multi-axis interpolation command of the axis group. When

MERGE=OFF, it decelerates to 0. When MERGE=ON, it does not decelerate. At this time, the

axis parameter CORNER_MODE of the BASE spindle will set more than one value. Whether to

automatically decelerate to the necessary speed between axis interpolations.

ZMotion motion controller supports motion pause or resume of single-axis or axis group,

refer to MOVE_PAUSE, MOVE_RESUME.

ZMorion motion controller supports motion superposition, refer to ADDAX.

7.1 Single-axis Motion Instructions

ADDAX -- Motion Superposition

Type Single Axis Motion Instruction

182

Description Motion superposition: add motion of one axis to another axis.

When using ADDAX to realize superposition. the added value is not units but

pulse amount.

Conversion relationship: Distance of superimposing axis *unites of

superimposing axis /unites of superimposed axis = distance of superimposed

axis

For example:

If UNITS of axis A equals to 100, and UNITS of Axis B equals to 50, and the

superposition axis moves 100.

Situation 1: add motion of axis A to axis B, now showing Axis A moves 100,

then the axis B moves 100*100/50=200

Situation 2: add motion of axis B to axis A, now showing axis B moves 100,

then axis A moves 100*50/100=50.

Motion can not be added to each other simultaneously between 2 axes, when

add motion of axis A to axis B, then add motion of axis B to axis A

simultaneously is not allowed.

Support series superposition, motion A superimposes to B, B is superimposed

to C.

Support parallel superposition, motion A is superimposed to B and C at the

same time.

When superimposing, the speed starts to change from the superimposed axis,

and the acceleration and deceleration are determined according to the

superimposed axis acceleration and deceleration and the ratio of the units of

the two axes.

ADDAX has no effect when the axis MTYPE is FRAME or REFRAME.

Grammar Superposition: ADDAX (superposing axis No.) AXIS (superposed axis No.)

Cancel superposition: ADDAX(-1) AXIS (superposed axis No.)

This superposition is added in controllers above 4xx series with 20220708

firmware version or above.

ADDAX(srcaxis ,[imode], [para])

destaxis: the superposed target axis number

srcaxis: the superposed axis number of the source axis

imode: superposition mode

0: default value, single-axis superposition, compatible with previous

direct pulse number superposition

1: single-axis superposition, support scale adjustment.

ADDAX(srcaxis, 1, ratio)

ratio: ratio value, supports floating point numbers, target axis

distance = source axis distance * ratio.

2: single-axis superimposition, supports gear ratio adjustment

ADDAX(srcaxis, 2, ratioin, ratioout)

ratioin: numerator, integer, supports negative numbers

ratioout: denominator, positive integer.

183

target axis distance = source axis distance * ratioin / ratioin

3: single axis superimposed to two axes, support angle adjustment

BASE(destaxis1, destaxis2)

ADDAX(srcaxis, 3, angle)

destaxis: the superposed target axis 1, 2

angle: angle, radian value, target axis 1 distance = source axis

distance * cos(angle).

target axis2 distance = source axis distance * sin(angle).

Note: If needs to cancel, cancel the two axes ADDAX(-1, 3, 0) or

ADDAX(-1) AXIS (the superposed axis No.) respectively

 4: SCAN linkage superposition, use SCAN axis to compensate the

deviation of platform axis, and their directions and amounts must be

consistent, if not, please adjust gear ratio or add ratio for SCAN correction.

 BASE(destaxis, destaxis2)

 ADDAX(srcaxis, 4, srcaxis2)

 Use srcaxis to compensate destaxis, use srcaxis2 to compensate

destaxis2.

 Note: two axes should be cancelled together, ADDAX(-1, 4, -1) or

ADDAX(-1) AXIS (superposed axis No.)

 5: SCAN linkage superposition, platform axis is superposed at SCAN

axis, their directions and amounts must be consistent, if not, please adjust gear

ratio or add ratio for SCAN correction.

 BASE(destaxis, destaxis2)

 ADDAX(srcaxis, 5, srcaxis2)

 srcaxis is superposed at destaxis, srcaxis2 is superposed at

destaxis2.

 Note: two axes should be cancelled together, ADDAX(-1, 5, -1) or

ADDAX(-1) AXIS (superposed axis No.)

Controller General

Example Example 1:

BASE(0,1)

ATYPE=1,1

UNITS=100,200 'set UNITS of axis 0 as 100, and axis 1 as 200

SPEED=1000,1000 'set speed as 1000

ACCEL=10000,10000 'set acceleration as 10000

DECEL=10000,10000 'set deceleration as 10000

ADDAX(0) AXIS(1) 'add motion of axis 0 to axis, superpose according to

the number of pulse

DPOS=0,0 'set position as 0,0

TRIGGER 'trigger oscilloscope automatically

MOVE(100) 'axis 0 moves 100, axis 1 moves 100*100/200=50

 'the switch of UNITS two axes should be considered

184

WAIT IDLE 'wait until motion ends

ADDAX(-1) AXIS(1) 'cancel the motion superposition

The motion trajectory when the superposition command is not used. (there is

no special description in below graphic, which means offset is not

configured).

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

The motion trajectory when superposition command is used:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Example 2:

RAPIDSTOP(2)

WAIT IDLE

BASE(0,1)

DPOS=0,0

ATYPE=1,1

UNITS=100,100 ‘pulse proportion is 1:1

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

ADDAX(0) AXIS(1) ‘superpose axis 0 to axis 1

TRIGGER

MOVE(200) AXIS(0)

185

MOVE(-100) AXIS(1)

WAIT IDLE ‘wait running ends

ADDAX(-1) AXIS(1) ‘cancel superposition

Before superposition:

After superposition: following, send motion command for axis 0, axis 0 and

axis 1 move together, and keep superposition. Cancel superposition until

ADDAX(-1) AXIS(1).

Example 3: mode 1

BASE(0,1) ‘select axis No.

UNITS = 100,100

DPOS=0,0

TRIGGER

BASE(1) ‘select superposed axis

ADDAX(0,1,1.5)AXIS(1)

‘mode 1 superposition, superpose axis 0 to axis 1, the ratio is 1.5

MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1)

?”axis 1 superposing axis No.” ADDAX_AXIS(1)

ADDAX(-1) AXIS(1) ‘cancel superposition

The pulse amount is the same, axis 1 motion distance is 1.5 times of axis 0.

186

Example 4: mode 2

BASE(0,1) ‘select axis No.

UNITS = 100,100

DPOS=0,0

TRIGGER

BASE(1) ‘select superposed axis

ADDAX(0,2,3.5) AXIS(1) ‘mode 2 superposition, superpose axis 0 to axis 1

MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1)

?”axis 1 superposing axis No.” ADDAX_AXIS(1)

ADDAX(-1) AXIS(1) ‘cancel superposition

END

The pulse amount is the same, axis 1 motion distance is 3/5 times of axis 0.

Example 5: mode 3

BASE(0,1,2) ‘select axis No.

UNITS = 100,100,100

DPOS=0,0,0

BASE(1,2) ‘select target No., axis 1 and axis 2

187

TRIGGER

ADDAX(0,3,PI/3) ‘mode 3 superposition, superpose axis 0 to axis 1, axis 2

MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1) AND IDLE(2)

DIM pos 1, pos2

pos 1=100*cos(PI/3)

pos 2=100*sin(PI/3)

?”axis 0 target position”, 100, “actual position” ENDMOVE(0)

?”axis 1 target position”, pos1, “actual position” ENDMOVE(1)

?”axis 2 target position”, pos2, “actual position” ENDMOVE(2)

?”axis 1 superposing axis No.” ADDAX_AXIS(1)

?”axis 2 superposing axis No.” ADDAX_AXIS(2)

ADDAX(-1) AXIS(1) ‘cancel superposition

ADDAX(-1) AXIS(2)

CANCEL -- Stop Single-Axis / Axis Group

Type Single Axis Motion Instruction

Description Axis defined by “BASE” decelerate to stop, if the BASE axis is involved

in interpolation movement, the interpolation movement also stops.

If the defined axis is in the list of BASE, whether CANECL master axis or

any axis in BASE axis list, interpolations of axis group all stop.

The deceleration of Mode 2 obeys the bigger value between FASTDEC and

DECEL. Generally, FASTDEC is set as bigger than DECEL.

If there is requirement of calling absolute position after using CANCEL, it

needs to use “WAIT IDLE” to wait the movement to stop.

188

Grammar CANCEL (mode)

 Mode: mode selection

0(default) Cancel the motion in process

1 Cancel the motion in buffer

2
Cancel motions in process and in buffer, stop speed refers to

fast deceleration “FASTDEC”.

3 Stop pulse delivery immediately

4
Cancel motions in process and in buffer, stop speed refers to

deceleration “DECEL”.

CANCEL (4) is valid in ZMC4XX series controllers whose firmware version

is above 170708.

CANCEL (3) can’t be used for the slave axis that is in interpolation.

Controller General

Example Example 1: mode = 0

BASE(0)

DPOS=0

SRAMP=0

ATYPE=1

UNITS=100

SPEED=1000

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

TRIGGER 'trigger oscilloscope automatically

MOVE(1000) 'motion in process

MOVE(-1000) 'motion in buffer

CANCEL(0) 'axis will only execute MOVE(1000)

Motion trajectory:

MSPEED(0) Vertical scale 1000

189

Example 2: mode = 1

BASE(0)

DPOS=0

SRAMP=0

ATYPE=1

SPEED=100

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

TRIGGER 'trigger oscilloscope automatically

MOVE(1000) ‘motion in process

DELAY(-1000) ‘motion in buffer

CANCEL(1) 'axis will only execute MOVE (1000)

Motion trajectory:

MSPEED(0) Vertical scale 1000

Current motion still runs at deceleration speed to stop because it only cancels

the buffer motion.

Example 3: mode = 2

BASE(0,1)

DPOS=1,1

ATYPE=1,1

SPEED=1000,1000

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

SRAMP=0,0

TRIGGER

MOVE(1000,500) 'interpolation movement

DELAY(1000) 'delay 1 second

CANCEL(2) AXIS(1) 'axis 1 stops, axis 1 was involved in interpolation, the

interpolation also stops, and deceleration is 10000.

Motion trajectory and speed curve:

190

DPOS(0) Vertical scale 1000, no offset

MSPEED(0) Vertical scale 1000, offset -1000

DPOS(1) Vertical scale 1000, no offset

MSPEED(1) Vertical scale 1000, offset -1000

Example 4: mode = 3

BASE(0)

ATYPE=1

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000 ‘set deceleration as 1000

FASTDEC=10000 ‘set fast deceleration as 10000

TRIGGER ‘trigger oscilloscope automatically

MOVE(10000) ‘the current motion 10000

DELAY(2000) ‘delay 2 seconds

CANCEL(3) ‘now directly stop sending pulse, axis stops immediately

Motion Trajectory

MSPEED (0) vertical scale 1000

Example 5: mode = 4

191

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

SPEED=1000

ACCEL=10000

DECEL=10000 ‘set deceleration as 10000

FASTDEC=10000 ‘set fast deceleration as 100000

TRIGGER ‘trigger oscilloscope automatically

MOVE(1000) ‘the current motion

DELAY(-2000) ‘the motion in buffer

DELAY (500)

CANCEL(4) ‘emergency stop, deceleration is 10000

Motion Trajectory

DPOS (0) vertical scale 500, no offset

MSPEED (0) vertical scale 500, no offset

Instructions RAPIDSTOP ，DECEL，FASTDEC

DATUM – Homing

Type Single Axis Motion Instruction

Description Origin (home position or zero position) finding movement of single axis.

Origin switch is set by DATUM_IN, plus-minus switches are set by FWD_IN

and REV_IN respectively.

Inputs of ZMC motion controller are effective when they are 0, when the input

is OFF, it indicates the movement reaches origin or limit position. For

common-opened signal, the signal electrical level is needed to be reversed by

using INVERT_IN.

Inputs of ECI motion controller are effective when they are 1, when the input

is ON, it indicates the movement reaches origin or limit position. For

192

common-closed signal, the signal electrical level is needed to be reversed by

using INVERT_IN.

When using Z signal to trigger origin position finding, ATYPE(ATYPE=4/7)

should be configured to the mode which contains Z signal.

When LSPEED is configured, it will stop emergency when found the origin,

and the position that decelerated to LSPEED is the origin position.

When multi-axis finds the origin position, every axis should use DATUM

instruction.

In terms of BUS (EtherCAT or RTEX) motion controller, after using DATUM

to find origin position, the relevant MPOS should be cleared by manual.

Grammar DATUM (mode), DATUM (21, mode2)

Mode: zero position finding mode, when using “mode+10”, it means the

axis will move backward to find zero position after reaching the limit position,

it will not stop, such as, if mode=13, 13=mode 3 + move backward 10, this is

valid when the origin position is in the center.

When ATYPE=4, homing mode plus 100 (mode 100+n and 110+n

corresponds n and 10+n), indicating the relevant MPOS will be cleared

automatically after linking the encoder (only ZMC4XX series controller

support).

DATUM (0) AXIS (Axis No.) to clear assigned axis’ error state.

Value Description

0 Clear error states of all axes.

1 Axis runs forward at the speed of CREEP until signal Z

appeared, it will directly stop when meeting limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

2 Axis runs reverse at the speed of CREEP until signal Z appeared,

it will directly stop when meeting limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

3 Axis runs forward at the speed of SPEED, until meeting origin

switch, then axis runs reverse at the speed of CREEP until away

from origin switch.

When in the finding origin process, it will directly stop when

meeting positive limit switch, when in the creeping process, it

will directly stop when meeting negative position limit.

DPOS value will be reset to 0, at the same time, correct MPOS.

4 Axis runs reverse at the speed of SPEED, until meeting origin

switch, then axis runs forward at the speed of CREEP until away

from origin switch.

When in the finding origin process, it will directly stop when

meeting negative limit switch, when in the creeping process, it

will directly stop when meeting positive position limit.

DPOS value will be reset to 0, at the same time, correct MPOS.

5 Axis runs forward at the speed of SPEED, until meeting origin

193

switch, then axis runs reverse at the speed of CREEP until away

from origin switch.

Then, keep moving at CREEP speed reversely until meeting

signal Z. It stops immediately when met limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

6 Axis runs reverse at the speed of SPEED, until meeting origin

switch, then axis runs forward at the speed of CREEP until away

from origin switch.

Then, keep moving at CREEP speed forward until meeting

signal Z. It stops immediately when met limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

8 Axis runs forward at speed of SPEED, until meeting origin

switch, it will stop immediately when met limit switch.

9 Axis runs reverse at speed of CREEP, until meeting origin

switch, it will stop immediately when met limit switch.

21 Use EtherCAT drive homing function, now mode 2 is valid.

Set drive homing mode (6098h), default 0 means using drive

current homing mode. Using axis SPEED, CREEP, ACCEL and

DECEL to multiple UNITS, then automatically set drive 6099h

and 609Ah.

Action sequence: 6098 homing mode – 6099 speed – 609A

acceleration – 6060 switch to current mode.

Mode2: it is valid when mode=21, default value is 0. When it is not 0, set

it as drive homing mode, the value is set according to drive manual data

dictionary 6098h.

Controller General

Example Example 1 find origin directly.

BASE(0)

DPOS=0

ATYPE=1

SPEED = 100 'speed when searching for original switch.

CREEP = 10 'speed when moving backward.

DATUM_IN=5 'input 5 as original switch signal input.

INVERT_IN(5,ON) 'reverse the electricity level signal of IN5, when signal is

normally open.(ZMC series)

TRIGGER 'trigger the oscilloscope automatically

DATUM(3) 'axis 0 moves forward to find original switch at speed of

100units/s, then continue to move at speed of 10units/s

after reaching the original switch until leave, DPOS reset

as 0 at the same time.

Motion trajectory and speed curve:

DPOS(0) Vertical scale 500

MAPEED(0) Vertical scale 100

IN(5) Vertical scale 10

194

After reaching origin switch, creep backward until leave, at this time, DPOS is

cleared as 0, homing movement finished. In order to make it clear, the creep

process is longer here. It is very short in the actual applications.

Example 2 Searching for origin reversely after meeting position limit

switch.

Base(0)

DPOS=0

ATYPE=1

SPEED = 100 'speed when searching for original switch.

CREEP = 10 'speed when moving backward.

DATUM_IN=5 'input5 as original switch signal input.

FWD_IN=6 'input6 as positive position switch signal input.

INVERT_IN(5,ON) 'Reverse the signal electricity level, often need the

common closed signal.

INVERT_IN(6,ON)

Trigger 'Trigger oscilloscope automatically

DATUM(13) 'axis0 moves forward to find original switch at speed of

100units/s, move backward at speed of 10units/s after

reaching the original switch until leave, DPOS reset as

0 at the same time.

Motion trajectory and speed curve:

DPOS(0) Vertical scale 500

MAPEED(0) Vertical scale 100

IN(5) Vertical scale 10

IN(6) Vertical scale 10

195

Example 3 EtherCAT Bus Homing (Panasonic A6N Servo)

Enable the motor according to EtherCAT initialization routine.

SPEED=100 'Homing speed*UNITS, transferred to 6099.

CREEP=10 'Creep speed*UNITS, transferred to 6099.

ACCEL=1000 'Acceleration speed*UNITS, transferred to 609A.

DECEL=1000

DATUM (21,0) 'Start homing as per the present homing mode of drive,

now judge according to drive signal, not controller signal.

WHILE 1

TABLE(0)=DRIVE_STATUS 'read the present homing status to judge.

IF READ_BIT2(10,TABLE(0)) THEN 'depend on below figure to judge

IF READ_BIT2(12,TABLE(0)) THEN

?"homing finished"

ENDIF

ENDIF

WEND

END

There are different homing processes of different drive manufacturers, please

see drive manual to determine.

Description of bit 13, bit 12, bit 10:

bit 13 bit 12 bit 10 Description

0 0 0 in the motion of homing

0 0 1 The homing motion doesn’t start or interrupts

0 1 0 homing finishes, not achieve target position

0 1 1 Homing finishes normally

1 0 0 Detect that homing is abnormal, it still moves

1 0 1 Detect that homing is abnormal, it stops

196

Example 4 Rtex Bus homing (Panasonic A6N Servo)

Enable the motor according to Rtex initialization routine.

SPEED=100 'the speed of finding the origin

ACCEL=1000 'acceleration and deceleration

DECEL=1000

DATUM (21, $11) 'Start homing as per the present homing mode of drive,

now judge according to drive signal, not controller signal.

Determine the homing mode according to drive manual

Initialization mode

11h Z Phase

12h HOME ↑ *2

13h HOME ↑ *3

14h POT ↑ *2

15h POT ↑ *3

16h NOT ↑ *2

17h NOT ↑ *3

18h EXIT1 ↑ *2

19h EXIT1 ↑ *3

1Ah EXIT2 ↑ *2

1Bh EXIT2 ↑ *3

1Ch EXIT3↑ *2

1Dh EXIT3 ↑ *3

Instructions DATUM_IN, INVERT_IN

DATUM_OFFSET – Origin Position Offset

Type Single Axis Motion Instruction

Description Set position offset of origin.

When returned to the origin successfully, axis moves to offset position.

Grammar DATUM_OFFSET(axis)=distance

 distance: offset distance

Controller Valid in 4xx series controllers and above.

Example BASE(0)

DPOS=0

ATYPE=1

SPEED=100 ‘the speed of finding origin

CREEP=10 ‘reveres finding speed

DATUM_IN=5 ‘input IN5 as origin switch

INVERT_IN(5,ON) ‘reverse IN5 electric level signal, common-opened signal

starts to reverse (ZMC controllers)

TRIGGER ‘automatically trigger oscilloscope

DATUM_OFFSET(0)=100 ‘axis 0 homing, then offset

197

DATUM(3) ‘axis 0 does homing at the speed of 100units/s firstly, then

leaves origin at the speed of 10units/s after finding

origin, and clear DPOS as 0 at the same time.

Motion trajectory and speed curve: axis stops at the position

DATUM_OFFSET finally.

DPOS(0) Vertical scale 500

MAPEED(0) Vertical scale 100

IN(5) Vertical scale 5, offset -5

Instruction DATUM

VMOVE – Continuous Movement

Type Single Axis Motion Instruction

Description Move in one direction continuously.

There is no need to use “CANCEL” to stop the “VMOVE” movement in

advance, the new “VMOVE” movement will automatically replace the former

“VMOVE” and modify the direction.

Grammar VMOVE (dir1)

dir1= -1: negative movement 1: positive movement

Controller General

Example BASE(0)

DPOS=0

ATYPE=1

SPEED=100

ACCEL=1000

198

DECEL=1000 'set deceleration as 1000

SRAMP=100

VMOVE(-1) 'continuous negative movement

WAIT UNTIL IN(0)=ON 'wait until input 1 is on

VMOVE(1) 'continuous positive movement

DPOS(0) Vertical scale 500, no offset

MAPEED(0) Vertical scale 100, no offset

IN(0) Vertical scale 1000, no offset

Instructions FORWARD，REVERSE

FORWARD – positive movement

Type Single Axis Motion Instruction

Description BASE selects axis to move forward.

REVERSE is switched after CANCEL.

Grammar Forward [axis(axis number)]

Controller General

Example Example 1

Base(0)

FORWARD 'axis 0 move forward continuously

WAIT UNTIL IN(1)=ON 'wait until input 1 is on

CANCEL(2)

Example 2

FORWARD AXIS(1) 'axis 1 move forward

WAIT UNTIL IN(1)=ON 'wait until input 1 is on

CANCEL(2) AXIS(1)

Instructions REVERSE，VMOVE

199

REVERSE – negative movement

Type Single Axis Motion Instruction

Description BASE selects axis to move reverse.

FORWARD is switched after CANCEL.

Grammar reverse [axis(axis number)]

Controller General

Example Example 1

Base(0)

REVERSE 'axis 0 move backwards continuously

WAIT UNTIL IN(1)=ON 'wait until input 1 is on

CANCEL(2)

Example 2

REVERSE AXIS(1) 'axis 1 move backwards

WAIT UNTIL IN(1)=ON 'wait until input 1 is on

CANCEL(2) AXIS(1)

Instructions FORWARD，VMOVE

MOVEMODIFY – Modify Motion Position

Type Single Axis Motion Instruction

Description Change the last motion target position.

The effect is the same as MOVEABS when there is no motion before, but it

will not enter the motion buffer, see Example 1 for reference.

Need WAIT command, see example 2 for reference.

If it is continuous interpolation, then use MOVEMODIFY will interrupt the

continuity of motion speed.

When MOVEMODIFY is used in multi-axis, the motion is not absolutely

linear interpolation movement.

Grammar MOVEMODIFY (distance)

distance1: the motion distance of one single axis

Only support single axis modification at present.

Controller General

Example Example 1

BASE(0)

UNITS=100 'set the pulse amount

DPOS=0

SPEED=100 'speed setting

ACCEL=1000 'acceleration setting

DECEL=1000

TRIGGER 'trigger the oscilloscope automatically

MOVEABS(100)

200

MOVEABS(10) 'axis will move to position 100, then move back to 10.

Motion trajectory:

DPOS(0) Vertical scale 100

If：

MOVEMODIFY(100)

MOVEMODIFY(10)'axis will move to position 10 directly, MOVEMODIFY

will not enter the motion buffer.

Motion trajectory:

DPOS(0) Vertical scale 100

Example 2

BASE (0)

UNITS=100 'pulse equivalent setting

DEFPOS(0)

SPEED=100 'speed setting

ACCEL=1000 'acceleration setting

DECEL=1000

TRIGGER 'trigger the oscilloscope automatically

MOVEABS(500)

WAIT UNTIL DPOS >=300 'modify the target position until axis reaches 300.

MOVEMODIFY (100) 'Change the target position to 100, the axis will

decelerate to stop, then move inversely.

Use WAIT, motion trajectory:

DPOS(0) vertical scale 200

201

MSPEED(0) vertical scale 200

Not use WAIT, move to position 100 directly.

DPOS(0) vertical scale 300

Instructions MOVEMODIFY2

7.2 Multi-axis Motion Instruction

RAPIDSTOP – all axes stop

Type Multi-Axis Motion Instruction

Description All axes stop immediately, if axes were involved in interpolation

movement, the interpolation movement also stops.

In the mode 2, deceleration obeys the bigger value between FASTDEC and

DECEL. Generally, FASTDEC is set to be bigger than DECEL.

If there is a requirement of calling absolute position after using RAPIDSTOP,

it needs to use “WAIT IDLE” to wait the movement to stop.

202

Grammar RAPIDSTOP (mode)

Mode: mode selection

0(default) Cancel motion in process

1 Cancel motion in buffer

2
Cancel motions in process and in buffer, stop speed refer to fast

deceleration FASTDEC

3 Stop pulse delivery immediately

4
Cancel motions in process and in buffer, stop speed refer to

deceleration DECEL

RAPIDSTOP (4) is valid in ZMC4XX series controllers with firmware

version 170708 or above.

Controller General

Example Example 1

BASE(0,1,2)

DPOS=1,1,1

ATYPE=1,1,1

UNITS=100,100,100

SPEED=1000 'interpolated resultant speed is 100

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

TRIGGER

MOVE(1000,1000,1000) 'motion in process

MOVE(-1000,-1000,-1000) 'motion in buffer

RAPIDSTOP(1) 'axis only executes the current motion

Motion trajectory and speed curve:

DPOS(0) vertical scale 1000, no offset

MSPEED(0) vertical scale 1000, offset -1000

DPOS(1) vertical scale 1000, offset 100

MSPEED(1) vertical scale 1000, offset -900

DPOS(2) vertical scale 1000, offset 200

MSPEED(2) vertical scale 1000, offset -800

203

Example 2

BASE(0,1)

DPOS=0,0

ATYPE=1,1

SPEED=1000

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

TRIGGER

MOVE(10000,10000) 'interpolation movement

DELAY(2000) 'delay 2 seconds

RAPIDSTOP(2) 'axis stops immediately, deceleration is 10000

Motion trajectory and speed curve:

DPOS(0) vertical scale 1000, no offset

MSPEED(0) vertical scale 1000, no offset

DPOS(1) vertical scale 1000, offset 100

MSPEED(1) vertical scale 1000, offset 100

204

Instructions CANCEL，DECEL，FASTDEC

MOVE – linear motion

Type Multi-Axis Motion Instruction

Description linear interpolation motion, which is relative motion.

Only speed of main axis is valid in interpolation motion, main axis is the first

axis in BASE list, motion will follow parameters of main axis.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Interpolation motion distance: X=
2

n

2

2

2

1

2

0 XXXX ++++

Motion time: T=X/speed of main axis.

Grammar MOVE(distance1 [,distance2 [,distance3 [,distance4...]]])

Parameters：

distance1 -move distance of the first axis

distance2 -move distance of the next axis

Controller General

Example Example 1

Base(0,1,2,) 'axis 0 is the main axis

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100 'pulse equivalent configuration

SPEED=100,10,1000 'only speed of main axis is valid, act as resultant

speed

ACCEL=1000,1000,1000

DECEL=1000,1000,1000

DPOS = 0,0,0

Trigger 'Trigger the oscilloscope automatically

MOVE(500,1000,1500) 'axis 0,1,2 will do linear interpolation, relative

205

distance.

WAIT IDLE 'wait until the motion stops.

PRINT *DPOS 'Printed result:500,1000,1500

Speed of each axis in interpolation motion is the component speed of main

axis.

MSPEED(0) vertical scale 100

MSPEED(1) vertical scale 100

MSPEED(2) vertical scale 100

VP_SPEED(0) vertical scale 100

Example 2

BASE(0,1)

ATYPE=1,1

UNITS=100,100 'pulse equivalent configuration

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

DPOS=0,0

MPOS=0,0

Trigger 'Trigger the oscilloscope automatically

MOVE(100,100)

Interpolation trajectory

DPOS(0) horizontal scale 100

DPOS(1) vertical scale 100

206

Instructions MOVEABS,*SP

MOVEABS – Linear Motion-Absolutely

Type Multi-Axis Motion Instruction

Description Linear Interpolation movement, it moves absolutely to defined

coordinate.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Grammar MOVEABS(position1[, position2[, position3[, position4...]]])

position1 -coordinate of first axis

position2 -coordinate of next axis

Controller General

Example BASE(0,1)

UNITS=100,100

DPOS=0,0

MPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER 'Trigger the oscilloscope automatically.

MOVEABS(500,300) 'axis 0 moves to 500, axis 1 moves to 300,

interpolation motion

MOVEABS(100,100) 'axis 0 moves back to 100, axis 1 moves back to 100.

Interpolation trajectory;

DPOS(0) horizontal scale 300

DPOS(1) vertical scale 300

207

When using MOVE relative motion, other conditions are the same,

MOVEBAS instruction is turned into MOVE instruction.

Interpolation trajectory:

DPOS(0) horizontal scale 300

DPOS(1) vertical scale 300

Instructions MOVE，*SP

MOVEMODIFY2 – Move to new position

Type Multi-axis motion instruction

Description Force the previous motion to stop, move to a new target position at

former speed and acceleration.

If there isn’t motion in the former, then the result caused by this instruction is

the same as MOVEABS, but each axis’ motion is independent and will not

enter the motion buffer, see example 1 for reference.

It must be used with WAIT instruction. See example 2 for reference.

When there is continuous interpolation, MOVEMODIFY2 will interrupt the

continuity of motion.

When MOVEMODIFY2 is used in multi-axis situation, the motion is not

absolutely linear interpolation movement.

Grammar MOVEMODIFY2 (abspos1, abspos2,[...])

208

abspos1 BASE -Target position of axis 1

abspos2 BASE -Target position of axis 2

ZMC3XX series with firmware version above 20161209.

ZMC4XX series with firmware version above 20170509.

Controller Special firmware

Example Example 1

BASE(0,1) 'set as pulse type

ATYPE = 1,1

DPOS=0,0

SPEED = 100,100

ACCEL=1000 'acceleration configuration

DECEL=1000

TRIGGER

MOVE(200) AXIS(0)

MOVEMODIFY2(50,200) 'cancel MOVE (200), force the axis to move to a

new position (50,200).

MOVE(100) AXIS(1)

Motion trajectory :

DPOS(0) vertical scale 200

DPOS(1) vertical scale 200

Example 2

BASE(0,1)

ATYPE=1,1 'set as pulse type

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000 'acceleration configuration

DECEL=1000,1000

TRIGGER

MOVE(200) AXIS(0)

WAIT UNTIL DPOS(0)>=100 'wait until the axis 0 reaches position 100

MOVEMODIFY2(50,200)

MOVE(100) AXIS(0)

209

Motion trajectory:

The vertical scale is the same as the above.

Instructions MOVEMODIFY

MOVECIRC –Arc at the Center

Type Multi-Axis Motion Instruction

Description Circular interpolation between two axes, arc at the center, relative

motion.

The first axis and second axis in BASE list will execute circular interpolation,

and in relative motion mode. If the end distance is 0, then the motion will

generate a full circle.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

When using, it is necessary to obtain the coordinates of the center of the circle

and the end point of the arc relative to the starting point.

Ensure the coordinates are correct, or the actual motion path will be wrong.

Suppose start point A is (100,100), the center point C is (400,100), end point

B is (400,400).

210

Then the coordinate of point C that is related to starting point A is (300,0), for

point B is (300,300).

Grammar MOVECIRC (end1, end2, centre1, centre2, direction)

end1: end point coordinate of the first axis, which is relative to starting point.

end2: end point coordinate of the second axis, which is relative to starting

point.

center1: center point coordinate of the first axis, relative to starting point.

center2: center point coordinate of the second axis, relative to starting point.

direction: 0-anticlockwise 1-clockwise

Controller General

Example BASE(0,1)

ATYPE=1,1 'set as pulse type

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER 'trigger the oscilloscope automatically

MOVE(100,100) 'move to position (100,100)

MOVECIRC(200,0,100,0,1) 'draw the semicircle with 100 radius in

clockwise, end point coordinate is (300,100).

Interpolation trajectory:

DPOS(0) vertical scale 150

DPOS(1) vertical scale 150

Other conditions are the same, the motion instruction is modified:

MOVECIRC(0,0,100,0,0'radius is 100, center (100,0), draw in anticlockwise

Interpolation trajectory:

Same as the above.

211

Instructions MOVECIRCABS，MOVECIRC2，*SP

MOVECIRCABS - Center Based Arc - Absolute

Type Multi-Axis Motion Instruction

Description Circular interpolation between two axes, draw the arc at the center,

absolute motion.

The first and second axis in BASE list will execute circular interpolation, and

in absolute motion mode.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

MOVECIRCABS doesn’t support moving a whole circle, but MOEVCIRC

supports.

Grammar MOVECIRCABS (end1, end2, centre1, centre2, direction)

end1: end point coordinate of the first axis, the absolute position.

end2: end point coordinate of the second axis, the absolute position.

center1: center point coordinate of the first axis, the absolute position.

center2: center point coordinate of the second axis, the absolute position.

direction: 0-anticlockwise 1-clockwise

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

Example BASE(0,1)

ATYPE=1,1 'set as pulse type

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER 'Trigger the oscilloscope automatically

MOVE(100,100) 'move to position (100,100)

212

MOVECIRCABS(200,0,100,0,1) 'draw quarter circle of radius 100

clockwise, end point is (200,0).

Interpolation Path

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Instructions MOVECIRC，MOVECIRC2ABS，*SP

MOVECIRC2 - Three-Point Based Arc

Type Multi-Axis Motion Instruction

Description Circular interpolation between two axes, three-point based arc, relative

motion.

The first and second axis in BASE list will execute circular interpolation, and

in relative motion mode, which is relative to start point.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Note: don’t use this instruction to do full circle interpolation. it is better to use

MOVECIRC or use MOVECIRC2 two times.

Grammar MOVECIRC2(mid1, mid2, end1, end2)

mid1: middle point coordinate of the first axis, which is relative to start point.

mid2: middle point coordinate of the second axis, it is relative to start point.

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

Ensure the coordinate is correct，or the actual motion path will be wrong.

Controller General

Example BASE(0,1)

ATYPE=1,1 'set as pulse type

UNITS=100,100

DPOS=0,0

SPEED=100,100

213

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER 'Trigger the oscilloscope automatically

MOVE(100,100) 'move to position (100,100)

MOVECIRC2(100,100,200,0)

'draw semicircle through 3 points, relative coordinate

Interpolation path:

DPOS(0) vertical scale 200

DPOS(1) vertical scale 200

Instructions MOVECIRC2ABS，MOVECIRC，*SP

MOVECIRC2ABS --Three-Point Based Arc - Absolute

Type Multi-Axis Motion Instruction

Description Circular interpolation, arc at the center, absolute motion.

The first and second axis in BASE list will execute circular interpolation, and

in relative motion mode. This instruction can be used in continuous

interpolation movements by adding SP, see *SP for reference.

Note: don’t use this instruction to do full circle interpolation. it is better to use

MOVECIRC or use MOVECIRC2 two times.

Grammar MOVECIRC2ABS(mid1, mid2, end1, end2)

mid1: middle point coordinate of the first axis, which is relative to start point.

mid2: middle point coordinate of the second axis, it is relative to start point.

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

Ensure the coordinate is correct，or the actual motion path will be wrong.

Controller General

Example BASE(0,1)

ATYPE=1,1 'set as pulse type

UNITS=100,100

214

DPOS=0,0

SPEED=100,100

ACCEL=10000,10000

DECEL=10000,10000

TRIGGER 'Trigger the oscilloscope automatically

MOVE(100,100) 'move to position (100,100).

MOVECIRC2ABS(200,200,300,100)

'draw semicircle through 3 points, absolute coordinate

Interpolation path:

DPOS(0) vertical scale 200

DPSO(1) vertical scale 200

Instructions MOVECIRC2，MOVECIRCABS，*SP

MHELICAL – Central Helical

Type Multi-Axis Motion Instruction

Description Helical Interpolation, arc at the center, relative motion.

The first and second axis in BASE list will execute circular interpolation, the

third axis will execute helical, and they are relative to start point.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

It can execute a full circle in Z direction.

Grammar MHELICAL(end1,end2,centre1,centre2,direction,distance3,[mode])

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

center1: center point coordinate of the first axis, relative to start point.

center2: center point coordinate of the second axis, relative to start point.

direction: 0-anticlockwise 1-clockwisemode

distance3: motion distance of the third axis

mode: speed calculation of the third axis

Value Description

215

0(default) Third axis participates interpolation speed calculation.

1 Third axis keep independent.

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

TRIGGER

MHELICAL(200,-200,200,0,1,100) 'original point as start point, center is

(200,0), end point is (200,0),

clockwise, Axis Z participates speed

calculation, move 100.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

Axis 0 and axis 1 interpolation under XY mode:

216

Instructions MHELICAL2，MHELICALABS，*SP

MHELICALABS – Central Helical - Absolute

Type Multi-Axis Motion Instruction

Description Helical Interpolation, arc at the center, absolute motion.

The first and second axis in BASE list will execute circular interpolation, the

third axis will execute helical, in absolute motion way.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

It can execute a full circle in Z direction.

Grammar MHELICALABS(end1,end2,centre1,centre2,direction,distance3,[mode])

end1: motion coordinate of the first axis

end2: motion coordinate of the second axis

center1: motion center point of the first axis

center2: motion center point of the second axis

direction: 0-anticlockwise 1-clockwisemode

distance3: motion distance of the third axis

mode: speed calculation of the third axis

Value Description

0(default) Third axis participates interpolation speed calculation.

1 Third axis keep independent.

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

217

DECEL=1000,1000,1000

TRIGGER

MHELICALABS(0,0,200,0,1,100) 'start from original point, center point

(200,0), end point (0,0), clockwise,

Axis Z participates speed calculation,

move 200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

Axis 0 and axis 1 interpolation trajectory under XY mode:

Instructions MHELICAL，MHELICAL2ABS，*SP

MHELICAL2 – Three-Point Based Helical

Type Multi-Axis Motion Instruction

Description Helical Interpolation, arc at the center, absolute motion.

218

The first and second axis in BASE list will execute circular interpolation, the

third axis will execute helical, in relative motion way.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

It can’t generate a full circle in Z direction, please use MHELICAL or

MHELICALABS.

Grammar MHELICAL2(mid1, mid2, end1, end2, distance3,[mode])

mid1: middle point coordinate of the first axis, which is relative to start point.

mid2: middle point coordinate of the second axis, it is relative to start point.

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

distance3: motion distance of the third axis, which is relative to start point.

mode: speed calculation of the third axis

Value Description

0(default) Third axis participates interpolation speed calculation.

1 Third axis keep independent.

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

MHELICAL2(100,100,200,0,200) 'start from original point, center point

(100,100), end point (200,0), Axis Z

participates speed calculation, move

200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

219

Axis 0 and axis 1 trajectory interpolation under XY mode:

Instructions MHELICAL2ABS，MHELICAL，*SP

MHELICAL2ABS-Three-Point Based Helical-Absolute

Type Multi-Axis Motion Instruction

Description Helical Interpolation, arc at the center, absolute motion.

The first and second axis in BASE list will execute circular interpolation, the

third axis will execute helical, in relative motion way.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

It can’t generate a full circle in Z direction, please use MHELICAL or

MHELICALABS.

Grammar MHELICAL2(mid1, mid2, end1, end2, distance3,[mode])

mid1: middle point coordinate of the first axis, which is relative to start point.

mid2: middle point coordinate of the second axis, it is relative to start point.

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

distance3: motion distance of the third axis, errata: there is a problem with this

220

parameter in versions before 20150306, it is recommended to use

the MHELICAL2 relative command

mode: speed calculation of the third axis

Value Description

0(default) Third axis participates interpolation speed calculation.

1 Third axis keep independent.

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

MOVE(100,100) 'move to position（100,100）

TRIGGER

MHELICAL2ABS(200,100,200,0,200) 'start from point (100,100), center

point (200,100), end point (200,0).

Axis Z participates speed

calculation, move 200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

Axis 0 and axis 1 interpolation trajectory under XY mode:

221

Instructions MHELICAL2，MHELICALABS，*SP

MECLIPSE -- Ellipse

Type Multi-Axis Motion Instruction

Description Ellipse interpolation, arc at the center, relative motion, helical is optional.

Execute elliptical interpolation with first and second axis in BASE list,

relative motion mode, the third axis is available for synchronized helical

motion.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Valid for full ellipse drawing.

Valid for ellipse drawing whose major axis is parallel or perpendicular to X.

Grammar MECLIPSE (end1, end2, centre1, centre2, direction, adis, bdis[, end3])

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

center1: center point coordinate of the first axis, relative to start point.

center2: center point coordinate of the second axis, relative to start point.

direction: 0-anticlockwise 1-clockwise

Value Description

0 Clockwise

1 Anticlockwise

adis: ellipse radius of the first axis, semi-major or semi-minor axis is optional.

bdis: ellipse radius of the second axis, semi-major or semi-minor axis is

optional. when adis is equal to bdis, the path is arc or helical line.

end3: distance of the third axis, fill this value when helical is necessary.

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

Example Example 1 No helical

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0,1,2)

222

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

DPOS=0,0,0

TRIGGER 'Trigger the oscilloscope automatically

MECLIPSE(0,0,100,0,1,100,50) 'center point (100,0), end point (0,0),

semi-minor axis 50, semi-major axis

100, full ellipse drawing clockwise, no

helical.

Interpolation Path:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Example2 with helical.

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

DPOS=0,0,0

TRIGGER 'Trigger the oscilloscope automatically

MECLIPSE(0,0,100,0,1,100,50,200) 'center point (100,0), end point (0,0),

semi-minor axis 50, semi-major axis

100 full ellipse drawing clockward with

helical motion. The motion distance of

the third axis is 200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode, and it

merges axis Z motion on the basis of example 1.

223

Instructions MECLIPSEABS，*SP

MECLIPSEABS – Ellipse - Absolute

Type Multi-Axis Motion Instruction

Description Ellipse interpolation, arc at the center, absolute motion, helical is

optional.

Execute elliptical interpolation with first and second axis in BASE list,

absolute motion mode, the third axis is available for synchronized helical

motion.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Valid for full ellipse drawing.

Grammar MECLIPSEABS(end1, end2, centre1, centre2, direction, adis, bdis[, end3])

end1: end point coordinate of the first axis, which is relative to start point.

end2: end point coordinate of the second axis, which is relative to start point.

center1: center point coordinate of the first axis, relative to start point.

center2: center point coordinate of the second axis, relative to start point.

direction: 0-anticlockwise 1-clockwise

Value Description

0 Clockwise

1 Anticlockwise

adis: ellipse radius of the first axis, semi-major or semi-minor axis is optional.

bdis: ellipse radius of the second axis, semi-major or semi-minor axis is

optional. when adis is equal to bdis, the path is arc or helical line.

end3: distance of the third axis, fill this value when helical is necessary.

Ensure the coordinate is correct, or the actual motion path will be wrong.

Controller General

224

Example Example 1 no helical

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

TRIGGER 'Trigger the oscilloscope automatically

MOVE(100,100)

MECLIPSEABS(300,100,200,100,1,100,50)

'center (200,100), end point (300,100), semi-minor

axis 50, semi-major axis 100, semi ellipse drawing,

no helical.

Interpolation Path:

DPOS(0) vertical scale 150

DPOS(1) vertical scale 150

Example 2 with helical

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

MECLIPSEABS(0,0,100,0,1,100,50,200)

'center point (100,0), end point (0,0), semi-

minor axis 50, semi-major axis 100, full ellipse

drawing with helical.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

225

Axis 0 and axis 1 interpolation trajectory:

Instructions MECLIPSE，*SP

MSPHERICAL – Space Arc

Type Multi-Axis Motion Instruction

Description Spherical arc interpolation motion, relative motion mode, helical is

optional.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Grammar MSPHERICAL(end1,end2,end3,centre1,centre2,centre3,mode[,distance4][,di

stance5])

Parameters：

end1 motion distance parameter1 of axis 1

end2 motion distance parameter1 of axis 2

end3 motion distance parameter1 of axis 3

centre1 motion distance parameter2 of axis 1

centre2 motion distance parameter2 of axis 2

226

centre3 motion distance parameter2 of axis 3

mode specify the meaning of above parameters

distane4: add the fourth axis as helical motion, appoint the relative motion

distance of axis 4. This axis is not involved in speed calculation.

distane5: add the fifth axis as helical motion, appoint the relative motion

distance of axis 5. This axis is not involved in speed calculation.

Ensure the coordinate is correct, otherwise, the actual motion path will be

wrong.

Value Description

0 Generate arc by present point, middle point, and end point.

parameter1: end point distance

parameter2: middle point distance

1 Generate arc by present point, central point, and end point.

Move along the shortest arc.

parameter1: end point distance

parameter2: central point distance.

2 Generate circle by present point, middle point, and end point.

parameter1: end point distance

parameter2: middle point distance.

3 Generate circle by present point, central point, and end point.

Move along the shortest arc first, then continue to finish the

whole circle.

parameter1: end point distance

parameter2: central point distance.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

TRIGGER

Suppose central point is (120,160,150), radius is 250, 4 trajectories are

generated below due to mode differences.

mode 0:

MSPHERICAL(120,160,400,240,320,300,0) 'end point: (120,160,400),

middle point: (240,320,300),

mode 0: three-point based

arc.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

227

mode 1:

MSPHERICAL(120,160,400,120,160,150,1)

'relative position, end point (120,160,400), central

point (120,160,150), mode 1: move along the shorter

arc.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

mode 2:

MSPHERICAL(120,160,400,240,320,300,2)

‘end point: (120,160,400), middle point:

(240,320,300), mode2: three points base circle.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

228

mode 3

MSPHERICAL(120,160,400,120,160,150,3)

'end point: (120,160,400), central point:

(120,160,150), mode3: move along the shorter arc

first (red part), then continue to finish the whole

circle.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

229

MSPHERICALABS – Space Arc – Absolute

Type Multi-Axis Motion Instruction

Description Space arc interpolation motion, absolute motion mode, helical is optional.

For continuous interpolation of custom speed, it can use command with SP

suffix, please refer to *SP description.

Grammar MSPHERICALABS(end1,end2,end3,centre1,centre2,centre3,mode[,distance4

][,distance5])

Parameters：

end1 motion distance parameter1 of axis 1

end2 motion distance parameter1 of axis 2

end3 motion distance parameter1 of axis 3

centre1 motion distance parameter2 of axis 1

centre2 motion distance parameter2 of axis 2

centre3 motion distance parameter2 of axis 3

mode specify the meaning of above parameters

distane4: add the fourth axis as helical motion, appoint the relative motion

distance of axis 4. This axis is not involved in speed calculation.

distane5: add the fifth axis as helical motion, appoint the relative motion

distance of axis 5. This axis is not involved in speed calculation.

Ensure the coordinate is correct, otherwise, the actual motion path will be

wrong.

Value Description

0 Generate arc by present point, middle point, and end point.

parameter1: end point distance

parameter2: middle point distance

1 Generate arc by present point, central point, and end point.

Move along the shortest arc.

parameter1: end point distance

parameter2: central point distance.

2 Generate circle by present point, middle point, and end point.

parameter1: end point distance

parameter2: middle point distance.

3 Generate circle by present point, central point, and end point.

Move along the shortest arc first, then continue to finish the

whole circle.

parameter1: end point distance

parameter2: central point distance.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

230

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

TRIGGER

Suppose central point is (120,160,150), radius is 250, then below shows

motion trajectories of 4 modes.

mode 0:

MSPHERICALABS(120,160,400,240,320,300,0)

'end point: (120,160,400), middle point: (240,320,300), mode 0, arc is made

by three points.

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

mode 1:

MSPHERICALABS(120,160,400,120,160,150,1)

'absolute position, end point (120,160,400), central point (120,160,150), mode

1: move along the shortest arc.

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

231

mode 2:

MSPHERICALABS(120,160,400,240,320,300,2)

‘end point: (120,160,400), middle point: (240,320,300), mode2: a full circle is

made by three points

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

mode 3

MSPHERICALABS(120,160,400,120,160,150,3)

'end point: (120,160,400), central point: (120,160,150), mode3: move along

the shortest arc first (red part), then continue to finish the whole circle.

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

232

Instructions MSPHERICAL

MOVESPIRAL – Involute Arc

Type Multi-Axis Motion Instruction

Description Involute arc interpolation movement, relative motion mode, helical is

optional.

Distance between present point and central point will determine the start

radius, if the start radius is 0, then angel can’t be determined, it will start from

angel 0 directly, see the example 1 for reference.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Grammar MOVESPIRAL(centre1,centre2,circles,pitch[,distance3][,distance4])

Parameters：

centre1: central point coordinate-aixs1, relative.

centre2: central point coordinate-aixs2, relative.

circles: circles amount, integral or decimal. Minus value means

clockwise, end point of each circle is the one point of the

line between start point and central point.

 pitch: diffusion distance of each circle, which can be minus value.

distane3: add the third axis as helical motion, appoint the relative

motion distance of axis 3. This axis is not involved in

speed calculation.

233

distane4: add the fourth axis as helical motion, appoint the relative

motion distance of axis 4. This axis is not involved in

speed calculation.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

TRIGGER 'Trigger the oscilloscope automatically

Example 1 diffusion starts from start point

MOVESPIRAL(0,0,2.5,30) 'set start point as central point, rotate 2.5 circles

anticlockwise, diffusion distance of each circle

is 30.

Interpolation path

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Example 2 no helical motion

MOVESPIRAL(100,100,2.5,30) 'start radius is 100, central point is

(100,100), rotate 2.5 circles anticlockwise,

diffusion distance of each circle is 30.

Interpolation Path

(if path circle amount is not full displayed, make captured gap proper bigger)

DPOS(0) vertical scale 300

DPOS(1) vertical scale 300

234

MOVESPIRAL (100,100,-2.5,3.) 'When the number of rotations is negative

(-2.5), rotate clockwise

Example 3 with helical motion

MOVESPIRAL(100,100,2.5,30,100) 'start radius is 100, central point is

(100,100), rotate 2.5 circles

anticlockwise, diffusion distance of

each circle is 30, Axis Z moves

upwards to 100.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

235

MOVESPLINE/MOVESPLINEABS -- Spline Interpolation

Type Special Motion Instruction

Description Spline interpolation, relative or absolute motion.

Fill the spline points data into TABLE in advance.

This instruction doesn’t support SP function, continuous interpolation with

self-defined speed can be set by instructions: BIT8 of CONNER_MODE.

Grammar MOVESPLINE (axes,mode ,dtendcontrol4, dtcontrol2, dtcontrol3)

axes: the number of interpolation axes

mode: mode, 0 means 3 Layer Bezier Splines is used.

dtendcontrol4: table index of fourth control point. for Bessel spline, it means

the end point.

dtcontrol2: table index of second control point.

dtcontrol3: table index of third control point.

For Bessel spline, present point is the first control point.

Controller ZMC4XX series with firmware version above 170507.

ZMC306X with firmware version above 161208.

Example Example 1:

BASE(0,1)

DPOS=0,0

ATYPE=1,1, 'set type as pulse

SPEED=100,100 'main axis speed

ACCEL=1000,1000 'main axis acceleration

DECEL=1000,1000

TRIGGER

CORNER_MODE=2 + 256 'set SP motion, use FORCE_SPEED.

FORCE_SPEED=100

TABLE(0,100,100) 'TABLE(0) and TABLE(1) will store the second

236

control point, relative to start point.

TABLE(10,200,-100) 'TABLE(10) and TABLE(11) will store the third

control point, relative to start point.

TABLE(20,300,0) 'TABLE(20) and TABLE(21) will store the fourth

control point, distance of end point.

MOVESPLINE(2, 0, 20, 0, 10) '2 axes relative spline interpolation.

Interpolation path:

DPOS(0) vertical scale 100, offset -100

DPOS(1) vertical scale 100, no offset

Example 2:

BASE(0,1,2)

ATYPE=1,1,1 ‘set type as pulse axis

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 ‘set main axis speed

ACCEL=1000,1000,1000 ‘set main axis acceleration

DECEL=1000,1000,1000

TRIGGER

TABLE(0,100,100,100) 'TABLE(0) and TABLE(1) will store the second

control point, relative to start point.

TABLE(10,200,-100,200) 'TABLE(10) and TABLE(11) will store the third

control point, relative to start point.

TABLE(20,300,0,0) 'TABLE(20) and TABLE(21) will store the fourth

control point, distance of end point.

MOVESPLINE(3, 0, 20, 0, 10) '2 axes relative spline interpolation.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

237

Instructions CORNER_MODE

MOVE_TURNABS-Rotating Stage Interpolation

Type Multi-Axis Motion Instruction

Description Rotating Stage Interpolation - ensure motion on stage is linear.

The rotation function means that the work platform rotates on a plane parallel

to XY, and the positive direction of rotation should be consistent with the

positive direction of XY (right-hand rule).

The rotation parameters are stored in the TABLE, which stores the R axis

number as order, the number of pulses per revolution of the R axis, the X axis

number, the Y axis number, the X circle center, and the Y circle center.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

It is recommended to use robotic algorithm directly, see ZMOTION Robotic

Instructions Reference for reference, the related frame is frame11/17.

Grammar MOVE_TURNABS(tablenum,position1[,position2[,position3[, position4...]]])

Parameters： tablinum: Table NO. which saves rotating parameters.

position1: coordinate of the first axis

position2: coordinate of next axis

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

238

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000 'main axis deceleration

TABLE(0, 3, 3600, 0,1, 0,0) 'set parameters of rotating stage.

TRIGGER

MOVE_TURNABS(0,100,200,90) 'move to target position by linear.

WAIT IDLE 'wait until the motion stops.

Interpolation Path:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

DPOS(2) vertical scale 100

Instructions MCIRC_TURNABS

MCIRC_TURNABS-Rotating Stage Interpolation-Absolute

Type Multi-Axis Motion Instruction

Description Rotating Interpolation-ensure motion on stage is circular.

The rotation function means that the work platform rotates on a plane parallel

to XY, and the positive direction of rotation should be consistent with the

positive direction of XY (right-hand rule).

The rotation parameters are stored in the TABLE, which stores the R axis

number as order, the number of pulses per revolution of the R axis, the X axis

number, the Y axis number, the X circle center, and the Y circle center.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

Grammar MCIRC_TURNABS(tablenum, refpos1, refpos2, mode, end1, end2 [, dis3,

dis4, dis5])

tablinum: Table NO. which saves rotating parameters.

refpos1: reference point of the first axis, absolute position

239

refpos2: reference point of the second axis, absolute position

mode: 1-the reference point is before the current point

 2-the reference point is behind the end point

 3-the reference point is in the middle

 It uses the method of three-point circle.

end1: the end point of the first axis, absolute position

end1: the end point of the second axis, absolute position

dis3: the end position of rotating axis

Controller General

Example Base(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

Table(0, 3, 3600, 0,1, 0,0) 'set parameters of rotating stage

TRIGGER

TURN_POSMAKE(0,100,200,5,10)

MCIRC_TURNABS(0,table(10),table(11),3,200,300,10)

'3 axes also rotates when circular is in process

WAIT IDLE

Interpolation Path:

DPOS(0) vertical scale 200

DPOS(1) vertical scale 200

DPOS(2) vertical scale 200

Instructions MOVE_TURNABS，TURN_POSMAKE

240

MOVESMOOTH-Fillet

Type Multi-Axis Motion Instruction

Description Space Linear Fillet Motion.

Insert arc at the turning angle depends on absolute coordinate of next linear

motion, once arc was inserted, the final end point of the motion will be

different from end point of the linear. If the turning angle is too big, arc will

not be inserted, radius will be reduced automatically when distance is not

enough.

This instruction can be used in continuous interpolation movements by adding

SP, see *SP for reference.

This is an instruction developed early, so there is limit for axes, it is

recommended to use CORNER_MODE because its function is more.

Grammar MOVESMOOTH (end1, end2, end3, next1, next2, next3, radius)

Parameters： end1 absolute coordinate of axis1;

end2 absolute coordinate of axis2;

end3 absolute coordinate of axis3;

next1 absolute coordinate of next straight line, axis1;

next2 absolute coordinate of next straight line, axis2;

next3 absolute coordinate of next straight line, axis3;

radius the radius of the inserted arc, it will minish if too big.

Controller General

Example BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

DPOS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000 'main axis deceleration

TRIGGER 'Trigger the oscilloscope automatically

MOVESMOOTH (0,100,0,100,100,0,50)

'after the arc was inserted, the actual movement reaches (50,100,0)

MOVEABS(100,100,0)

Interpolation path:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

241

*SP-Motion Independent Speed

Type Multi-Axis Motion Instruction

Description It is used to set starting speed, running speed and end speed of every

stage of motion.

Multi-Axis motion instructions have related SP instructions. Now it can use

FORCE_SPEED, ENDMOVE_SPEED and STRATMOVE_SPEED to set

motion speed, end speed and start speed. If there is no need to set speed of

every motion, then no need to use SP instruction.

Grammar SP based instructions: MOVESP, MOVEABSSP, MOVECIRCSP,

MOVECIRCABSSP, MHELICALSP, MHELICALABSSP, MECLIPSESP,

MECLIPSEABSSP, MSPHERICALSP.

FORCE_SPEED, ENDMOVE_SPEED and STRATMOVE_SPEED will enter

motion buffer.

Controller General

Example Example 1

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

ACCEL=1000

DECEL=1000

SRAMP=100

MERGE=ON 'open continuous interpolation.

SPEED=100 'motion speed is 100

FORCE_SPEED=80 'limit speed is 80

STARTMOVE_SPEED=60 'start speed is 60

ENDMOVE_SPEED=30 'end speed is30

TRIGGER 'Trigger the oscilloscope automatically

MOVE(100) 'motion A, no SP limit.

242

MOVESP(100) 'motion B, use SP limit.

FORCE_SPEED=120 'speed limit is 120

ENDMOVE_SPEED=30 'end speed limit is 30

MOVESP(100) 'motion C, use SP limit.

Speed Path

MSPEED(0) vertical scale 100

The motion speed is SPEED when there is no SP limit, the motion speed is

FORCESPEED when there is SP limit. When Both STARTMOVE_SPEED

and ENDMOVE_SPEED are set, STARTMOVE_SPEED will take effect in

priority.

Example 2

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

ACCEL=1000

DECEL=1000

SPEED=100 ‘running speed is 100

SRAMP=100 ‘S curve

FORCE_SPEED=150 ‘speed limit is 120

TRIGGER

MOVE(100) ‘motion speed is SPEED

MOVESP(200) ‘motion speed is FORCE_SPEED

Motion trajectory:

DPOS (0) = 200 (vertical scale)

MSPEED (0) =100 (vertical scale)

243

Instructions FORCE_SPEED, ENDMOVE_SPEED, STRATMOVE_SPEED

MOVESCAN – Galvanometer (SCAN) Motion

Type Motion Instruction

Description The Motion command is without acceleration and deceleration, and it

supports time control at the us level.

The running time is directly calculated through FORCE_SPEED and vector

distance. For example, the SCAN vector distance is 1,

FORCE_SPEED=10000, then the motion time is 1/10000, the unit is s,

namely 100us.

Valid in galvanometer controllers with firmware version above 20180714.

Under this motion, corner delay means the maximum corner delay, and

ZSMOOTH indicates the actual delay time is linearly distributed between

DECEL_ANGLE and STOP_ANGLE.

Bit1 of CORNER_MODE sets whether the corner delay is used or not, if it

sets, ZSMOOTH sets max delay time, the unit is us, then this motion meets

corner condition dely.

Time control at the us level can be achieved together with MOVE_WAIT and

MOVE_OP.

Non-SCAN axis also can be used, but it needs to control the speed in sections

to do acceleration and deceleration.

Grammar MOVESCAN(pos1[,pos2][,pos]…)

pos1: motion distance of the first axis

pos2: motion distance of the next axis

Controller Galvanometer controller

Example Example 1

BASE(4,5)

AXIS_ZEST=2 'open precision output

TRIGGER

CORNER_MODE=0 'no corner delay

MOVE_PAUSE(3) 'force to stop

MOVE_OP(0,1)

244

FORCE_SPEED=10000

MOVESCANABS(0,0)

MOVESCANABS(10,0) 'galvanometer motion, time: 10/10000=1000us

MOVESCANABS(10,10) 'galvanometer motion

MOVESCANABS(0,10) 'galvanometer motion

MOVESCANABS(0,0) 'galvanometer motion

MOVE_DELAY(0.25) 'delay 250us

MOVE_OP(0,0) 'output

MOVE_RESUME

END

Resultant trajectory under galvanometer axis XY mode:

DPOS(4), vertical scale (Y scale): 10

DPOS(5), vertical scale (Y scale): 10

Example 2

BASE(4,5)

AXIS_ZSET=2

CORNER_MODE=2 'corner delay

ZSMOOTH=100 'maximum corner delay 100us

DECEL_ANGLE = 25 * (PI/180) 'set the start deceleration corner, in radians

STOP_ANGLE = 90 * (PI/180) 'set the end deceleration corner, in radians

MOVE_PAUSE(3)

MOVE_OP(0,1)

FORCE_SPEED=10000

MOVESCAN(1,0) 'time of motion 100us

MOVESCAN(0,1) 'add 100us corner delay time, then move 100us

MOVE_DELAY(0.25)

MOVE_OP(0,0) 'after 550us, it outputs

MOVE_RESUME

Instructions MOVE

245

MPULSCAN – Galvanometer Motion 2

Type Motion Instruction

Description Motion commands are without acceleration and deceleration, the unit is

the number of pulses.

The running time is directly calculated through FORCE_SPEED and vector

distance. For example, galvanometer vector distance is 1, FORCE_SPEED =

10000, the running time is 1/10000, the unit is s, that is, 100us.

Support MOVESCANABS absolute motion.

The time control at us level can be achieved when it is used together with

MOVE_WAIT and MOVE_OP.

Non-galvo axis can also be used, but it needs to control the speed in sections

to do acceleration and deceleration.

This command doesn’t have corner deceleration, MOVE_DELAY must be

added to achieve delay deceleration.

Valid in firmware version above 20220225.

Grammar MPULSCAN vectpul, pul1[,pul 2] [,pul 3]…

vectpul: vector pulse length, calculate externally to reduce controller

execution time.

pul1,2,3: pulse distance or length of each axis, directly use pulse unit, no

need to do UNITS conversion.

Controller Galvanometer controller

Example BASE(4,5)

ATYPE=21,21

FORCE_SPEED=1000,1000 'galvanometer motion speed

DPOS=0,0

AXIS_ZSET=2 'open precision output

TRIGGER

MOVE_OP(0,1)

MPULSCANABS 50,30,40 'galvanometer motion, vector length is 50

pulses, axis 4 moves 30, axis 5 moves 40

MOVE_DELAY(0.2) 'delay 200us

MOVE_OP(0,0) 'output

END

Galvanometer axis motion trajectory:

DPOS(4) vertical scale 20

DPOS(5) vertical scale 20

246

Instructions MOVESCAN

7.3 Special Motion Instruction

MOVE_PAUSE – Motion Pause

Type Special Motion Instruction

Description BASE axis motion pause.

It is valid when single axis or multi axes interpolation movement, axes will

pause simultaneously while multi axes coordination.

Use AXISSTATUS to check if any motion is paused.

If axes already paused or stopped, there is alarm output after calling this

instruction, but will not affect procedure process. Some motions don’t support

pause, such as, VMOVE, synchronization motion instructions, etc.

Grammar MOVE_PAUSE (mode)

0（default） Pause the present motion.

1 Pause when the present motion finished completely.

2 Pause when present motion is finished completely and

MARK of present motion instruction is different from the

following motion instruction.

This mode can be used to suspend one motion which

consist of multiple instructions when it is finished.

3 Pause mandatorily, even pause while IDLE mode is in

process.

This mode is only supported in controller with firmware

version above 20170513.

Controller General

247

Example BASE(0)

DPOS=0

SPEED=100

Example1 mode 0

MOVE(1000) 'motion in process

MOVEABS(-100) 'motion in buffer

MOVE_PAUSE(0) 'mode 0, pause motion in process

?DPOS(0) 'print result,0

'the present motion only executes for a short time. Then pause when

MOVE_PAUSE is detected during the scanning.

Example 2 mode 1

MOVE(1000) 'motion in process

MOVEABS(-100) 'motion in buffer

MOVE_PAUSE(1) 'mode 1, pause after the present motion finished.

?DPOS(0) 'print result, 1000

'the present motion is finished before pausing. DPOS is 1000

Example 3 mode 2

MOVE_MARK=1 'define mark NO. as 1 manually.

MOVE(200) 'motion in process

MOVE_MARK=1 'define mark NO. the same as last motion.

MOVEABS(-100) 'motion in buffer

MOVEABS(100) 'mark NO. is not defined manually, plus 1

automatically.

MOVE_PAUSE(2) 'mode 2, finish present motion first, then pause

until mark of next motion differs from the

present motion.

DELAY(3000) 'wait until motion pause.

?DPOS(0) 'print result, -100 (present motion will not pause

if the speed is too slow, the print result will

over -100）

'Finish motion with same mark, pause until meet the last motion which has a

different mark NO.3.

Instructions MOVE_MARK，MOVE_RESUME，AXISSTATUS

MOVE_RESUME – Motion Resume

Type Special Motion Instruction

Description Resume the motion of axes assigned by BASE from where it paused.

Use AXISSTATUS to check if any motion is paused.

Grammar MOVE_RESUME

Controller General

Example BASE(0)

248

UNITS=100

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000

MOVE(100) 'motion in process

MOVE(100) 'motion in buffer

MOVE_PAUSE(1) 'pause after motion in process finished.

WA 2000 'wait until motion in process finished.

?DPOS(0) 'print result,100

DELAY(1000)

MOVE_RESUME 'continue to motion.

WAIT IDLE

?DPOS(0) 'print result,200

Instructions MOVE_PAUSE，AXISSTATUS

MOVE_PT -Distance in Unit Time

Type Special Motion Instruction

Description Set the distance of motor motion in a certain time.

Usually, PC will calculate relative coordinate in every period, then transfer it

to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

frequency will be high, which will result to motor stalling. It is better to divide

long distance into pieces, then send repeatedly.

“multi-period speed auto-even” function is added by MOVE_PT.

Grammar MOVE_PT (TICKS, DIS1,DIS2…)

ticks: servo period numbers of time, time=system period*ticks

dis1: motion distance

controller SERVO_PERIOD is 1ms, TICKS = 1ms (for different

SERVO_PERIOD, TICKS are different).

Controller General

Example Example 1:

BASE(0)

UNITS=100

DPOS= 0

SPEED=100

ACCEL=1000

DECEL=1000

TRIGGER 'trigger the oscilloscope automatically

For i=0 to 9

249

MOVE_PT (4, 10) 'move 10 units in 4 TICKS, speed=2500 units/s.

NEXT

WAIT IDLE

PRINT*DPOS 'print result, 100

Interpolation Speed:

DPOS(0) vertical scale 100

MSPEED(0) vertical scale 2000

Example 2:

BASE(0,1,2)

UNITS=1000,1000,1000

DPOS= 0,0,0,

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PT(350,-20,-15,-25) 'in 350 ticks, axis 0, axis 1, axis 2 run -20, -15, -

25

MOVE_PT(350,20,15,25) 'in 350 ticks, run 20,15,25

MOVE_PT(350.-20,-15,-25)

MOVE_PT(350.20,15,25)

WAIT IDLE

Speed Curve:

DPOS(0) = 50 (vertical scale)

MSPEED(0) = 200 (vertical scale)

DPOS(1) = 50 (vertical scale)

MSPEED(1) = 200 (vertical scale)

DPOS(2) = 50 (vertical scale)

MSPEED(2) = 200 (vertical scale)

250

Example 3:

BASE(0)

UNITS=100

DPOS=0

SPEED=10

ACCEL=100

DECEL=100

DIM timeadd

DIM val1

DIM SPEEDval

timeadd=0

DPOS=100=COS(2*PI*0.2*timeadd+pi)+100

DELAY(1000)

TRIGGER

WHILE TRUE

'period=2π/|ω|

'x=A*COS(ωx+ψ)+C

'take the derivative to get the slope, which is the speed:

251

'v=A*ω*SIN(ωx+ψ)

val1=100*COS(2*PI*0.2*timeadd+pi)+100

SPEEDval=100*2*PI*0.2*SIN(2*PI*0.2*timeadd+pi)

?''val1=''val1

?''SPEEDval=''SPEEDval

MOVE_PVTABS(10, val1, SPEEDval)

'MOVE_PTABS(10,val1)

timeadd=timeadd+0.01

if timeadd>(2*PI/ABS(2*PI*0.2)*0.2)THEN

EXIT WHILE

ENDIF

WEND

DPOS(0), MSPEED(0), vertical scale (Y scale) is 150

Instructions MOVE_PTABS

MOVE_PTABS – Absolute motion distance in unit time.

Type Special Motion Instruction

Description Drive the motor to reach one certain position in a period time.

Usually, PC will calculate relative coordinate to reach in every period, then

transfer it to controller.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

252

frequency will high, which will result to motor stalling. It is better to divide

long distance into pieces, then send repeatedly.

Grammar MOVE_PTABS (TICKS, DIS1,DIS2…)

ticks: servo period numbers of time

dis1: motion distance

Controller General

Example Example 1

Base(0,1)

DPOS=0,0

MOVE_PTABS (3, 20,20) 'move to (20,20) in 3 ticks.

WAIT IDLE

PRINT*DPOS 'print result, 20,20

Example 2

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=1000

DECEL=1000

DPOS = 0

SetSine 'call function, then produce SINE curve

TRIGGER 'Trigger the oscilloscope automatically

FOR i=0 TO 100

MOVE_PTABS (1, TABLE(i)) 'move TABLE distance in 1TICK

NEXT

WAIT IDLE(0)

PRINT DPOS(0) 'print result, 500

END

GLOBAL SUB SetSine() 'calculate the displacement of small segment

LOCAL num_p,scale 'variable definition

num_p=100

scale=500

FOR p=0 TO num_p

TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)*scale)

'save parameters

NEXT

END SUB

DPOS(0) vertical scale 500

MSPEED(0) vertical scale 10000

253

Example 3

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

ATYPE=1,1

UNITS=100,100

DPOS=0,0

TRIGGER

MOVE_PTABS (10,10,10) 'reach absolute position (10,10) in 10ticks

MOVE_PTABS (10,20,20)

MOVE_PTABS (10,30,40)

MOVE_PTABS (10,40,20)

MOVE_PTABS (10,50,10)

MOVE_PTABS (10,40,0)

MOVE_PTABS (10,30,-10)

MOVE_PTABS (10,20,-40)

MOVE_PTABS (10,10,-10)

MOVE_PTABS (10,0,0)

END

DPOS(0), DPOS(1) vertical scale 50

MAPSEED(0), MSPEED(0) vertical scale 5000

254

Example 4

BASE(0)

ATYPE=1000,1000,1000

DPOS=0,0,0,0

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PTABS(350,20,15,25) 'in one period, axis 0 runs to 20, axis 1 runs to

15, axis 2 runs to -25

MOVE_PTABS (350,-20,-15,-25) 'in one period, axis 0, axis 1 and axis 2 run

to position -20, -15, -25 separately

MOVE_PTABS(350, 20, 15, 25)

MOVE_PTABS(350,-20,-15,-25)

WAIT IDLE

DPOS(0), DPOS(1) and DPOS(2) are 50 (vertical scale)

255

Instructions MOVE_PT

MOVE_PVT – Unit Distance (with speed planning)

Type Special Motion Instruction

Description Set the distance of motor motion in a certain time, and it is with speed

planning and can assign end speed. Speed in small distance will plan

automatically according to former speed and end speed, as consecutive as

possible.

Usually, PC will calculate relative coordinate in every period, then transfer it

to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

frequency will be high, which will cause motor block. It is better to divide

long distance into pieces, then send repeatedly.

Grammar MOVE_PVT (ticks, dis1, sp1, dis2, sp2…)

ticks: servo period numbers of time

dis1: motion distance of the first axis

sp1: the end speed when first axis moved

dis2: motion distance of the second axis

sp2: end speed when second axis moved

SERVO_PERIOD of controller is 1000us, 1 TICKS is equal to 1 ms. (ticks

differ from different SERVO_PERIOD)

Controller General

Example Example 1:

256

BASE(0,1,2)

UNITS=10,10,10,10

DPOS= 0,0,0,0

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PVT(350,200,10,150,10,250,10) 'in one period, axis 0, axis 1 and axis

2 run 200, 150, 250 separately, end

speed is 10

MOVE_PVT(350,-200,10,-150,10,-250,10) 'in one period, axis 0, axis 1 and

axis 2 run -200, -150, -250

separately, end speed is 10

MOVE_PVT(350,200,10,150,10,250,10)

MOVE_PVT(350,-200,10,-150,10,-250,10)

DPOS(0), DPOS(1), DPOS(2) are 200 (vertical scale)

MSPEED(0), MSPEED(1) and MSPEED(2) are 1000 (vertical scale)

257

Example 2:

BASE(0)

UNITS=100

DPOS=0

SPEED=10

ACCEL=100

DECEL=100

DIM timeadd

DIM val1

DIM SPEEDval

timeadd=0

DPOS=100=COS(2*PI*0.2*timeadd+pi)+100

DELAY(1000)

TRIGGER

WHILE TRUE

'period=2π/|ω|

'x=A*COS(ωx+ψ)+C

'take the derivative to get the slope, which is the speed:

'v=A*ω*SIN(ωx+ψ)

val1=100*COS(2*PI*0.2*timeadd+pi)+100

258

SPEEDval=100*2*PI*0.2*SIN(2*PI*0.2*timeadd+pi)

?''val1=''val1

?''SPEEDval=''SPEEDval

MOVE_PVTABS(10, val1, SPEEDval)

'MOVE_PTABS(10,val1)

timeadd=timeadd+0.01

if timeadd>(2*PI/ABS(2*PI*0.2)*0.2)THEN

EXIT WHILE

ENDIF

WEND

DPOS(0), MSPEED(0), vertical scale (Y scale) is 150

Instructions MOVE_PT

MOVE_PVTABS – Unit Absolute Distance (with speed

planning)

Type Special Motion Instruction

Description Set the distance of motor motion in a certain time, and it is with speed

planning and can assign end speed. Speed in small distance will plan

automatically according to former speed and end speed, as consecutive as

possible.

Usually, PC will calculate relative coordinate in every period, then transfer it

to controller.

BASE assigned axis can be used.

259

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

frequency will high, which will result to motor stalling. It is better to divide

long distance into pieces, then send repeatedly.

Grammar MOVE_PVTABS (ticks, dis1, sp1, dis2, sp2…)

ticks: servo period numbers of time

dis1: absolute motion distance of first axis

sp1: the end speed after first axis motion

dis2: absolute motion distance of the second axis

sp2: end speed after second axis motion

SERVO_PERIOD of controller is 1000us, then 1 TICKS equals to 1 ms.

(TICKS differ from different SERVO_PERIOD)

Controller General

Example Example 1:

BASE(0)

UNITS=13107.2

DPOS=0

SPEED=10

ACCEL=100

DECEL=100

MAX_SPEED=8000000

DIM timeadd

DIM val1

DIM SPEEDval

timeadd=0

DPOS=100=COS(2*PI*timeadd*0.2)+166

DELAY(1000)

TRIGGER

WHILE TRUE

'period=2π/|ω|

'x=A*COS(ωx+ψ)+C

'take the derivative to get the slope, which is the speed:

'v=A*ω*SIN(ωx+ψ)

val1=100*COS(2*PI*timeadd*0.2)+166

SPEEDval=100*2*PI*0.2*SIN(2*PI*timeadd*0.2)

?''val1=''val1

?''SPEEDval=''SPEEDval

MOVE_PVTABS(10, val1, SPEEDval)

260

'MOVE_PTABS(10,val1)

timeadd=timeadd+0.01

if timeadd>(2*PI/ABS(2*PI*0.2))THEN

EXIT WHILE

ENDIF

WEND

MSPEED(0), no offset, vertical scale (Y scale) is 100

DPOS(0), offset -50, vertical scale (Y scale) is 100

Instructions MOVE_PTABS

MOVE_PVTPP – Distance of unit time

Type Special Motion Instruction

Description Same as MOVE_PVT, set the distance of motor motion in a certain time,

and it is with speed planning. Accelerations of start and end moments can

be sure as 0 through planning speed, and it can be used for point motions

of assigned time. MOVE_PVT only can be used to send continuous and

small distance motions, for long distance motions, please use

MOVE_PVTPP.

Usually, PC will calculate relative coordinate in every period, then transfer it

to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

frequency will high, which will result to motor stalling. It is better to divide

long distance into pieces, then send repeatedly.

Grammar MOVE_PVTPP (ticks, dis1, sp1, dis2, sp2…)

ticks: servo period numbers of time

261

dis1: motion distance of first axis

sp1: the end speed when first axis moved

dis2: motion distance of the second axis

sp2: end speed when second axis moved

SERVO_PERIOD of controller is 1000us, 1 TICKS is equal to 1 ms. (ticks

differ from different SERVO_PERIOD)

Controller General

Example Example 1:

BASE(0,1,2)

UNITS=10,10,10,10

DPOS= 0,0,0,0

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PVTPP(350,200,10,150,10,250,10)

'in one period, axis 0, axis 1 and axis 2 run 200,

150, 250 separately, end speed is 10

MOVE_PVTPP(350,-200,-10,-150,10,-250,-10)

'in one period, axis 0, axis 1 and axis 2 run -200,

-150, -250 separately, end speed is 10

MOVE_PVTPP(350,200,10,150,10,250,10)

MOVE_PVTPP(350,-200,-10,-150,-10,-250,-10)

WAIT IDLE

DPOS(0), DPOS(1), DPOS(2) are 200 (vertical scale)

MSPEED(0), MSPEED(1) and MSPEED(2) are 1000 (vertical scale)

262

Instructions MOVE_PT, MOVE_PVT

MOVE_PVTPPABS – Distance of unit time

Type Special Motion Instruction

Description Same as MOVE_PVT, set the distance of motor motion in a certain time,

and it is with speed planning. Accelerations of start and end moments can

be sure as 0 through planning speed, and it can be used for point motions

of assigned time. MOVE_PVT only can be used to send continuous and

small distance motions, for long distance motions, please use

MOVE_PVTPP.

Usually, PC will calculate relative coordinate in every period, then transfer it

to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

frequency will high, which will result to motor stalling. It is better to divide

long distance into pieces, then send repeatedly.

Grammar MOVE_PVTPPABS (ticks, dis1, sp1, dis2, sp2…)

ticks: servo period numbers of time

dis1: motion distance of first axis

sp1: the end speed when first axis moved

dis2: motion distance of the second axis

sp2: end speed when second axis moved

SERVO_PERIOD of controller is 1000us, 1 TICKS is equal to 1 ms. (ticks

differ from different SERVO_PERIOD)

263

Controller General

Example Example 1:

BASE(0,1,2)

UNITS=10,10,10,10

DPOS= 0,0,0,0

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PVTPPABS(350,200,10,150,10,250,10)

'in one period, axis 0, axis 1 and axis 2 run 200,

150, 250 separately, end speed is 10,

acceleration decrease to be 0

MOVE_PVTPPABS(350,-200,-10,-150,10,-250,-10,10)

'in one period, axis 0, axis 1 and axis 2 run -200,

-150, -250 separately, end speed is 10,

acceleration decrease to be 0

MOVE_PVTPPABS(350,200,10,150,10,250,10)

MOVE_PVTPPABS(350,-200,10,-150,10,-250,10)

WAIT IDLE

DPOS(0), DPOS(1), DPOS(2) are 200 (vertical scale)

MSPEED(0), MSPEED(1) and MSPEED(2) are 2000 (vertical scale)

264

Instructions MOVE_PTABS, MOVE_PVT

MOVE_PTP – Point to Point

Type Special Motion Instruction

Description This is the linear interpolation motion command used for point-to-point

motion.

This command doesn’t support speed ahead in continuous motion, and it uses

each axis’ SPEED, then speed parameter will enter motion buffer

automatically.

This command doesn’t support modifying online commands dynamically, but

it can use SPEED_RATIO to adjust speed, and VP_MODE configuration is

valid.

Grammar MOVE_PTP (mode, dis1, dis2……)

mode: BIT0: 1 -- speed and acceleration are calculated by each axis’

speed and acceleration limits.

 BIT2: 1 – reserved

dis1: motion distance of first motion, unit: units, support decimal

dis2: motion distance of second motion, unit: units, support decimal

Controller General

Example Example 1:

'example of mode 1 single-axis and VP_MODE usage

rapidstop(2)

trigger

speed_ratio = 1

base(0)

mpos = 0

dpos = 0

atype = 1

speed = 100

265

units = 100

accel = 1000

decel = 1000

vp_mode = 0

move_ptp(1,200)

wait idle

vp_mode = 6

move_ptp(1,200)

MPOS(0), MSPEED(0), vertical scale (Y scale): 200

Example 2:

'example of mode 1 single-axis and speed_ratio usage

rapidstop(2)

trigger

speed_ratio = 1

vp_mode = 0,0

base(0,1)

mpos = 0,0

dpos = 0,0

atype = 1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500

move_ptp(1,150,200)

wait idle

speed_ratio = 0.5

move_ptp(1,150,200)

266

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

Example 3:

'example of mode 0 multi-axis and speed_ratio usage

rapidstop(2)

trigger

speed_ratio = 1

vp_mode = 0,0

base(0,1)

mpos = 0,0

dpos = 0,0

atype = 1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500

move_ptp(0,150,200) 'under mode 0, same effect as “MOVE” command

wait idle

speed_ratio = 0.5

move_ptp(0,150,200)

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

267

Instructions MOVE_PTPABS

MOVE_PTPABS – Point-to-Point | Absolute

Type Special Motion Instruction

Description This is the linear interpolation motion command used for point-to-point

motion.

This command doesn’t support speed ahead in continuous motion, and it uses

each axis’ SPEED, then speed parameter will enter motion buffer

automatically.

This command doesn’t support modifying online commands dynamically, but

it can use SPEED_RATIO to adjust speed, and VP_MODE configuration is

valid.

Grammar MOVE_PTPABS (mode, dis1, dis2……)

mode: BIT0: 1 -- speed and acceleration are calculated by each axis’

speed and acceleration limits.

 BIT2: 1 – reserved

dis1: absolute motion distance of first motion, unit: units, support

decimal

dis2: absolute motion distance of second motion, unit: units, support

decimal

Controller
Valid in ZMC4XX series controllers, and the version above “version_buid

230510”.

Example Example 1:

'example of mode 1 single-axis and VP_MODE usage

rapidstop(2)

trigger

speed_ratio = 1

base(0)

268

mpos = 0

dpos = 0

atype = 1

speed = 100

units = 100

accel = 1000

decel = 1000

vp_mode = 0

move_ptp(1,200)

wait idle

vp_mode = 6

move_ptpabs(1,300)

MPOS(0), MSPEED(0), vertical scale (Y scale): 200

Example 2:

'example of mode 1 single-axis and speed_ratio usage

rapidstop(2)

trigger

speed_ratio = 1

vp_mode = 0,0

base(0,1)

mpos = 0,0

dpos = 0,0

atype = 1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500

move_ptpabs(1,150,200)

269

wait idle

speed_ratio = 0.5

move_ptp(1,100,100)

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

Example 3:

'example of mode 0 multi-axis and speed_ratio usage

rapidstop(2)

trigger

speed_ratio = 1

vp_mode = 0,0

base(0,1)

mpos = 0,0

dpos = 0,0

atype = 1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500

move_ptp(0,150,200) 'under mode 0, same effect as “MOVEABS” command

wait idle

speed_ratio = 0.5

move_ptpabs(0,100,100)

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

270

Instructions MOVE_PTP

MOVE_OP--Output in Buffer

Type Special Motion Instruction

Description Add one output to the motion buffer of BASE axis.

When LOAD is executed in the buffer, only operate the outputs, using the

same grammar as OP.

Normal Mode: error is one scan period, this mode is valid in all controllers.

High Precision Output Mode: error is within 1 microsecond. ZMC4XX series

or controller with firmware version above

20170421 supports.

1. Only valid in OP that supports hardware comparison output.

2. It is necessary to span one period between each effected precision output

MOVE_OP, then it can take effect continuously, and in this gap, new

MOVE_OP will use normal mode automatically. If exceeds the span, new

MOVE_OP also can take effect, then it is continuous MOVE_OP, but only

the first one is valid because of no span time (some controllers can trigger

several precision outputs at the same time, see Controller Hardware

Manual for details. For example, first 8 outputs of ZMC420SCAN support

HPO, and every output uses HPO synchronously)

3. Even if the OP port is independent, when there are different OP ports of

multi-axis, MOVE_OP also can be output highly precision. When HPO

function is not independent, using HPO simultaneously will cause conflicts.

4. MOVE_OP precision function is on the basis of BASE master axis, when

there is multiple axes interpolation, precision output of slave axis whose

ATYPE type is different from BASE master axis can’t be ensured.

5. Different precision parameters can be set through different MOVE_OP

271

instructions, then some parameters can be set well before calling

MOVE_OP, such as, us level control for laser power, precision output,

output delay, etc.

Grammar Grammar1: MOVE_OP ([ionum],value)

ionum: output No., which starts from 0

value: output status, indicating several ports’ statuses by bits when multi

outputs are operated.

Grammar2: MOVE_OP (ionum1, ionum2,value[,mask])

ionum1: the first output channel to operate

ionum2: the last output channel to operate

value: output status indicates status by bits when operating multi outputs.

mask: set value according to bits status, and set which IOs to be operated,

if it is blank, all channels (from the first to the last) are to be

operated

Controller General

Example Example 1: Normal Mode

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

TRIGGER 'Trigger the oscilloscope automatically

MOVE(500)

MOVE_OP (0,ON) 'wait until last instruction finished, OUT0 outputs signal

MOVE(500)

MOVE_OP (0,OFF) 'wait until last instruction finished, OUT0 closes signal

MOVE_OP(1,4,15) 'OUT1-4 output signal, 15 is value of binary status:1111

Some offset in vertical direction was done in order to get better view of the

trajectory curve.

DPOS(0) vertical 1000

OP(0) vertical 1, offset -0.1

OP(1) vertical 1, offset -0.2

OP(2) vertical 1, offset -0.3

OP(3) vertical 1, offset -0.4

OP(4) vertical 1, offset -0.5

272

Example 2: High Precision Output Mode

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

TRIGGER 'trigger oscilloscope automatically

ATYPE=1

MERGE=1

AXIS_ZSET(0) = 2 'open MOVE_OP precision output function

MOVE(100)

MOVE_OP(0,1) 'precision takes effect.

MOVE(100) 'since motion exceeds 2 ms, the next MOVE_OP

will take effect in HPO mode.

MOVE_OP(0,0) 'precision takes effect .

MOVE(100)

Path Curve:

DPOS(0) vertical scale 300

OP(0) vertical scale 1

273

Example 3: Encoder High Precision Output Mode

Valid in controller with firmware version above 20170505.

DIM opnum

AXIS_ZEST=3+16 'BIT4 supports precision output of encoder.

BASE(0)

ATYPE= 4 'set axis as pulse + encoder mode, encoder wiring is necessary.

DPOS=0

MPOS=0

units=1000

SPEED= 1000

ACCEL = 1000

MERGE=1

TRIGGER

opnum = 0

MOVEOP_DELAY =2 'actual output time delays 2 ms.

HW_TIMER(0,10000,5000,1,0,opnum)

OP(opnum,0) 'initialize OP.

HW_TIMER(2, 10000, 5000, 1, 0, opnum) 'switch output to off after 5000 us.

MOVE(200)

MOVE_OP(opnum,1) 'use HW_Timer to close output, close after 5ms.

MOVE(100)

MOVE_OP(opnum,1)

MOVE(50)

END

Path Curve:

DPOS(0) vertical scale 200

OP(0) vertical scale 2

274

Instructions OP，MOVE_OP2 .

Precision Output Mode SYSTEM_ZSET，AXIS_ZSET

MOVE_OP2-Output2 in buffer

Type Special Motion Instruction

Description Add output to the motion buffer, invert the output status after

determined period.

When LOAD is executed in the buffer, only operate the outputs.

One axis only supports one MOVE_OP2 instruction, if the second

MOVE_OP2 is executed, then the former MOVE_OP2 will be closed

automatically.

Grammar MOVE_OP2(ionum,state,offtimems)

ionum: output port NO., default value:0-31.

 state: output state.

 offtimems: the period after which signal inverts. (ms)

Controller General

Example BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

OP(0,OFF) 'shut the OUT0 port.

TRIGGER 'Trigger the oscilloscope automatically

MOVE(500)

MOVE_OP2 (0,ON,1000) 'output 0 outputs 1s pulse after the former

instruction is finished. This instruction will not

obstruct the execution of next instruction.

MOVE(-500)

Motion Path:

DPOS(0) vertical scale 1000

275

OP(0) vertical scale 1

Instructions MOVE_OP，OP

MOVE_TABLE – Table in Buffer

Type Special Motion Instruction

Description Add one TABLE to motion buffer based on BASE axis motion.

When LOAD is executed in the buffer, only modifies TABLE. MTYPE and

MOVE_OP are the same.

Grammar MOVE_TABLE(tablenum, value)

tablinum: TABLE NO.

value: the value to be modified.

Controller General

Example BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

TABLE(0)=0 'assign Table(0) as 0

?TABLE(0) 'print the value of Table(0), result:0

TRIGGER 'trigger the oscilloscope automatically

MOVE(500)

MOVE_TABLE(0, 60) 'after motion finished, assign Table(0) as 60.

MOVE(500)

WAIT IDLE

?TABLE(0) 'print the changed value of Table(0), result:60

Path Curve:

DPOS(0) vertical scale 1000

TABLE(0) vertical scale 100

276

Instructions TABLE

MOVE_PARA-Parameters in buffer

Type Special Motion Instruction

Description Modify parameters in motion buffer based on BASE axis motion.

When LOAD is executed in the buffer, only modifies parameters. MTYPE

value of this instruction is same as MTYPE value of MOVE_OP.

Grammar MOVE_PARA(PARANAME,INDEX,VALUE)

paraname: parameter’s name, must be non-read only parameters in ?*set

index: parameters NO.

value: Parameters value

Controller With firmware version above 20170503

EXAMPLE Example 1: Modify SPEED

BASE(0) 'select axis 0

ATYPE=1

SPEED=100

PRINT SPEED 'print result: 100

MOVE_PARA(speed,0,200) 'change SPEED value as 200 of axis 0

DELAY(1000)

PRINT SPEED 'print result: 200

Example 2: Single-axis speed changing

BASE(0) 'select axis 0

UNITS=1000

ATYPE=1

SPEED=100

ACCEL=1000

DECEL=1000

SRAMP=100

DPOS=0

MERGE=ON

TRIGGER

277

MOVE(100)

MOVE_PARA(SPEED,0,200)

MOVE(200)

MOVE_PARA(SPEED,0,150)

MOVE(100)

END

Vertical scale 200

Example 3: Multi-axis speed changing

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(0)

BASE(0,1)

DPOS=0,0

UNITS=100,100

SPEED=100,100 'set speed

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SRAMP=100,100 'S curve

MERGE=ON 'open continuous interpolation

CORNER_MODE=2+8+32 'set corner deceleration

DECEL_ANGLE = 15 * (PI/180) 'set the angle of start deceleration

STOP_ANGLE = 45 * (PI/180) 'set the angle of end deceleration

ZSMOOTH=2

FORCE_SPEED=100 'it works when proportional deceleration

TRIGGER 'trigger oscilloscope automatically

MOVE(100,0)

MOVE_PARA(SPEED,0,200)

278

MOVE(0,100) 'motion angle is over 45, total deceleration

MOVE_PARA(SPEED,0,120)

MOVE(60,100) 'motion angle is 30.96, which is within 15~45,

proportional deceleration

MOVE_PARA(SPEED,0,50)

MOVE(70,100) 'motion angle is 4.03, which is less 15, not to

decelerate

END

Vertical scale 200

MOVE_PWM-PWM in Buffer

Type Special Motion Instruction

Description Operate PWM in motion buffer based on BASE axis motion.

When LOAD is executed, only operate the PWM. MTYPE value of this

instruction is same as MTYPE value of MOVE_OP.

When the duty ratio is 0, PWM can be closed, don’t set PWM frequency as 0

for closing it, PWM frequency should be modified before PWM switch

setting.

Grammar MOVE_PARA(PWMINDEX,duty[,freq])

pwmindex: PWM NO.

duty: duty ratio, the ratio of valid signal electrical level to entire period,

and the range is 0-1, when it is 0, close pwm. In one period, output

valid electrical level first, invalid will be output next.

279

freq: frequency, the default value is 1KHz, for hardware up to 1MHz, for

 software up to 2KHz.

Controller With firmware version above 20170503

Routine RAPIDSTOP(2)

WAIT IDLE

TRIGGER

TICKS=0

BASE(0)

SPEED = 1000

move(10)

MOVE_PWM(0, 0.111, 2000) 'when axis0 reaches 10, PWM0 activates.

MOVE_DELAY(111)

MOVE_PWM(0, 0.333)

MOVE_DELAY(111)

MOVE_PWM(0, 0.555, 3000)

move(100)

WHILE NOT IDLE

MOVE_PWM(0,0,1000) 'close PWM

? -TICKS, PWM_FREQ(0), PWM_DUTY(0)

WA 10

WEND

Instructions PWM_DUTY, PWM_FREQ

MOVE_SYNMOVE-Synchronous Axis in Buffer

Type Special Motion Instruction

Description Tigger other axis motions in motion buffer based on BASE, the present

axis waits.

MTYPE value of this instruction is same as MYTPE value of MOVE_Delay.

Grammar MOVE_SYNMOVE(AXISNUM,DIS[,IFSP])

axisnum: the synchronous axis NO.

dis: relative motion distance

ifsp: use SP function or not, not to use by default.

Controller With firmware version above 20170503

Routine RAPIDSTOP(2)

WAIT IDLE

TRIGGER

TICKS=0

BASE(0,1)

DPOS=0,0

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

280

MOVE(100)

MOVE_SYNMOVE(1,100,0) 'axis1 starts to move when axis0 reaches 100.

MOVE(100) 'wait until axis synchronization finished, axis 0

continues to move

Motion Path:

DPOS(0) vertical scale 200

DPOS(1) vertical scale 200

Instructions MOVE_ASYNMOVE

MOVE_SYNMOVE-Synchronous Axis in Buffer 2

Type Special Motion Instruction

Description Tigger other axis motions in motion buffer based on BASE, the present

axis doesn’t wait.

MTYPE value of this instruction is same as MYTPE value of MOVE_OP.

Grammar MOVE_SYNMOVE(axisnum,dis[,ifsp])

axisnum: the synchronous axis NO.

dis: relative motion distance

ifsp: use SP function or not, not to use by default.

Controller With firmware version above 20170503

Routine RAPIDSTOP(2)

WAIT IDLE

TRIGGER

TICKS=0

BASE(0,1)

DPOS=0,0

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

MOVE(100)

MOVE_SYNMOVE(1,100,0) 'axis1 starts to move when axis0 reaches 100.

281

MOVE(100) 'axis 0 continues to move

Motion Path:

DPOS(0) vertical scale 200

DPOS(1) vertical scale 200

Instructions MOVE_ASYNMOVE

MOVE_TASK-Start Task in Buffer

Type Special Motion Instruction

Description Add TASK to motion buffer.

When LOAD is executed, only operate TASK. MTYPE value of this

instruction is same as MTYPE value of MOVE_OP.

When task is started, error will occur, but no influence on procedure

execution.

Grammar MOVE_TASK(tasknum, label)

tasknum: task NO.

label: function name or Label(:).

Controller General

Example BASE(0)

DPOS=0

UNITS=100

ACCEL=1000

DECEL=1000

SPEED=100

ACCEL=1000

DECEL=1000

MOVE(100)

MOVE_TASK(1,task_move) 'start task_move as task 1 after former motion

is finished.

MOVE(100)

END

TASK_MOVE:

282

 PRINT "TASK_MOVE"

END

Instructions RUNTASK，RUN

MOVE_AOUT-Analog Signal in Buffer

Type Special Motion Instruction

Description Add one AOUT instruction into BASE axis motion buffer.

When LOAD is executed, only change value of AOUT, MTYPE value of this

instruction is same as MYTPE value of MOVE_OP.

When laser energy output is set, precision output is valid.

Grammar MOVE_AOUT(danum, value)

danum: DA NO.

value: value to be modified.

Controller General, controller with DA channels.

Example BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

AOUT(0)=0 'assign value to DA0.

?AOUT(0) 'print

TRIGGER 'trigger the oscilloscope automatically

MOVE(500)

MOVE_AOUT(0, 30.5) 'assign 30.5 to DA0 after first motion is finished.

MOVE(500)

WAIT IDLE

?AOUT(0) 'print DA0,it is 30.5.

Motion Path:

DPOS(0) vertical scale 1000

AOUT(0) vertical scale 100

283

Instructions AOUT

MOVE_DELAY-Delay in buffer

Type Special Motion Instruction

Description Add one delay to motion buffer of BASE axis.

When LOAD is executed, only assign the time value of delay.

Speed will decrease to 0 after the former instruction ends.

Grammar MOVE_DELAY(timems)

Other Name：

move_wa(timems)

timems: delay time, ms as units.

Controller General

Example BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=2000

DECEL=2000

TRIGGER 'trigger the oscilloscope automatically

MOVE(500)

MOVE_DELAY(1000) 'wait 1 second between 2 MOVE instructions.

MOVE(500)

Motion Path:

DPOS(0) vertical scale 1000

Instructions DELAY

MOVE_WAIT - Wait in Buffer

Type Special Motion Instruction

Description Add one condition judge to BASE axis motion buffer.

When LAOD is executed, don’t do any motions. It only waits the specified

284

condition to be met. And the speed will decrease to 0 automatically when

former motion commands end.

Grammar MOVE_WAIT(paraname, paranum, eq, value)

paraname: choose parameter’s name

(it can be DPOS, MPOS, IN, AIN, VSPEED, MSPEED, MODBUS_REG,

MODBUS_IEEE, MODBUS_BIT, TABLE, VECTOR_BUFFERED,

REMAIN.)

paranum: parameter No. / axis No.

eq: 1 ≥

-1 ≤ Invalid for IN port or other BIT based parameters.

0 Not recommend

value: comparison value.

Controller With firmware version above 150802, or above XPLC160405

Example BASE(0)

DPOS=0

ATYPE=1

UNITS=100

SPEED=200

ACCEL=2000

DECEL=2000

TRIGGER 'trigger the oscilloscope automatically

MOVE(500)

MOVE_WAIT(IN, 0, 0, 1) 'execute the next motion buffer until IN(0)

appear signal

MOVE(500)

Motion Path:

DPOS(0) vertical scale 1000

IN(0) vertical scale 1

Instructions WAIT_UNTIL

285

MOVE_CANCEL—Stop Buffer

Type Special Motion Instruction

Description Add CANCEL in motion buffer

Grammar MOVE_CANCEL(iaxis, imode)

iaxis: axis to operate

 imode: select CANCEL mode, same as CANCEL instruction

Controller General

Example MOVE_CANCEL(1,0) ′the instruction of stop axis1 is written in axis0 buffer

Instruction CANCEL

MOVE_HWPSWITCH2 — Buffer hardware comparison

output

Type Special Motion Instruction

Description

Enter HW_PSWITCH2 command into buffer, hardware comparison

output will be executed in motion buffer.

Same as HW_PSWITCH2, HW_TIMER parameter can be modified

dynamically, but controllers must support HW function.

Grammar MOVE_HWPSWITCH2(mode,[…])

 mode: open different comparers, parameters to be filled also different.

Refer to HW_PSWITCH2 command.

Controller General

Example

BASE(0)

UNITS=100

SPEED=100

ACCEL=1000

DECEL=1000

DPOS=0

MPOS=0

OP(0,OFF)

TABLE(0,50,100,150,200) 'set compare points’ coordinates

MOVE_HWPSWITCH2(2) 'stop and delete uncompleted compare points

MOVE_HWPSWITCH2(1,0,1,0,3,1) 'compare 4 points, mode 1, operate

OUT0

TRIGGER 'trigger oscilloscope

MOVE(300)

END

Compare output:

Same output effect as HW_PSWITCH2, but this example enters 3 commands

into buffer.

286

MPOS(200) vertical scale

OP(0) vertical scale

Instruction HW_PSWITCH2

MOVE_HWTIMER – Buffer Hardware Timer

Type Special Motion Instruction

Description

Enter HW_TIMER command into motion buffer, and execute hardware

timer in motion buffer.

Parameters are the same as HW_TIMER, and HW_TIMER parameters can be

changed dynamically, but controllers must support HW function.

Must use MOVE_OP to trigger HW_TIMER, OP can’t trigger.

When HW_TIMER is not used, calling mode 0 is off, otherwise, following

output will be effected.

Grammar MOVE_HWTIMER (mode, […])

 mode: mode 0 / 1 / 2 / 3 / 4, the parameters that need to be filled in are

also different, see HW_TIMER syntax description and routine.

Controller General

Example

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

TRIGGER

MOVE_OP(0,OFF)

MOVE_HWTIMER(2, 1000000, 200000, 5, OFF, 0)

‘when output 0 becomes ON, hardware timer triggers to do timing, turn to off

after 500ms, the period is 5 times.

MOVE_OP(0,ON)

END

287

Instruction HW_TIMER, HW_PSWTICH2

MOVE_ADDAX – Motion Superposition

Type Single Axis Motion Intructions

Description

Motion superposition adds to buffer, superimposes the motion of one axis

to another axis, supports BASE_MOVE, so that destaxis can be adjusted

at will.

The ADDAX command superimposes the number of pulses, not the set

units.

Conversion relationship: superimposing axis movement distance *

superimposing axis UNITS/superimposed axis UNITS=superimposed axis

movement distance.

Suppose the UNITS of axis A is 100, the UNITS of axis B is 50, and the

superimposing axis movement is 100

Superimpose the movement of axis A to axis B. At this time, axis A

shows a movement of 100, and axis B moves 100*100/50=200.

The movement of axis B is superimposed on axis A. At this time, axis B

shows a movement of 100, and axis A moves 100*50/100=50.

The axes cannot be superimposed on each other at the same time. After A is

superimposed on B, B can no longer be superimposed on A.

Support series superposition, A superimposed to B, then B superimposed to C.

Support parallel superposition, A motion is superimposed on B and C at the

same time.

When superimposing, the speed changes from the superimposed axis, and the

acceleration and deceleration are determined according to the acceleration and

deceleration of the superimposing axis and the ratio of the units of the two

axes.

ADDAX has no effect when the axis MTYPE is FRAME or REFRAME.

288

Grammar ZMC4XX series and above controllers with 20220728 firmware adds

superposition.

MOVE_ADDAX(srcaxis ,[imode], [para])

destaxis: the superposed target axis number

srcaxis: the superposed axis number of the source axis

imode: superposition mode

0: default value, single-axis superposition, compatible with previous

direct pulse number superposition

1: single-axis superposition, support scale adjustment.

MOVE_ADDAX(srcaxis, 1, ratio)

ratio: ratio value, supports floating point numbers, target axis

distance = source axis distance * ratio.

2: single-axis superimposition, supports gear ratio adjustment

MOVE_ADDAX(srcaxis, 2, ratioin, ratioout)

ratioin: numerator, integer, supports negative numbers

ratioout: denominator, positive integer.

target axis distance = source axis distance * ratioin / ratioin

3: single axis superimposed to two axes, support angle adjustment

BASE(destaxis1, destaxis2)

MOVE_ADDAX(srcaxis, 3, angle)

destaxis: the superposed target axis 1, 2

angle: angle, radian value, target axis 1 distance = source axis

distance * cos(angle).

target axis2 distance = source axis distance * sin(angle).

Note: If needs to cancel, cancel the two axes MOVE_ADDAX(-1,

3, 0) or MOVE_ADDAX(-1) AXIS (the superposed axis No.)

respectively

 4: SCAN linkage superposition, use SCAN axis to compensate the

deviation of platform axis, and their directions and amounts must be

consistent, if not, please adjust gear ratio or add ratio for SCAN correction.

 BASE(destaxis, destaxis2)

 ADDAX(srcaxis, 4, srcaxis2)

 Use srcaxis to compensate destaxis, use srcaxis2 to compensate

destaxis2.

 Note: two axes should be cancelled together, ADDAX(-1, 4, -1) or

ADDAX(-1) AXIS (superposed axis No.)

 5: SCAN linkage superposition, platform axis is superposed at SCAN

axis, their directions and amounts must be consistent, if not, please adjust gear

ratio or add ratio for SCAN correction.

 BASE(destaxis, destaxis2)

289

 ADDAX(srcaxis, 5, srcaxis2)

 srcaxis is superposed at destaxis, srcaxis2 is superposed at

destaxis2.

 Note: two axes should be cancelled together, ADDAX(-1, 5, -1) or

ADDAX(-1) AXIS (superposed axis No.)

Add BASE_MOVE support:

BASE_MOVE=moveaxis

BASE(destaxis)

MOVE_ADDAX(srcaxis ,[imode], [para])

BASE_MOVE=-1

Controller General

Example

Example 1: For more mode description, see the ADDAX command

BASE(0,1) 'select axis number

UNITS = 100,100

DPOS=0,0

TRIGGER

BASE(1) 'select the axis to be superimposed

ADDAX(0,2,3,5)AXIS(1) 'mode 2 superpose, axis 0 superposes on axis 1

MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1)

?"axis 1 superposing axis number" ADDAX_AXIS(1)

ADDAX(-1) AXIS(1) 'cancel superposition

END

The pulse equivalent is the same, and the movement distance of axis 1 is 3/5

times that of axis 0.

Instruction ADDAX

MOVELIMIT – Speed Limit

Type Special Motion Instruction

290

Description Add speed limit to the end of present motion, in order to force the axis to

decelerate at the turning corner.

Grammar MOVELIMIT(limitspeed)

limitspeed: the limit speed value.

Controller General

Example BASE(0)

UNITS=100

DPOS=0

SPEED=1000 'axis speed

ACCEL=1000 'axis acceleration.

DECEL=1000

SRAMP=100

MERGE=ON ‘open continuous interpolation mode, the speed

will be continuous between multi movements.

TRIGGER ‘trigger the oscilloscope automatically

MOVE(2000)

MOVELIMIT(100) ‘speed between two motions will decrease to

100.

MOVE(2000)

Interpolation Speed (with MOVELIMIT)

MSPEED(0) vertical scale 1000

Interpolation Speed (without MOVELIMIT):

MSPEED(0) vertical scale 1000

291

Instructions CORNER_MODE

7.4 Synchronization Motion Instruction

CONNECT-Synchronization Motion

Type Synchronization Motion Instruction

Description Target position of present axis and measured position of driving_axis will

be linked by electronic gearbox.

The link relationship is calculated in pulse amount, so do take UNITS of axes

into consideration. Use CANCEL to cancel connection.

Suppose UNITS of link axis0 is 100, UNITS of link axis1 is 10. in this

situation, when using CONNECT to link these two axes, ratio=1, if axis0

moves s1=100, then axis1 will move 1000, s1*UNITS(0)*ratio/UNITS(1).

Ratio can be changed dynamically by calling instruction repeatedly.

Usually used to link Handwheel.

Grammar CONNECT（ratio, driving_axis）

ratio: the ratio can be negative or positive, it is ratio of pulse amount.

driving_axis: axis NO. of link axis, it is encoder axis when handwheel

Controller General

Example RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

ATYPE=1,1

UNITS=10,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER 'Trigger the oscilloscope automatically

MOVE(100) AXIS(1) 'axis1 moves 100, axis 0 moves 0.

WAIT IDLE(1)

CONNECT(1,1) AXIS(0) 'axis0 is linked to axis1, ratio is 1.

MOVE(100) AXIS(1) 'axis1 moves 100, then axis0 moves 1000.

Motion Path

DPOS(0) vertical scale 1000

DPOS(1) vertical scale 500

292

Instructions CLUTCH_RATE，CONNPATH

CONNPATH-Synchronization Motion 2

Type Synchronization Motion Instruction

Description Target position of present axis and interpolation vector length of

driving_axis will be linked by electronic gear.

It needs to be connected to the master axis of the interpolation motion to

establish a connection with the length of the interpolation vector, and the

effect of connecting to the slave axis is the same as CONNECT.

The link relationship is calculated in pulse amount, so do take UNITS of axes

into consideration. Use CANCEL to cancel connection.

Ratio can be changed dynamically by calling instruction repeatedly.

Grammar CONNECT（ratio, driving_axis）

ratio: the ratio can be negative or positive, it is ratio of pulse amount.

driving_axis: axis NO. of link axis, it is encoder axis when handwheel

Controller General

Example RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1,2)

ATYPE=1,1,1

UNITS=100,100,100

SPEED=100,100,100

ACCEL=1000,1000,1000

DECEL=1000,1000,1000

TRIGGER 'Trigger the oscilloscope automatically

CONNPATH(1,0) AXIS(2) 'axis 2 is linked to axis 0 (master axis of

interpolation), ratio is 1.

MOVE(100,100) 'interpolation motion.

Motion Path

DPOS(0) vertical scale 100, offset -50

293

DPOS(1) vertical scale 100, offset -50

DPOS(2) vertical scale 100, no offset

Instructions CLUTCH_RATE, CONNECT

CAM-Cam Based Motion

Type Synchronization Motion Instruction

Description CAM will determine motion of axis according to data saved in TABLE,

data in TABLE is related to position where the motion should reach, it is

absolute position relative to start position.

Note: two or more CAM instructions can use data in the same TABLE to

generate its path.

Total motion time is determined by set speed and the fourth parameter, actual

speed of motion is determined automatically by motion path based on TABLE

data and total motion time.

Data in TABLE should be filled by manual, first data is guide point, 0 is

recommended to be as this guide point.

Table data*table multiplier=pulse amount to deliver.

Ensure the parameter (distance) delivered by instruction is integer value of

pulse, or it will emerge floats, then motion has minor errors.

Grammar CAM(start point, end point, table multiplier, distance)

start point: TABLE No. of start point, save position of first point

end point: TABLE NO. of end point.

table multiplier: position multiply this value, usually this value is set the

 same as UNITS.

distance: refer to motion distance.

294

total motion time=distance/Axis SPEED.

Controller General

Example EXAMPLE 1:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0)

UNITS=100

DPOS=0

ACCEL=1000

DECEL=1000

SPEED=100

TABLE(10,0,80,75,40,50,20,50,0) 'table starts to save data from 10.

TRIGGER 'trigger the oscilloscope automatically

CAM(10,17,100,500) 'motion path is from table(10) to table(17),

total motion time is 500/100=5.

Path and Speed:

DPOS(0) vertical scale 100

MSPEED(0) vertical scale 100

EXAPMLE 2: application of CAM in high speed, high precision motion.

DIM num_p,scale,m,t 'defined variables

num_p=100

scale=500

FOR p=0 TO num_p

TABLE(p,((-SIN(PI*2*p/num_p)/9PI*2))+p/num_p)*scale

'table save cam motion parameters

NEXT

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0) 'select axis 0

DEFPOS(0)

SERVO=ON

295

UNITS=500

SPEED=1000

ACCEL=1000000

DECEL=1000000

TRIGGER

m=10 'it means the multiple of distance

t=0.3 'operation time

SPEED=1000

CAM(0,100,m,SPPEED*t)

WAIT IDLE

m=10

t=0.3

SPEED=1000

CAM(0,100,-m,SPEED*t)

WAIT IDLE

m=10

t=0.2

SPEED=500

CAM(0,100,m,SPEED*t)

WAIT IDLE

m=10

t=0.2

SPEED=500

CAM(0,100,-m,SPEED*t)

WAIT IDLE

m=20

t=0.3

SPEED=1000

CAM(0,100,m,SPEED*t)

WAIT IDLE

m=20

t=0.5

SPEED=500

CAM(0,100,-m,SPEED*t)

WAIT IDLE

Interpolation Path:

DPOS(0) vertical scale 20

MSPEED(0) vertical scale 100

296

Example 3: Continuous Cam

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

UNITS=100

DPOS=0

ACCEL=1000

DECEL=1000

SPEED=100

DIM rad,x,deg

FOR deg= 0 TO 360 STEP 1 'build 0-360º cam data

rad = deg * 2 * PI / 360

x = deg * 2 + 10000 * (1 - COS (rad))

TABLE (deg ,x)

print deg,x

NEXT deg

TRIGGER 'trigger oscilloscope automatically

CAM(0,360,100,100) 'motion path is from table 0 to 360, motion total

time is 100/100=1s

CAM(0,360,100,200) 'motion path is from table 0 to 360, motion total

time is 200/100=2s

CAM(0,360,100,300) 'motion path is from table 0 to 360, motion total

time is 300/100=3s

WAIT UNTIL REMAIN_BUFFER(1) > 0

'save motion instruction until the buffer space is blank.

CAM(0,360,100,100) 'motion path is from table 0 to 360, motion

distance is 100*table data/units(0)

CAM(0,360,200,100) 'motion path is from table 0 to 360, motion

distance is 200*table data/units(0)

DPOS(0) vertical scale 20000

MSPEED(0) vertical scale 60000

297

Instructions CAMBOX

CAMBOX- Following Motion of CAMBOX

Type Synchronization Motion Instruction

Description CAMBOX will determine motion of axis according to data saved in

TABLE, data in TABLE is related to position where the motion should

reach, it is position relative to start position. Motion of slave axis is

determined by reference axis.

Note: two or more CAMBOX instructions can use data in the same TABLE to

generate its path.

Total motion time is determined by motion distance and axis speed of

reference axis, and the speed is matched automatically.

Data in TABLE should be filled by manual, first data is guide point, 0 is

recommended to be as this guide point.

Table data*table multiplier=Pulse amount to deliver.

Ensure the parameter(distance) delivered by instruction is integer value of

pulse, or it will emerge floats, then motion has minor errors.

Grammar CAMBOX(start_point, end_point, table_multiplier, link_distance, link_axis[,

link_options][, link_pos][, link_offpos])

start point: TABLE No. of start point, save position of first point.

end point: TABLE NO. of end point.

table multiplier: position multiply this value, usually this value is set the same

as UNITS

link_distance: motion distance of reference axis.

link_axis: axis number of reference axis.

link_options: link mode with reference axis, different binary bits stand for

different meaning.

Bit Meaning

bit 0 Present axis starts to link with reference axis when MARK

298

signal of reference axis is triggered.

bit 1
Present axis starts to link with reference axis when reference

axis reaches set absolute position.

bit 2
Repeat continuous double-direction motion automatically.

(cancel the repeat by setting REP_OPTION=1.)

bit 4
Start from middle position, then use power failure interruption

to realize CAMBOX recovering.

bit 5
Present axis links with reference axis when reference axis is

moving in positive direction.

bit 8

Present axis starts to link with reference axis when MARKB

signal of reference axis is triggered, and latch axis is the

reference axis. Need latest firmware to support.

link_pos: when link_options is set as 2, then it means the absolute position

where link between reference axis and slave axis starts.

Link offpos: when Bit4 of link_options is 1, it means the relative distance that

main axis has finished.

Controller General

Example ERRSWITCH = 3

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1) 'select axis 0

ATYPE=1,1 'pulse based stepper or servo

DPOS = 0,0

UNITS = 100,100 'pulse equivalent

SPEED = 200,200

ACCEL= 2000,2000

DECEL= 2000,2000

'calculate data in TABLE

DIM deg, rad, x, stepdeg

stepdeg = 2 'change sections of data to generate, the more

sections it generates, the smoother speed will be.

FOR deg=0 TO 360 STEP stepdeg

 rad = deg * 2 * PI/360 'transfer to rad.

 x = deg * 25 + 10000 * (1-COS(rad))/100

 TABLE(deg/stepdeg,x) 'save into TABLE

 trace deg/stepdeg,x

NEXT deg

TRIGGER 'trigger the oscilloscope automatically

WHILE 1 'cycle motion

 IF IN (0) = on then 'trigger when in(0) is on.

 DPOS= 0,0

CAMbox(0,360/stepdeg, 100, 500, 1,2,100)

'start to link when axis1 reaches 100.

 MOVE(600) AXIS(1)

299

 WAIT UNTIL IDLE AND IDLE 'wait until motion finishes.

 DELAY(100) 'time delay

 ENDIF

WEND

END 'stop present task.

Motion Path:

DPOS(0) vertical scale 5000

DPOS(1) vertical scale 500

Speed Curve:

MSPEED(0) vertical scale 3000

MSPEED(1) vertical scale 500

Instructions CAM

MOVELINK-Auto Cam

Type Synchronization Motion Instruction

Description Self-defined cam motion with adjustable acceleration and deceleration

stages.

The connection axis is slave axis, the axis to be linked is reference axis.

Distance of slave axis is divided into 3 parts to match motion of reference

300

axis, they are acceleration, uniform and deceleration.

During the acceleration or deceleration stage, in order to match the speed, link

distance (distance of reference axis) must be two times of distance (distance

of slave axis).

Ensure the parameter(distance) delivered by instruction is integer value of

pulse, or it will emerge floats, then motion has minor errors.

Grammar MOVELINK (distance, link dist, link acc, link dec, link axis[, link options] [,

link pos][, link offpos])

distance: distance of slave axis during the link, this parameter can be

negative or positive. Units as unit. When it is positive, it will

move in forward direction. When it is minus, it will move in

inverse direction.

link dist: absolute distance of reference axis during the link, units as unit.

link acc: absolute distance of reference axis during acceleration stage of

salve axis, units as unit.

link dec: absolute distance of reference axis during deceleration stage of

salve axis, units as unit.

Note: if sum of link dec and link acc is bigger than link dist, then they

will be minished as per the scale until the sum is equal to link dist.

link axis: axis number of reference axis.

link options: link mode, different binary bits stand for different meaning.

Mode Bit Description

1 Bit 0 link starts when MARK signal of reference axis is triggered.

2 Bit 1
link starts when reference axis reaches a determined absolute

position. (see link pos parameter description)

4 Bit 2
MOVELINK will execute repeatedly, and it can be inversed. (this

mode can be cancelled by setting the bit1 of REP_OPTION as 1.)

8 Bit 3
curve acceleration or deceleration S mode, firmware version

above 20170502 supports.

16 Bit 4
start from a position in the middle, then use power failure

interruption to realize link recovering.

32 Bit 5
link happens only when reference axis is moving in positive

direction

256 Bit 8
link starts when MARKB signal of reference axis is triggered,

need latest firmware version to support.

link pos: when link options is set as 2, which means absolute position of

reference axis where link starts.

link offpos: when bit4 of link_options is set as 1, which means the

relative distance that master axis has finished, firmware with

version above 20170428 supports.

Controller General

Example Example1:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1) 'set axis0 as slave axis, set axis1 as reference axis.

301

UNITS=100,100

ATYPE=1,1

DPOS=0,0

SPEED=100,100

ACCEL=2000,2000

DECEL=2000,2000

TRIGGER 'trigger the oscilloscope automatically

MOVELINK(100,100,0,0,1) AXIS(0)

'the effect is the same as CONNET when

Acceleration or Deceleration is not set, and no

concern of difference of UNITS, no error

accumulation will happen, motion ratio is 1:1 in

this situation.

MOVE(150)AXIS(1) 'axis1 moves 150, and axis 0 will moves 100.

Interpolation path and speed curve:

DPOS(0) vertical scale 100, no offset

DPOS(1) vertical scale 100, offset 10

MSPEED(0) vertical scale 100, no offset

MSPEED(1) vertical scale 100, offset 10

MOVELINK(50,100,0,0,1), vertical scales are the same:

302

Example2: Fly Shear Application:

The sectional material keeps moving, and work station keeps stand first.

When material moves a determined distance, then the station starts to

accelerate until the speed is same as material feeding, the tool S1 will fall

down to cut the material, return after cutting is finished, then station then

starts to decelerate, move back to its starting position. The process cycle will

repeat continuously to get material parts with determined length.

Suppose required length of material is 4m, the motion distance of work station

is 1m, axis1 is defined as reference axis (for material feeding), axis 0 is

defined as slave axis (fly shear work station), OUT0 is defined as tool cutting

control point, then the code is as follow:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

UNITS=10000,10000

303

ATYPE=1,1

DPOS=0,0

SPEED=1,1 'running speed of profile is 1m/s, 60m/min

ACCEL=2,2

DECEL=2,2

VMOVE(1)AXIS(1) 'the material keep feeding.

TRIGGER 'trigger the oscilloscope automatically

WHILE 1

BASE(0)

MOVELINK(0,1,0,0,1)AXIS(0) 'before the material feeds 1m, station

keeps stand.

MOVELINK(0.4,0.8,0.8,0,1)AXIS(0) 'the station starts to accelerate.

MOVELINK(0.2,0.2,0,0,1)AXIS(0) 'follow 0.2m with same speed.

MOVE_OP2(0,on,1000) 'cutting tool falls down, return after 1s.

(note: time should be calculated)

MOVELINK(0.4,0.8,0,0.8,1)AXIS(0)

'deceleration stage of work station.

MOVELINK(-1,1.2,0.5,0.5,1)AXIS(0)

'work station returns to starting position.

WEND

Motion Path and Speed Curve:

DPOS(0) vertical scale 1, no offset

MSPEED(0) vertical scale 1, no offset

DPOS(1) vertical scale 1, no offset

MSPEED(1) vertical scale 1, no offset

The operation curve in one period:

304

Station (slave axis) distance:0.4 (acceleration stage) + 0.2 (synchronous

follow) + 0.4 (deceleration stage) = 1m (units), then move back 1 unit.

Material feeding (reference axis):1+0.8+0.2+0.8+1.2=4m, and total process is

in constant speed.

Example 3: when link options bits3=1, slave axis accelerates and

decelerates in S curve.

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

DATUM(0)

BASE(0,1)

UNITS=10000,10000

ATYPE=1,1

DPOS=0,0

SPEED=1,1 'material operation speed is 1m/s, 60m/min

ACCEL=2,2

DECEL=2,2

SRAMP=200,200

VMOVE(1)AXIS(1) 'the material keep feeding.

TRIGGER 'trigger the oscilloscope automatically

WHILE 1

BASE(0)

MOVELINK(0,1,0,0,1,8)AXIS(0) 'before the material feeds 1m,

station keeps stand.

MOVELINK(0.4,0.8,0.8,0,1,8)AXIS(0) 'the station starts to accelerate.

305

MOVELINK(0.2,0.2,0,0,1,8)AXIS(0) 'follow 0.2m with same speed.

MOVE_OP2(0,on,1000) 'cutting tool falls down, return after 1s.

(note: time should be calculated)

MOVELINK(0.4,0.8,0,0.8,1,8)AXIS(0)

'deceleration stage of work station.

MOVELINK(-1,1.2,0.5,0.5,1,8)AXIS(0)

'work station returns to starting position.

WEND

Motion Path and Speed Curve:

DPOS(0) vertical scale 1, no offset

MSPEED(0) vertical scale 1, no offset

DPOS(1) vertical scale 1, no offset

MSPEED(1) vertical scale 1, no offset

Instructions MOVELINK_MODIFY，MOVESLINK

MOVESLINK-Auto Cam 2

Type Synchronization Motion Instruction

Description This instruction is used for self-defined cam motion, it plans the middle

curve automatically, no need of calculating cam table.

The connection axis is following axis, the axis to be linked is reference axis.

During the acceleration or deceleration stage, in order to match the speed,

start sp of the next MOVESLINK must be same as end sp of current

MOVESLINK.

Please ensure the parameter(distance)*UNITS passed by instruction is an

306

integer value of pulse, otherwise there will be small errors caused by floats.

Grammar MOVELINK (distance, link dist, start sp, end sp, link axis[, link options] [,

link pos][, link offpos]) behind three are optional parameters, when they are

not set, comma must be added, because controller judges them according to

their position.

distance: distance of slave axis during the link, this parameter can be

negative or positive. Units as unit. When it is positive, it will

move in forward direction. When it is negative, it will move in

inverse direction.

link dist: absolute distance of reference axis during the link, units as unit.

start sp: speed ratio of reference axis and slave axis when starting,

units/units as unit. Negative value means the slave axis moves

in inverse direction.

end sp: speed ratio of reference axis and slave axis when ending,

units/units as unit. Negative value means the slave axis moves

in inverse direction. Note: when start sp = end sp =

distance/link dist, it moves at constant speed.

link axis: axis No. of reference axis.

link options: link mode, different binary bits indicate different meanings.

Mode Bit Description

1 Bit 0
The connection starts exactly at the moment the MARK event is

triggered on the reference axis.

2 Bit 1
The connection starts when reference axis arrives at one absolute

position (refer to “link pos”).

4 Bit 2

When Bit2 is set, MOVELINK will automatically execute in

cycle, and it can run inversely (this mode can be OFF through

setting Bit1 of axis parameter REP_OPTION as 1).

16 Bit 4

Use link offpos to start from a position in the middle, then

recover through power failure interruption. Valid in firmware

version 20170428 or above.

32 Bit 5 It connects only when the reference axis runs forward.

256 Bit 8
The connection starts exactly at the moment the MARK event is

triggered on the reference axis, but it needs the latest firmware.

link pos: when link options is set as 2, which means the connection starts

when the reference axis is at the absolute position value.

link offpos: when bit4 of link_options is set as 1, this parameter is the

relative distance that master axis has finished. Valid in firmware

version 20170428 or above.

Controller General

Example Functions are same as MOVELINK, the difference is only the parameter

configuration.

Example1:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

DATUM(0)

BASE(0,1)

307

UNITS=100,100

ATYPE=1,1

DPOS=0,0

SPEED=100,100

ACCEL=2000,2000

DECEL=2000,2000

TRIGGER 'trigger the oscilloscope automatically

MOVELINK(50,100,0,1,1) AXIS(0)

'axis 0 follows axis 1, speed is from 0 to the same

MOVELINK(100,100,1,1,1) AXIS(0)

'axis 0 follows axis 1, the constant speed 100units

MOVELINK(50,100,1,0,1) AXIS(0)

'axis 0 follows axis 1, speed is decreased to 0

VMOVE(1) AXIS(1)

Interpolation path and speed curve:

DPOS(0) vertical scale 200, no offset

DPOS(1) vertical scale 200, offset 10

MSPEED(0) vertical scale 200, no offset

MSPEED(1) vertical scale 200, offset 50

Example2: Fly Shear

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

DATUM(0)

BASE(0,1)

UNITS=10000,10000

ATYPE=1,1

DPOS=0,0

SPEED=1,1

ACCEL=2,2

DECEL=2,2

308

SRAMP=200,200

TRIGGER 'trigger the oscilloscope automatically

VMOVE(1) AXIS(1)

WHILE 1

MOVESLINK(0,1,0,0,1)AXIS(0) '1 unit before profile motion, workbench

keeps still

MOVESLINK(0.4,0.8,0,1,1)AXIS(0) 'workbench starts to accelerate.

MOVESLINK(0.2,0.2,1,1,1)AXIS(0) 'speed following

MOVESLINK(0.4,0.8,1,0,1)AXIS(0) 'workbench starts to decelerate.

MOVESLINK(-1,1.2,0,0,1)AXIS(0) 'workbench returns to starting position.

WEND

Motion Path and Speed Curve:

DPOS(0) vertical scale 1, no offset

DPOS(1) vertical scale 1, no offset

MSPEED(0) vertical scale 1, no offset

MSPEED(1) vertical scale 1, no offset

Instructions MOVESLINK

MOVELINK_MODIFY-Link Distance Modification

Type Axis Parameters

Description Relatively modify the synchronous length of MOVELINK.

When bringing into motion buffer, it only takes effect after the synchronous

segment.

309

Grammar VAR1 = MOVELINK_MODIFY, MOVELINK_MODIFY = expression

Controller With firmware version above 2160926

Example Example 1:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

UNITS=100,100

ATYPE=1,1

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER 'trigger the oscilloscope automatically

Without modify the link distance

MOVELINK(10,20,20,0,1) 'acceleration stage of station

MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100

MOVELINK(10,20,0,20,1) 'deceleration stage

VMOVE(1) AXIS(1)

Motion Path and Speed Curve:

DPOS(0) vertical scale 200, no offset

DPOS(1) vertical scale 200, no offset

MSPEED(0) vertical scale 200, offset -200

MSPEED(1) vertical scale 200, offset -150

Add link distance, others same as former.

MOVELINK(10,20,20,0,1) 'acceleration stage of station

MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100

MOVELINK_MODIFY=50 'modify the link distance as 100+50

MOVELINK(10,20,0,20,1) 'deceleration stage

310

Decrease link distance, others same as former.

MOVELINK(10,20,20,0,1) 'acceleration stage of station

MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100

MOVELINK_MODIDY=-50 'modify the link distance as 100-50

MOVELINK910,20,0,20,1) 'deceleration stage

Note: this instruction only can be used until link distance finished, if in the

acceleration or deceleration stage, there will be wrong, and can not modify.

MOVELINK(10,20,20,0,1) 'acceleration stage of station

MOVELINK_MODIFY=50

MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100

Example 2: (slave axis) fly shear axis accelerates and decelerates in S

curve

311

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

DATUM(0)

BASE(0,1)

UNITS=10000,10000

ATYPE=0,0

DPOS=0,0

SPEED=1,1 'material operation speed 1 m/s, 60m/min

ACCEL=2,2

DECEL=2,2

SRAMP=200,200

STOPTASL1

RUNTASK1, Task_FlyShear

DELAY(200)

VMOVE(1) AXIS(1) 'material keeping motion

TRIGGER 'trigger oscilloscope automatically

END

Task_FlyShear:

WHILE1

BASE(0)

'MOVELINK_MODIFY=0 'clear first

MOVELINK(3,4,1,1,1,8) AXIS(0)

WAIT UNTIL MPOS(0)>1 'wait until slave axis distance > 2

MOVELINK_MODIFY=-1 'decrease 1 for slave axis distance

WAIT IDLE(0)

WAIT UNTIL MOVELINK_MODIFY=0

'wait until synchronic offset finished

WAIT IDLE(0)

BASE(0)

DPOS=0

'MOVELINK_MODIFY=0 'clear first

MOVELINK(3,4,1,1,1,8) AXIS(0)

WAIT UNTIL MPOS(0)>1 'wait until link distance of slave axis>2

MOVELINK MODIFY=1 'add 1 for slave axis distance

WAIT UNTIL MOVELINK_MODIFY=0

'wait until synchronic offset finished

WEND

Motion Path and Speed Curve:

DPOS(0) vertical scale 1, no offset

DPOS(1) vertical scale 3, no offset

MSPEED(0) vertical scale 1, no offset

312

MSPEED(1) vertical scale 1, no offset

Instructions MOVELINK

MOVESYNC – Sychronous Motion

Type Motion Setting Instruction

Description Motion synchronization, Belt objects follow to move. This isn’t

interpolation motion, so it can’t ensure linear path.

The belt axis length unit is required the same as slave axis of BASE.

When BASE axis finished follow motion, this instruction ends. In this

situation, if corresponding inductive position of belt objects has moved a

certain distance, then BASE axis is not in the absolute position, and it is

running in follow speed.

MOVESYNC supports continuous using, it won’t interrupt speed continuity,

and can add MOVE_OP in the middle. In case the high-speed follow motion

stop directly when motion finished, the final instruction, MOVESYNC, please

use Mode -1.

This instruction belongs to CAM instruction, doesn’t support motion pause.

Grammar MOVESYNC(mode,synctime,syncposition,syncaxis,pos1[,pos2, pos3…])

Mode Description

-1

synchronization mode ends, motion has reached defined

absolute position. If there are other MOVESYNC instructions

next, it will be covered, syncaxis is invalid under the mode.

-2

force it to end. When -2 is called, original MOVESYNC

instruction will stop, and move to defined ending position. If

there are other MOVESYNC instructions next, it will be

covered, syncaxis is invalid under the mode.

313

0 the first axis(x) of BASE follows Belt axis objects.

10 the second axis(y) of BASE follows Belt axis objects.

20 the third axis of BASE follows Belt axis objects.

mode = 0+ angle, angle: belt rotation angle, angle = forward rotating

angle between belt and the first/second axis of BASE axis. Such as,

Mode=PI/4, belt is at 45 degrees. Mode=PI/2, belt is at Y direction. Mode=PI,

belt is at x negative direction. Mode=(PI*1.75), belt is at -45 degrees.

synctime: synchronization time, ms as unit, and the motion will finish in

defined time, when it finished, BASE axis follows belt and their speed are the

same. 0 means the synchronization time can be estimated according to motion

axis’ speed, acceleration, but sometimes not accurate.

syncposition: belt position when belt objects are reacted, it supports belt

axis coordinate cycle, but if it is called, ensure coordinate is not modified or

operated cycle between the parameter position and belt axis position.

Therefore, don’t use the instruction near the cycle point.

syncaxis: belt axis NO., -1 means no belt axis, moving to pos1 directly.

pos1: the first axis(BASE) absolute position when belt object is reacted.

pos2: the n axis(BASE) absolute position when belt object is reacted.

Controller With firmware version above 170601.

Example Example 1: belt takes the material

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

DPOS=0,0

UNITS=100,100

ATYPE=1,1

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER

MOVESYNC(0, 0, 100, 1, 120) 'move to belt objects synchronically

MOVE_OP(1,1) 'decrease, if axis Z decreases, also can be

used by MOVESYNC

MOVE_OP(0,1) 'open nozzle

MOVESYNC(0,1000,100,1,120) 'continue to follow 1s

MOVE_OP(1,0) 'increase

314

MOVESYNC(-1, 0, 0, -1, 400) 'move to position where put materials400

MOVE_OP(1,1) 'decrease

MOVE_OP(0,0) 'close nozzle

MOVE_DELAY(2) 'delay 2ms, can’t insert these sentences in

MOVESYNC continuous motion

MOVE_OP(1,0) 'increase

MOVEABS(0) 'back to origin

VMOVE(1) AXIS(1) 'belt axis motion

Motion path and speed curve:

DPOS(0) vertical scale 500, no offset

DPOS(1) vertical scale 500, no offset

MSPEED(0) vertical scale 200, no offset

MSPEED(1) vertical scale 200, no offset

Example 2: Take the material from the belt to another belt.

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1,2)

DPOS=0,0,0

UNITS=100,100,100

ATYPE=1,1,1

SPEED=1000,100,150 'set different speeds

ACCEL=1000,1000,1000

DECEL=1000,1000,1000

TRIGGER

MOVESYNC(0, 0, 50, 1, 80) 'move to belt object synchronically

MOVE_OP(0,1) 'open the nozzle

MOVE_OP(1,1) 'decrease, if axis Z decreases, can use MOVESYNC

MOVESYNC(0, 300, 50, 1, 80) 'continue to synchronize 2ms

315

MOVE_OP(1,0) 'increase

MOVESYNC(0, 0, 100, 2, 150) 'move to the second corresponding belt

MOVE_OP(1,1) 'decrease

MOVE_OP(0,0) 'close the nozzle

MOVESYNC(0,300, 100, 2, 150) 'synchronize 2ms

MOVE_OP(1,0) 'increase

MOVESYNC(-1, 0, 0, -1, 0) 'move to stop position

VMOVE(1) AXIS(1) 'motion of belt axis 1

VMOVE(1) AXIS(2) 'motion of belt axis 2

Motion path and speed curve:

DPOS(0) vertical scale 200, no offset

DPOS(1) vertical scale 200, no offset

MSPEED(0) vertical scale 200, no offset

MSPEED(1) vertical scale 200, offset -200

DPOS(2) vertical scale 200, no offset

MSPEED(2) vertical scale 200, offset -200

Example 3: Carved on the belt object

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1,2,6,7)

UNITS=100,100,100,100,100

316

DPOS=0,0,0,0,0

SPEED=100,100,100,100,100

ACCEL=1000,1000,1000,1000,1000

DECEL=1000,1000,1000,1000,1000

TRIGGER

ADDAX(6) AXIS(0) 'carve on the virtual axis, then superpose to actual axis

ADDAX(7) AXIS(1)

BASE(0, 1)

MOVESYNC(0, 0, 50, 2, 80,100) 'move synchronically to belt object

MOVE_TASK(1, task1) 'trigger superposition axis carving

MOVESYNC(0, 1000, 50, 2, 80, 100)'longer carving motion time

MOVESYNC(-1, 0, 0, -1, 0 ,0) 'move to stop position

VMOVE(1) AXIS(2) 'belt axis motion

END

TASK1:

DELAY(2) 'when superposition carving in process, absolute motion

instruction position will be wrong, delay for avoiding

calling instructions.

BASE(6, 7)

MOVE(100,100) 'carve with lines in two sides

WAIT IDLE 'wait until carving ends

BASE(0, 1)

MOVESYNC(-2, 0, 0, -1, 0 ,0)

'when carving finished, force to move to stop position

Motion path and speed curve

MSPEED(0) vertical scale 200, no offset

MSPEED(1) vertical scale 200, no offset

MSPEED(2) vertical scale 200, no offset

MSPEED(6) vertical scale 200, offset -50

MSPEED(7) vertical scale 200, offset -100

317

FLEXLINK--Excitation Motion

Type Synchronization Motion Instruction

Description This instruction is used to realize excitation motion of axis. It consists of

uniform motion and excitation motion.

Please ensure the distance (pulse amount, parameters*units) is integer,or will

cause slight motion precision error if it is a float value.

Grammar FLEXLINK(base dist, excite dist, link dist, base in, base out, excite acc,

excite dec, link axis, link options, [start pos], [link offpos])

Parameters：

base_dist: uniform motion distance of slave axis.

excite_ist: excitation motion distance of slave axis, +: increase,

-: decrease.

Total distance of slave aixs= base_dist + excite_dist.

link_dist: distance of main axis during the whole link.

318

base_in: percentage of base_dist that distance of slave axis will possess

before the excitation starts.

base_out: percentage of base_dist that remaining distance of slave axis

will possess after excitation motion. (base_in + base_out

should not exceed 100%, or excite_dist will be invalid)

excite_acc: percentage of excite_dist that slave axis' acceleration distance

will possess during the excitation motion, when excite_dist is

minus, indicating deceleration stage.

excite_dec: percentage of excite_dist that slave axis' deceleration distance

will possess during the excitation motion, when excite_dist is

minus, indicating acceleration stage.

(base_in, base_out, excite_acc and excite_dec will be valid only when

excite_dist is not 0.)

link_axis: main aixs NO.

link_options: link mode with reference axis (main axis), different binary

bit value has different meanings.

Bit Description

bit0 link starts when Mark(latch is triggered) of reference axis is on.

bit1 link starts when reference axis reaches set absolute position.

bit2 repeat double direction motion continuously. (cancel the repeat by setting

REP_OPTION=1).

bit4 CAM starts in the middle.

bit5 link only happens when the reference axis moves in positive direction.

bit8 link starts when MARKB is on.

start_pos: absolute position trigger

link_offpos: middle position where CAM starts

Controller ZMC4XX series with firmware version above 20170518.

ZMC3XX series with firmware version above 20161212.

Example Example 1: Round Cutting

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

DPOS=0,0

319

UNITS=100,100

SPEED = 200,200

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER

FLEXLINK(500,500,500,15,15,20,20,1)

'cutting tool will move 500 units, material will move 1000 units, the speed

where cutting begin will be the same, it is just the position of one cycle.

FLEXLINK(500,500,500,15,15,20,20,1) AXIS(0)

MOVE(1000) AXIS(1)

Motion path and speed curve:

DPOS(0) vertical scale 1000, no offset

MSPEED(0) vertical scale 300, no offset

DPOS(1) vertical scale 600, no offset

MSPEED(1) vertical scale 200, no offset

7.5 Motion Setting Instructions

CLUTCH_RATE--Link Speed

Type Axis Parameters

Description link speed of instruction CONNECT, default value is 1000000.

It is used to define changing time of connection ration from 0 to ratio

configuration, the unit is ratio/s, please see example 1.

If the value is not set far bigger than link ratio of CONNECT, then actual ratio

will be smaller. Please see offset curve graph of example 1.

When it is set as 0, the link will change as per the value of followed axis

speed/acceleration, it is suitable in handwheel link. (When speed is too slow,

link will end after motion continue to move some distance.)

320

Grammar CLUTCH_RATE= value

Controller General

Example Example 1:

BASE(0,1)

ATYPE=1,1

DPOS=0,0

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

CLUTCH_RATE=1 'set link ratio as 1 ratio/s

TRIGGER 'trigger oscilloscope automatically

CONNECT(2,1) AXIS(0) 'link ratio is 2, need 2 seconds to build link.

MOVE(300) AXIS(1) 'axis 1 moves, axis 0 follows.

Speed curve, link time is based on link ratio and clutch_rate

MSPEED(0) vertical scale 200

MSPEED(1) vertical scale 200

Offset curve, clutch_rate is too small, actual link ratio will be less than 2:1.

MSPEED(0) vertical scale 300

MSPEED(1) vertical scale 300

321

Example 2:

BASE(0,1)

DPOS=0,0

ATYPE=1,1

UNITS=100,100

SPEED=100,100

ACCEL=500,500

DECEL=500,500

CLUTCH_RATE=0

'link as per value of followed axis speed/acceleration, maybe not synchronized

TRIGGER 'trigger oscilloscope automatically

CONNECT(2,1) AXIS(0)

'link speed is 0.2s, link time is determined by slave axis speed / acceleration

VMOVE(500)AXIS(1)

Speed curve

MSPEED(0) vertical scale 100

MSPEED(1) vertical scale 100

Offset curve:

MSPEED(0) vertical scale 1000

MSPEED(1) vertical scale 1000

Instructions CONNECT

322

ENCODER_RATIO-Gear Ratio of Encoder

Type Motion Setting Instruction

Description Input Gear Ratio of Encoder, default value is (1,1). The direction can be

changed by setting as minus value.

Grammar ENCODER_RATIO(mpos_count, input_count,[, mode])

mpos_count: numerator, maximum is 65535

input_count: denominator. maximum is 65535

Mode Description

1 AB 1X Mode

2 AB 2X Mode

3 AB 4X Mode

Please set ATYPE as encoder type, then call mode to set.

Valid in firmware ZMC406 20170502 above.

Controller General

Example

ENCODER_RATIO(4,1) 'encoder 4 times input, which equals to

ENCODER_RATIO (1,1,4)

ENCODER_RATIO(1,-1) 'encoder input to switch the direction, which equals

to ENCODER_RATIO (-1,1)

Instructions PP_STEP, ENCODER

STEP_RATIO- Gear Ratio of Motor

Type Motion Setting Instruction

Description Set output gear ratio of stepper, default value is (1,1). Range:1-65535.

The motor direction can be changed by setting minus value, but it is not

recommend. Pulse motor uses INVERT_STEP, bus motor modifies in the

actuator.

Don’t modify the value frequently, it is better to change the pulse amount to

realize the same effect.

Grammar STEP_RATIO(output_count, input_count)

output_count: numerator, maximum is 65535

input_count: denominator, maximum is 65535

Controller General

Example
STEP_RATIO (16,1) 'pulse output 16 times of the set pulse value. Also it

can be achieved through pulse equivalent multiples 16.

BACKLASH- Reverse Clearance Compensation

Type Motion Setting Instruction

323

Description To set reverse compensation of axis, not valid in extended axis.

Grammar

BACKLASH (enable [,dist[, speed, acceleration]])

enable enable or not.

dist distance, UNITS as unit.

speed speed of reverse compensation.

acceleration acceleration of reverse compensation.

Controller General

Example

Example 1:

BACKLASH(0) 'shut reverse compensation function.

BACKLASH(1, 0.1) 'set reverse compensation as 0.1mm.

Example 2:

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

ATYPE = 5 'with encoder feedback

SPEED =1000

ACCEL = SPEED * 10

DECEL = SPEED * 10

SRAMP = 0

DPOS = 0

MPOS = 0

BACKLASH(0) 'close reverse gap

TRIGGER

'apply reverse clearance parameters

BACKLASH(1, 10, 50, 100) '10mm compensation

MOVE(200)

MOVE(-100) 'start to compensate when reverse

END

324

PITCHSET -- Screw Pitch Compensation

Type Motion Setting Instruction

Description
To set axis screw pitch compensation, not valid in extended axis.

The number of compensation pulses of each point are saved into TABLE.

Grammar

PITCHSET(enable [, startpos, disone, maxpoint, tablenum])

enable enable or not.

startpos the MPOS position where compensation starts,

UNITS as unit. Note: the point that corresponds to

startpos is not saved.

disone distance between points, UNITS as unit.

maxpoint total points need to be compensated

tablenum TABLE position where saved the compensation point,

it saves starting from next point of “startpos”, the

unit is pulse

Support dynamically modifying compensation parameters.

When the compensation is ON or OFF, adjust dpos and mpos,

but don’t make them correct by the motion.

Controller General

Example

Singe-Axis Pitch Compensation:

Example 1:

ATYPE(6)=6

UNITS(6)=100

DPOS(6)=0

BASE(0)

ATYPE=1

UNITS=100

325

SPEED=100

ACCEL=500

DECEL=500

TABLE(0, 0*UNITS(0), -90*UNITS(0), -50*UNITS(0), 30*UNITS(0),

50*UNITS(0),0)

'TABLE saves pitch compensation value, the value is the number of pulses,

not the pitch compensation value.

DPOS=0

MPOS=0

'//starting compensation position (MPOS) compensation value (the number

of pulses at a distance of 100)

'// 100 0

'// 200 -90

'// 300 -50

'// 400 30

'// 500 50

'// 600 0

PITCHSET(1,0,100,6,0) 'when MPOS=0, it starts to compensate 6 points,

a space of 100

TRIGGER

MOVE(70)

MOVE(-700)

WAIT IDLE

PITCHSET(0,100,100,6,0)

In this waveform, in order to show compensation effect, connect axis 0 pulse

OUT to axis 6 encoder IN, and do some offsets for obvious compensation

effects.

DPOS(0) – offset -300, vertical scale (Y scale): 200

DPOS(6) – offset -300, vertical scale (Y scale): 200

326

Example 2:

ATYPE(6)=6

UNITS(6)=100

DPOS(6)=0

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DECEL=500

TABLE(0, 0*UNITS(0), -90*UNITS(0), -50*UNITS(0), 30*UNITS(0),

50*UNITS(0),0)

'TABLE saves pitch compensation value, the value is the number of pulses,

not the pitch compensation value.

DPOS=0

MPOS=0

'//starting compensation position (MPOS) compensation value (the number

of pulses at a distance of 100)

'// 100 0

'// 200 -90

'// 300 -50

'// 400 30

'// 500 50

'// 600 0

PITCHSET(1,-700,100,6,0)

'when MPOS=700, it starts to compensate 6 points, a space of 100

TRIGGER

MOVE(-700)

MOVE(700)

WAIT IDLE

PITCHSET(0,100,100,6,0)

In this waveform, in order to show compensation effect, connect axis 0 pulse

OUT to axis 6 encoder IN, and do some offsets for obvious compensation

effects.

DPOS(0) – offset 300, vertical scale (Y scale): 200

DPOS(6) – offset 300, vertical scale (Y scale): 200

327

Example 3: Multi-Axis Pitch Compensation

BASE(6,7)

UNITS=100,100

SPEED=100,100

ACCEL=100,100

DPOS=0,0

MPOS=0,0

BASE(0,1)

ATYPE=5,5

UNITS=100,100

SPEED=100,100

ACCEL=100,100

DPOS=0,0

MPOS=0,0

TABLE(0, 100*UNITS(0), 100*UNITS(0), 100*UNITS(0))

'TABLE saves pitch compensation value, the value is the number of pulses,

not the pitch compensation value.

BASE(0)

PITCHSET(0)

PITCHSET(1,50,100,3,0)

‘when MPOS=50, start to compensate 3 points, a space of 100

BASE(1)

PITCHSET(0)

PITCHSET(1,50,100,3,0)

‘when MPOS=50, start to compensate 3 points, a space of 100

TRIGGER

328

BASE(0,1)

MOVE(150,150)

wait IDLE

?PITCH_DIST(0)

?PITCH_DIST(1)

MOVE(100,100)

wait IDLE

?PITCH_DIST(0)

?PITCH_DIST(1)

MOVE(100,100)

wait IDLE

?PITCH_DIST(0)

?PITCH_DIST(1)

In this waveform, in order to show compensation effect, connect axis 0, axis 1

pulse OUT to axis 6, axis 7 encoder IN. and do some offsets for obvious

compensation effects.

DPOS(0) – offset 0, vertical scale (Y scale): 500

DPOS(6) – offset -0, vertical scale (Y scale): 500

DPOS(1) – offset -500, vertical scale (Y scale): 500

DPOS(7) – offset -500, vertical scale (Y scale): 500

Instruction PITCH_DIST

PITCH_DIST -- Pitch Compensation Distance

Type Axis State

Description
Read distance value of current axis pitch compensation, the real MPOS

returned value will minus the value.

329

Grammar
VAL=PITCH_DIST (axisnum)

 axisnum: axis No.

Controller General

Instruction PITCHSET

7.6 Robot Instructions

CONNFRAME – Inverse Solution of Robotic Arm

Type Synchronization Motion Instruction

Description Target position of current joint coordinate correlates with virtual

coordinate.

When CLUTCH_RATE=0, motion speed and acceleration of joint

coordinate are limited by SPEED and other parameters.

When there is warning, motion will be canceled by CANCEL.

Don’t CANCEL the motion when virtual axis is running at high speed,

axis will stop.

Virtual axis coordinate will be modified automatically under LOAD,

making it same as joint axis, so need to use WAIT LOADED for starting

moving.

Do not modify the virtual axis coordinate during link process, or do not

call DATUM and other instructions that might modify coordinate, it will

cause joint axis move to a new virtual position rapidly.

When CONFRAME is taken effect, MTYPE=33, now joint axis can’t

move directly, it needs virtual axis to move joint axis. When wants to move

joint axis directly, call the CANCEL instruction to cancel CONNFRAME at

first, then move joint axis.

When virtual axis and actual axis are the rotating axis, their pulse amount

should be the same, for example, terminal axis of rotation.

Grammar CONNFRAME(frame, tablenum, viraxis0, viraxis1,[…])

frame: coordinate type, 1- scara (if needs special defined robotic arm

type, please contact with manufacturers)

tablinum: TABLE position for saving conversion parameters. When

frame=1, save one by one: the first joint axis length, the

second joint axis length, the first joint axis pulse amount as

per round, the second joint axis pulse amount as per round.

viraxis0: the first axis of virtual coordinate

viraxis1: the second axis of virtual coordinate

330

[…]: the N axis of virtual coordinate, it can be actual axis, exact axis is

determined by robotic arm type.

FRAME List of mechanical structures

Please see Zmotion robotic arm instructions for details.

Please contact with manufacturers if needs other special robotic structures.

frame Structure Type

1 Standard SCARA robotic arm

101 SCARA + swing, 4 defined virtual axes

105 SCARA + swing, 5 defined virtual axes

106 Special SCARA

107 Special SCARA

108 Special 5-axis SCARA

11 Rotary table

17 Double- rotary table

18 Offset rotary table

19 Offset double-rotary table

3 Palletizing robotic arm

103 Palletizing deformation, spraying robotic arm

5 Rotary scalable robotic arm

15 XY sliding table

102 2-axis delta

2 3-axis delta, R type controllers support

12 4-axis delta, R type controllers support

13 3-axis vertical spider hand, R type controllers support

25 5-joint robotic arm

6 Robotic arm with 6 DOF (degree of freedom), R type

controllers support

26 Special 6 DOF

36 Special 6 DOF

100 XYZ+2-axis wrist, defined 3 virtual axes

104 XYZ+2-axis wrist, defined 5 virtual axes

Controller General

Example DIM L1,L2

L1=10 'the first joint axis length

L2=10 'the second joint axis length

BASE(0,1) 'joint axis number is 0,1

ATYPE=1,1

UNITS=10,10 'pulse amount, degree as unit

DPOS=0,0 'set joint axis position, and modify it according

to actual situation

BASE(6,7) 'virtual axis number is 6,7

ATYPE=0,0 'set as virtual axis

TABLE(0,L1,L2,3600,3600) 'parameters are saved starting from TABLE(0),

a round of motor, there are 3600 pulses.

331

UNITS=1000,1000 'pulse equivalent should be set in advance, and

it can’t be changed in the process.

BASE(0,1)

CONNFRAME(1,0,6,7) 'set reversed solution, coordinate of axis 0/1

calculate motion joint axis according to axis

6/7.

WAIT LOADED

BASE(6,7)

MOVEABS(15,10) 'virtual axis sends motion instructions

END

Connect the simulation tool of robotic arm to view the running effect as

shown below:

Instructions CONNREFRAME

CONNREFRAME –Forward Solution of Robotic Arm

Type Synchronization Motion Instruction

Description Virtual axis coordinate correlates with joint axis coordinate, when joint

axis moves, virtual axis will move to corresponding position.

This is the inversed motion instruction of CONNFRAME.

When virtual axis CONNREFRAME moved LOAD, joint axis

CONNFRAME will be cancelled automatically by CANCEL.

When joint axis CONNFRAME moved LOAD, virtual axis

CONNREFRAME will be cancelled automatically by CANCEL.

Grammar CONNREFRAME(frame, tablenum, axis0, axis1,[…])

frame: coordinate type, 1-scara (if needs special defined robotic arm

332

type, please contact with manufacturers)

tablinum: TABLE position for saving conversion parameters. When

frame=1, save one by one: the first joint axis length, the

second joint axis length, the first joint axis pulse amount as

per round, the second joint axis pulse amount as per round.

viraxis0: the first axis of joint coordinate

viraxis1: the second axis of joint coordinate

[…]: the N axis of joint coordinate

The position of BASE axis is opposite to parameter axis.

Controller General

Example DIM L1,L2

L1=10 'the first joint axis length

L2=10 'the second joint axis length

BASE(0,1) 'suppose joint axis number is 0/1

UNITS=10,10 'pulse amount is 10

DPOS=0,0 'set joint axis position, modify it according to actual situation

BASE(6,7)

ATYPE=0,0 'set as virtual axis

TABLE(0,L1,L2,3600,3600)

'parameters are saved starting from TABLE(0), a round of

motor, there are 3600 pulses.

UNITS=1000,1000 'pulse amount should be set in advance, and it

can’t be changed in the process.

CONNREFRAME(1,0,0,1) 'coordinate of axis 6/7 calculate motion joint

axis according to axis 0/1.

BASE(0,1)

MOVEABS(90,0) 'virtual coordinate is changed to 0,20.

Instructions CONNFRAME

FRAME--Robotic Arm Type

Type Robotic Arm Instruction

Description Choose robotic Type, see Robotic Arm Manual for reference.

Instructions CONNFRAME

FRAME_STATUS-Axis Status of Robot

Type Robotic Arm Instruction

Description Indicate current robotic arm attitude.

When the status is not robotic arm, it returns -1, FRAME_TRANS2

instruction will use this attitude. Several attitudes are only for SCARA, kind

of SCARA and 6 DOF.

SCARA left-hand status value is 0, right-hand status value is 1.

333

Grammar VAR1=FRAME_STATUS（AXIS）

Controller General

Example Input online instruction ?FRAME_STATUS, and print the current status.

>>?FRAME_STATUS

Instructions BASE

FRAME_TRANS2-Coordinate Conversion of Forward and

Inverse Solutions

Type Robotic Calculation Instruction

Description Coordinate transformation function.

It must be used when the forward or inverse is built.

The axis No. of BASE must be correct when using the instruction. For

inverse solution, base as virtual axis, for forward solution, base as joint axis.

According to correct sequence, fill corresponding data. And data and

number filled in should be the same as ?*frame.

Grammar FRAME_TRANS2(tablein, tableout, dir)

tablein: index No. of table array, from this index, start to continuously

save data. When in forward solution, input joint coordinate,

when inverse solution, input virtual axis coordinate, at last,

plus the status.

tableout: table, this index No. starts to save data. When in forward

solution, output virtual coordinate and then plus status, when

in inverse solution, output joint coordinate list.

Dir: mode selection

Mode Type Description

0 Inverse
From virtual axis to joint axis, no status, use

current status automatically.

1 Forward From joint axis to virtual axis, no status output.

2 Inverse Input virtual axis coordinate, at last plus status.

3 Forward
Output virtual axis coordinate, when output the

final position, fill in status.

Controller General

Example Take scara structure as example, the first joint axis L1=10, the second joint

axis L2=10. Table (100) as saved position of input coordinate, table (200) as

saved position of output coordinate.

After linking, origin coordinate of joint axis is (0,0), and the virtual axis

coordinate is (20,0), as below:

334

When virtual axis coordinate is (10,10), there are two statuses.

Joint axis (0,90) and joint axis (90,-90).

Coordinate transformation form:

Status
BASE

axis
Input X,Y, status Instruction

Output joint

coordinate

Inverse
Virtua

l axis

table(100,20,0,0) frame_trans

2

(100,200,0)

table(200,0,0)

table(100,10,10,1

)
table(200,0,90)

table(100,10,10,1

)

frame_trans

2

(100,200,2)

table(200,90,-90)

Status
BASE

axis

Input joint

coordinate
Instruction

Output X,Y,

status

Forwar

d

Joint

axis

table(100,0,0)

frame_trans

2

(100,200,1)

table(200,20,0,0)

table(100,0,90)
table(200,10,10,0

)

table(100,90,-90)
table(200,10,10,0

)

table(100,90,-90)

frame_trans

2

(100,200,3)

table(200,10,10,1

)

FRAME_ROTATE-Workpiece Coordinate Conversion

Type Robot Calculation Instruction

Description Used to translate and rotate workpiece coordinate system.

At present, it only can rotate FRAME6 status at the same time, other virtual

axes that has XYZ support 3-axis rotation, but status axis can’t rotate.

After rotation, virtual axis WORLD_DPOS means world coordinate won’t

335

change, virtual axis DPOS means workpiece axis will change.

When using, there needs mechanical link of the controller.

The axis of BASE can be either virtual axis or joint axis. If BASE axis has

no robotic arm link, an error 1025 will appear.

When there are several robotic arm superpositions, identify which is the

robotic arm mode according to BASE axis. If in BASE (axis_1, axis_2),

axis 1 is the robotic arm axis of mode1, axis 2 is the robotic arm axis of

mode2, so calculating coordinate with robotic arm mode1, which means in

BASE axis sequence.

Grammar FRAME_ROTATE(X,Y,Z,RX,RY,RZ)

X: translation distance of coordinate B towards X^

Y: translation distance of coordinate B towards Y^

Z: translation distance of coordinate B towards Z^

RX: rotation angle of coordinate B towards X^

RY: rotation angle of coordinate B towards Y^

RZ: rotation angle of coordinate B towards Z^

Rotation of coordinate system:

The method: x_y_z coordinate system with fixed angle.

At first, superpose coordinate {B} and coordinate {A}(known reference).

{A} rotates RX angle about Xa, then rotates RY angle about Ya, at last,

rotates RZ angle about Za.

Controller General

Routine Example 1 FRAME=2, DELTA, rotates X axis 90 degrees.

BASE(0,1,2)

RAPIDSTOP

ATYPE = 1,1,1

UNITS=3600/360,3600/360,3600/360

DPOS=0,0,0

BASE(6,7,8)

ATYPE = 0,0,0

TABLE(0,40,10,32,85,3600,3600,3600, 0, 0, 0)

UNITS = 100,100,100

BASE(0,1,2)

CONNFRAME(2,0,6,7,8)

WAIT LOADED

336

BASE(6,7,8)

FRAME_ROTATE(0,0,0,PI/2,0,0)

?"DPOS(7)-WORLD_DPOS(7)=",DPOS(7)-WORLD_DPOS(7)

?"DPOS(8)-WORLD_DPOS(8)=",DPOS(8)-WORLD_DPOS(8)

Output results:

DPOS(7)-WORLD_DPOS(7)=-58.1400

DPOS(8)-WORLD_DPOS(8)=58.1400

Example 2: FRAME=1, SCARA, rotates Z axis 90 degrees.

BASE(0,1,2,3)

RAPIDSTOP

ATYPE = 1,1,1,1

UNITS=3600/360,3600/360,3600/360,1000

DPOS=0,0,0,0

BASE(6,7,8,9)

ATYPE = 0,0,0,0

TABLE(0,100,100,3600,3600,3600)

UNITS = 100,100,3600/360,1000

BASE(0,1,2,3)

CONNFRAME(1,0,6,7,8,9)

WAIT LOADED

BASE(6,7,8,9)

FRAME_ROTATE(0,0,0,0,0,PI/2)

?"DPOS(7)-WORLD_DPOS(7)=",DPOS(7)-WORLD_DPOS(7)

?"DPOS(8)-WORLD_DPOS(8)=",DPOS(8)-WORLD_DPOS(8)

Output result:

DPOS(7)-WORLD_DPOS(7)=-200

DPOS(8)-WORLD_DPOS(8)=0

Instructions FRAME_ROTATE2

FRAME_ROTATE2-Coordinate Conversion Calculation

Type Robot Calculation Instruction

Description Calculate coordinate value after rotation by manually.

When using, there needs mechanical link of the controller.

The axis of BASE can be either virtual axis or joint axis. If BASE axis has

no robotic arm link, an error 1025 will appear.

When there are several robotic arm superpositions, identify which is the

robotic arm mode according to BASE axis. If in BASE (axis_1, axis_2),

axis_1 is the robotic arm axis of mode1, axis_2 is the robotic arm axis of

mode2, so calculating coordinate with robotic arm mode1, which means in

BASE axis sequence.

Grammar FRAME_ROTATE2(tablein, tableout, dir[, x,y,z[, rx,ry,rz]])

337

ret = FRAME_ROTATE2(tablein, tableout, dir[, x,y,z[, rx,ry,rz]])

tablein: before conversion, filled coordinate is saved in TABLE.

tableout: after conversion, output coordinate is saved in TABLE.

dir: direction selection

Value Description

0 From DPOS to WORLD_DPOS

1 From WORLD_DPOS to DPOS

X: translation distance of coordinate B towards X^

Y: translation distance of coordinate B towards Y^

Z: translation distance of coordinate B towards Z^

RX: rotation angle of coordinate B towards X^

RY: rotation angle of coordinate B towards Y^

RZ: rotation angle of coordinate B towards Z^

[, x,y,z[, rx,ry,rz]]: use present “rotate” default value when it’s blank.

Ret: return successfully or not. -1: successfully 0: fail

Controller General

Example Example1: FRAME=2, DETLA, rotates X axis at 90 degrees.

BASE(0,1,2)

RAPIDSTOP

ATYPE = 1,1,1

UNITS=3600/360,3600/360,3600/360

DPOS=0,0,0

BASE(6,7,8)

ATYPE = 0,0,0

TABLE(0,40,10,32,85,3600,3600,3600, 0, 0, 0)

UNITS = 100,100,100

BASE(0,1,2)

CONNFRAME(2,0,6,7,8)

WAIT LOADED

FOR i=0 TO 2

TABLE(100+i)=DPOS(i+6)

NEXT

BASE(6,7,8)

FRAME_ROTATE(0,0,0,PI/2,0,0)

BASE(6,7,8)

FRAME_ROTATE(0,0,0,PI/2,0,0)

338

WAIT LOADED

ret=FRAME_ROTATE2(100,200,1,0,0,0,PI/2,0,0)

IF ret=-1 THEN

?"calculate value "

?"DPOS(6)=",TABLE(200)

?"DPOS(7)=",TABLE(201)

?"DPOS(8)=",TABLE(202)

?"compare value "

?"DPOS(6)compare",TABLE(200)-DPOS(6)

?"DPOS(7)compare",TABLE(201)-DPOS(7)

?"DPOS(8)compare",TABLE(202)-DPOS(8)

ENDIF

Output result：

Calculate value

DPOS(6)=0

DPOS(7)=-58.1400

DPOS(8)=0.0000

Compare value

DPOS(6)compare 0

DPOS(7)compare 0

DPOS(8)compare 0.0000

Example 2: FRAME=1, SCARA, rotates Z axis at 90 degrees.

BASE(0,1,2,3)

RAPIDSTOP

ATYPE = 1,1,1,1

UNITS=3600/360,3600/360,3600/360,1000

DPOS=0,0,0,0

BASE(6,7,8,9)

ATYPE = 0,0,0,0

TABLE(0,100,100,3600,3600,3600)

UNITS = 100,100,3600/360,1000

BASE(0,1,2,3)

CONNFRAME(1,0,6,7,8,9)

WAIT LOADED

FOR i=0 TO 3

TABLE(100+i)=DPOS(i+6)

NEXT

BASE(6,7,8,9)

FRAME_ROTATE(0,0,0,0,0,PI/2)

WAIT LOADED

RET=FRAME_ROTATE2(100,200,1,0,0,0,0,0,PI/2)

IF RET=-1 THEN

?"calculate value"

?"DPOS(6)=",TABLE(200)

339

?"DPOS(7)=",TABLE(201)

?"DPOS(8)=",TABLE(202)

?"DPOS(9)=",TABLE(203)

?"compare value"

?"DPOS(6)compare",TABLE(200)-DPOS(6)

?"DPOS(7)compare ",TABLE(201)-DPOS(7)

?"DPOS(8)compare",TABLE(202)-DPOS(8)

?"DPOS(9)compare",TABLE(203)-DPOS(9)

ENDIF

Output result：

Calculate value

DPOS(6)=-0.0000

DPOS(7)=-200

DPOS(8)=0

DPOS(9)=0

Compare value

DPOS(6)compare -0.0000

DPOS(7)compare 0

DPOS(8)compare 0

Instructions FRAME_ROTATE

WORLD_DPOS-World coordinate system

Type Axis Parameter

Description Virtual axis coordinate value refers to world coordinate system, when

there is no rotation, same as DPOS.

Grammar var1=WORLD_DPOS(axis)

Controller General

Instructions
Online instruction, print.

>>?*WORLD_DPOS

MOVER_L/MOVER_LABS-Joint Axis Linear Interpolation

Type Motion Instruction

Description Joint axis linear interpolation.

Robot joint interpolation motion, the terminal of robotic arm moves to

defined coordinate in linear direction.

This is used under the forward solution mode, it may change the status if

operating joint axis directly, so please ensure the attitude of starting point

and ending point are the same, or will appear errors.

Grammar MOVER_L(distance1 [,distance2 [,distance3 [,distance4...]]])

distance1: the first axis motion distance

340

distance2: next axis motion distance

Controller Valid in ZMC4XX series with firmware version above 20170511.

Routine BASE(0,1)

DPOS=0,0

BASE(6,7)

ATYPE = 0,0 'set as virtual axis

UNITS=1000,1000

TABLE(0,L1,L2, 100*360, 100*360, 360)

CONNREFRAME(1,0,0,1) 'the 6/7 axis as virtual XY axis, open connect.

WAIT LOADED

'joint motion

BASE(0,1)

SPEED=400

SRAMP=100

ACCEL=1000

DECEL=1000

MERGE = 1

CORNER_MODE=32 'start chamfering

ZSMOOTH=2

MOVEABS(45,90) 'joint motion, which means motion joint angle

MOVER_LABS(90, 0) 'terminal linear motion

WAIT IDLE 'wait until motion stop

PRINT *DPOS

Instructions MOVER C, MOVER C3

MOVER_C/MOVER_CABS-Plane Circular of Joint Axis

Type Motion Instruction

Description Joint axis moves circular interpolation directly.

It is used under forward solution mode.

BASE axis should be virtual XYZ axes, or XYZ can’t be determined. And

the parameters are distance of virtual axis.

Grammar MOVER_C/MOVER_CABS

（end1,end2,centre1,centre2,mode,[dis1,…,disn]）

end1: motion distance parameter 1 of the first axis

end2: motion distance parameter 1 of the second axis

centre1: motion distance parameter 2 of the first axis

centre2: motion distance parameter 2 of the second axis

mode:

Value Description

0 The present point, the middle point and the end point, three

points set the circular arc.

Distance parameter 1 is the end point distance, distance

parameter 2 is the middle point distance.

341

1 The present point, the center of circle and the end point set the

circular arc.

Moves the shortest arc distance.

Distance parameter 1 is the end point distance, distance

parameter 2 is the center of the circle distance.

2 The present point, the middle point and the end point, three

points set the circle.

Distance parameter 1 is the end point distance, distance

parameter 2 is the middle point distance.

3 The present point, the center of circle and the end point set the

circle.

Moves the shortest arc distance at first, then continues to finish

the full circle.

Distance parameter 1 is the end point distance, distance

parameter 2 is the center of the circle distance.

 dis1-disn: the distance of spiral axis

Controller ZMC4XX series with firmware version 20170511 or above support.

Routine L1 = 500

L2 = 500

TABLE(0,L1,L2,100*360,100*360,360)

'parameters are saved starting from TABLE0, a

round of motor means 360 pulses

BASE(6,7)

CONNREFRAME(1,0,0,1)'the 6/7 axis as virtual XY axis, start to connect

WAIT LOADED 'wait for motion loading

BASE(6,7) 'REFRAME moves to virtual axis directly(MOVER), it

will converse into joint axis automatically.

MOVER_LABS(500)

MOVER_C(500,0, 250,250, 0)

Instructions MOVER_L, MOVER_C3

MOVER_C3/MOVER_C3ABS-Space Circular of Joint Axis

Type Motion Instruction

Description Joint axis moves space circular interpolation directly.

It is used under forward solution mode.

BASE axes should be virtual axes, or XYZ can’t be determined. And now

the parameters are distance of virtual axes.

Grammar MOVER_C3 (endx,endy,endz,midx, midy, midz, mode[, dis1][,dis2][,dis3])

end1: motion distance parameter 1 of the first axis

end2: motion distance parameter 1 of the second axis

end3: motion distance parameter 1 of the third axis

centre1: motion distance parameter 2 of the first axis

centre2: motion distance parameter 2 of the second axis

342

centre3: motion distance parameter 2 of the third axis

mode:

Value Description

0 The present point, the middle point and the end point, three

points set the circular arc.

Distance parameter 1 is the end point distance, distance

parameter 2 is the middle point distance.

1 The present point, the center of circle and the end point set the

circular arc.

Moves the shortest arc distance.

Distance parameter 1 is the end point distance, distance

parameter 2 is the center of the circle distance.

2 The present point, the middle point and the end point, three

points set the circle.

Distance parameter 1 is the end point distance, distance

parameter 2 is the middle point distance.

3 The present point, the center of circle and the end point set the

circle.

Moves the shortest arc distance at first, then continues to finish

the full circle.

Distance parameter 1 is the end point distance, distance

parameter 2 is the center of the circle distance.

dis1- disn: distance of spiral axis

Controller Valid in ZMC4XX series with firmware version 20170511 or above.

Routine L1 = 500

L2 = 500

TABLE(0,L1,L2, 100*360, 100*360, 360)

'parameters are saved starting from TABLE0,

a round of motor means 360 pulse amounts.

BASE(6,7)

CONNREFRAME(1,0,0,1) 'the 6/7 axis as virtual XY axis, start to connect

WAIT LOADED 'wait for motion loading

BASE(6,7,8) 'CONNREFRAM moves to virtual axis directly(MOVER),

 it will converse into joint axis automatically.

MOVER_LABS(400)

MOVER_C3ABS(200,0,0,600,400,0, 0)

Instructions MOVER_L, MOVER_C

FRAME_CAL-Parameter Correction

Type Robot Calculation Instruction

Description It corrects the present robotic arm parameter automatically according

to coordinate and features of robotic arm teaching.

343

Captured robotic arm joint coordinates are saved in Tablein, when present

origin point position has a robotic arm linking relation with arm parameters,

the terminal point of control robotic arm moves to correction point, then get

the joint axis coordinate of correction point.

Correct deviation between present origin position and theorical origin

position, then calculate joint axis coordinate of theorical origin point.

Correct robotic arm parameter values (correct some parameters), then

calculate theorical robotic parameter values.

FRAME_CAL is only for calculation, if return value is -1, which means

succeeds in calculating, if it’s 0, means it fails.

BASE axis of FRAME_CAL must be the axis under FRAME.

Grammar FRAME_CAL(tablein,space,groups,tableaux, zeroout, [tableout2])

tablein: saved table starting number of joint coordinate, and each

coordinate is saved in sequence, multiple points are separated

by space.

space: table element between every two points.

groups: the number of point

tableaux: table number of assistant parameters, some frame need.

zeroout: calculated table number of joint axis absolute coordinate when

in the theorical origin.

tableout2: calculated store position of robotic arm parameter, it saves in

the origin parameter position when it’s blank.

Controller General

Routine See robotic arm instruction description manual chapter for details

344

Chapter VIII Program Structure and

Process Instruction

8.1 Procedure Symbol

' --Add Comments

Type Special Character

Description Followed contents are all explanation until next line.

Controller General

_--Change Line

Type Special Character

Description
Continue in next line.

Don’t use this instruction in condition judgement, storage, print output.

Controller General

:--Label

Type Grammar Structure

Description
Make the label for user process, which can be used as SUB process

without parameters.

Grammar Label: label name, but it can’t be same as existing words.

Controller General

Example

GOTO label1

END 'main process ends.

label1: 'add: define label

END

8.2 Data Definition Instruction

CONST--Define Constant

Type Grammar Instructions

Description Define a symbol to indicate constant value, avoid using value directly.

345

Grammar CONST CVARNAME = value

CVARNAME: constant name

value: constant value

Controller General

Example Example One

CONST MAX_VALUE = 100000 'define constant

TABLE(0)=MAX_VALUE 'assign 10000 to table(0)

Example two

GLOBAL CONST MAX_AXIS=6 'define total axes number

Instructions DIM

DIM—Define Variables

Type Grammar Instructions

Description

Define file module variables, arrays.

If variables are not defined, then assign directly, file module variables will

be defined automatically.

File module variables only can be used inside this program file.

Array can be used as the character string, one element means one byte.

Grammar DIM varname, arrayname (space)

varname: variables name

arrayname: array name

space: array space

Valid in ZMC5XX series controllers with firmware after February 2022.

1. Variables definition initialization:

DIM varname = 1

2. Array definition initialization:

DIM arrayname(size) = {1, 2, 3}

DIM arrayname(size) = “string”

3. Structure definition initialization:

DIM strname(size) as structname = {.item = 1, .item = {1, 2, 3} }

Initialized assignment value also can be used in other assignment

commands, for example, GLOBAL.

Controller General

Example DIM ARRAY1(100) ‘define array ARRAY1

DIM VAR1 ‘define variable VAR1

VAR2 = 100 ‘assigned command will be defined as file module

variables automatically.

ARRAY1 = “asdf”

ARRAY1(0, 100, 200, 300) ‘assign consecutively for array

 ‘ARRAY1(0) =100, ARRAY1(1) = 200, ARRAY1(2) =300

346

Instructions CONST, LOCAL, GLOBAL

LOCAL—Define Local

Type Grammar Instructions

Description Define local variables.

Local variables are usually used in SUB process.

There is limit of local variables in one SUB process, parameters of SUB

process will be converted to local variables automatically.

When different tasks call the same SUB process, then it will generate

different local variables in different tasks, when SUB recursive process of

the same task is called, it will also generate different local variables.

Grammar SUB subA()

LOCAL localname 'localname local variable name

……

ENDSUB

Controller General

Example SUB aaa()

LOCAL v1 'define local variable V1

v1=100

END SUB

Instructions DIM,GLOBAL

GLOBAL—Define Global

Type Grammar Instructions

Description Define global variables, array. Define global SUB process.

Global variables can be used in any process file of the whole project.

Grammar Grammar1： GLOBAL VAR1

Grammar2： GLOBAL SUB SUB1()

Grammar3： GLOBAL CONST CVARNAME = value

Parameters:

 VAR1 variable name

SUB1 process name

CVARNAME constant name

value constant value

Valid in ZMC5XX series controllers with firmware after February 2022.

4. Variables definition initialization:

GLOBAL varname = 1

5. Array definition initialization:

GLOBAL arrayname(size) = {1, 2, 3}

347

GLOBAL arrayname(size) = “string”

6. Structure definition initialization:

GLOBAL strname(size) as structname = {.item = 1, .item = {1, 2, 3} }

Initialized assignment value also can be used in other assignment

commands, for example, DIM.

Controller General

Example GLOBAL SUB g_sub2()

'define global process g_sub2, which can be used in any file.

GLOBAL CONST g_convar = 100 'define global constant.

GLOBAL g_var2 'define global variable g_var2

Instructions RTC_DATE, LOCAL

8.3 Array Operation Instruction

DMINS--Insert Array Link List

Type Grammar Instructions

Description Operation of array link list, when insert one element into one array,

then present element and all later elements will move backward one

space.

Be careful when operating long size array, especially TABLE.

Grammar DMINS ArrayName(pos, size)

arrayname: array name

 pos: array index

 size: amounts to be modified. Attention: pos+size<array

Controller General

Example DIM aa(6) 'define array aa

FOR i=0 TO 4 'assign value:0,1,2,3,4

aa(i)=i

NEXT

?*aa 'print all elements of array.

DMINS aa(0) 'insert element 0, all behind elements will move backward

 one space

aa(0) = 10 'assign value to aa(0)

?*aa 'print all array elements after insert operation.

Instructions DMDEL , DMCPY

DMADD –Arrays Volume Increase

Type Grammar Instructions

Description Add array elements value in batch.

348

Don’t modify over 500 elements once.

Grammar DMADD ArrayName (pos, size, data)

arrayname: array name

 pos: start index

 size: element number to be modified. Don’t exceed array size when

adding pos.

 data: value to be added

Controller General

Example dim aaa(20) 'define a array with 20 elements.

?*aaa 'print, all is 0.

DMADD aaa(10,5,2) 'starts from element 10, the value adds 2 when

modifying 5 elements

?*aaa 'print, table(10) to table(14) is 2, the other is 0.

DMADD aaa(10,5,2) 'starts from element 10, the value adds 2 when

modifying 5 elements

?*aaa 'print, table(10) to table(14) is 4, the other is 0.

Instructions DMINS, DMCPY

DMDEL--Delete Array Link List

Type Grammar Instructions

Description Operation of array link list, when delete one element from one array,

then present element and all behind parameters will move forward one

space.

Be careful when operating long size array, especially TABLE.

Grammar DMDEL ArrayName(pos)

arrayname array name

 pos array index

Controller General

Example DIM aa(6) 'define array aa

FOR i=0 TO 4 'assign value 0,1,2,3,4

aa(i)=i

NEXT

?*aa 'print all array elements

DMDEL aa(0) 'delete the first element of array.

?*aa 'print all array elements after delete operation.

Instructions DMINS, DMCPY

DMCPY--Array Copy

Type Grammar Instructions

349

Description Copy array, starting from array Src to array Des.

Be careful when operating long size array, especially TABLE.

Grammar DMCPY ArrayDes(startpos) , ArraySrc(startpos)[, size]

arrayname array name

 startpos array start index

size elements number to copy, it will reduce automatically

if exceeds maximum value.

Controller General

Example GLOBAL aa(6),bb(6) 'define array aa, bb

FOR i=0 TO 4 'assign value 0, 1, 2, 3, 4

aa(i)=i

NEXT

?*aa 'print all elements in array

?*bb

DMCPY aa(0), bb(0),6 'assign value of bb to aa

?*aa 'print all array elements after copy operation

?*bb

Instructions DMINS, DMDEL

DMSET- Array Assign

Type Grammar Instructions

Description Assign array.

Be careful when operating long size array, especially TABLE.

Grammar DMSET arrayname(pos, size, data)

pos：start index

size：length

data: array to be set

Controller General

Example DMSET TABLE(0,10,2) 'assign value in the array part

FOR i=0 TO 9

PRINT "TABLE",i, TABLE(i) 'print array

NEXT

DMSET TABLE(0,10,3) 'assign value in the array part

FOR i=0 TO 9

PRINT "TABLE",i, TABLE(i) 'print array

NEXT

Instructions DMINS, DMDEL

DMCMP- Array Comparison

Type Grammar Instructions

Description Array comparison, compare values of elements in array one by one,

350

then return results.

Please cautious to oversize arrays operation, especially array TABLE.

Grammar value = DMCMP(arr1, arr2, size)

 arr1: array to be compared

 arr2: array to be compared

 size: the number of elements to compare, which can’t exceed the length

of arr1 and arr2.

Gained return values:

 arra1 > arr2 value = 1

 arra1 = arr2 value = 0, in comparison range, element values equal

 arra1 < arr2 value = -1

Controller General

Example DIM value,i

DIM arr3(5), arr5(6)

FOR i = 0 TO 4

arr3(i) = i*10

NEXT

FOR i = 0 TO 5

arr5(i) = i*100+1

NEXT

value = DMCMP(arr3,arr5,5)

?value

IF value = -1 THEN

?"less than"

ELSEIF value = 1 Then

?"more than"

ELSE

?"equal"

END IF

Instructions DMINS, DMDEL

DMCMP- Array Search

Type Grammar Instructions

Description According to element value, search the position of this element in array,

then return the value that indicates the first searched array index, if it

can not be searched, it will return -1.

Please cautious to oversize arrays operation, especially array TABLE.

Grammar Pos = DMSearch (array, startpos, offset, maxtimes, value)

 array: array name

 startpos: starting position of searching

 offset: span that jumped in each search

 maxtimes: max judged times

351

 value: searched value

Return:

 Pos: index of array, -1 means no found.

Controller General

Example DIM ruturn, value

DIM arr1(10)

FOR i = 0 TO 9

Arr1(i) = i

NEXT

value = DMsearch(arr1,0,1,10,3)

ruturn = DMsearch(arr1,0,1,10,20)

IF value = 3 AND ruturn = -1 THEN

?"success"

ELSE

?"fail"

END IF

Instructions DMINS, DMDEL

SIZEOFARRAY – Get Array Space

Type Grammar Instructions

Description Get occupied space.

Grammar VAR = SIZEOFARRAY (array name)

return the number of arrays, variables are not supported.

VAR = SIZEOFARRAY (structural name)

return space occupied by structure.

VAR = SIZEOFARRAY (structural variables name)

 return structural variables / arrays occupied space

Valid in 5xx series controllers with firmware version above 20180327

Valid in 4xx series controllers of fast version with firmware version above

20190107.

Controller General

Example Example 1: the number of returned arrays

GLOBAL aa(12),bb 'define array aa, bb

FOR i=0 TO 4 'assign aa as 0,1,2,3,4

aa(i)=i

NEXT

?*aa 'print all elements of array

?SIZEOFARRAY(aa) 'print result : 12

Example 2: the number of returned structural variables / arrays

'statement structure AA

GLOBAL Structure ClassAA

DIM AA_val1 'member variables

352

DIM AA_array(10) 'member arrays

END Structure

'build structure variables

GLOBAL Class1 AS ClassAA

Class1.AA_val1=123

?Class1.AA_val1 'print result: 123

class1.AA_array="abc"

?class1.AA_array 'print result: abc

?SIZEOFARRAY(class1) 'print result:11

?SIZEOFARRAY(classAA) 'print result: 11

?SIZEOFARRAY(class1.AA_array) 'print result: 10

?SIZEOFARRAY(Class1.AA_val1) 'print result: 1

Instructions DMINS, DMDEL

8.4 Self-defined Sub Function Instruction

 SUB--Self-defined Subfunction SUB

Type Grammar Instructions

Description Users custom SUB process, GLOBAL description can be added before

to define SUB process for global use.

Grammar SUB label([para1] [,para2]…)

…

END SUB

Parameters

label: process name, it can’t be same as current key words.

para1: transferred parameters when calling SUB, and it is changed

into local variables automatically.

para2: transferred parameters when calling SUB, and it is changed

into local variables automatically.

Valid in 5xx series controllers, and the firmware version after February 2022

added this function.

SUB subname(BYREF paraname[(dimsize)] [AS structname])

subname: sub name

dimsize: the length of the array, must be defined as a constant

structname: the name of the structure type, supporting BYREF to

transfer ZVOBJ

BYREF represents a quote, at this time, for calling method, please fill in

variables, arrays or others of corresponding types.

The default BYVAL means transfer by copy, and BYVAL does not support

353

arrays, structures, etc. temporarily.

The array defined by BYREF cannot use {} to assign multiple elements, and

does not support the original array multiple element assignment method.

The data passed by BYREF can no longer use the ZINDEX index function.

In principle, it is not recommended to use ZINDEX for LOCAL data

Controller General

Example Example 1:

SUB sub1() 'define process SUB1, which is only used in present file.

?1

...

END SUB

GLOBAL SUB g_sub2() 'define global SUB g_sub2, it is used in any file.

?2

...

END SUB

GLOBAL SUB g_sub3(para1,para2) 'define global SUB g_sub3, and

transfer 2 parameters.

?Para1,para2

...

RETURN para1+para2 'function returns, parameters are combined

END SUB

Example 2: valid in 5xx series controllers or above

STRUCTURE POS

DIM a

DIM b(11)

END STRUCTURE

DIM var1

DIM arr2(11)

DIM arr3(300)

DIM str3(2) as pos

SUB2(var1, arr2, str3) 'mode 1

SUB2(var1, arr2(100, 200), str3) 'mode 2: get the middle part of the array

through arr2(100, 200)

SUB SUB2(byref var1, byref arr2(100), byref arr3(2) as pos)

?SUB_IFPARA(0)

?var1

?arr2(1)

?arr3(1).a

END SUB

SUB SUB3(byref var1, byref obj1 as ZVOBJ)

'support BYREF to pass ZVOBJ

?SUB_IFPARA(0)

?var1

354

?arr2(1)

?arr3(1).a

END SUB

Instructions SUB_PARA, SUB_IFPARA

SUB_PARA—SUB Transfers Parameters

Type Grammar Instructions

Description Choose input parameters of SUB.

Grammar SUB_PARA(address)

address: NO. of input parameters, starts from 0.

Controller General

Example SUB AAA(NUM1,NUM2,NUM3)

?SUB_PARA(0) 'print the first parameter num1 when calls AAA

 ?SUB_PARA(1) 'print the second parameter num2

 ?SUB_PARA(2) 'print the third parameter num3

END SUB

Instructions SUB,SUB_IFPARA

SUB_IFPARA --Judgement of SUB Input Parameters

Type Grammar Instructions

Description Judge if SUB parameters were input.

Grammar SUB_IFPARA(address)

 -1: already input,

0: -not input

address: NO. of input parameters, starts from 0.

Controller General

Example AAA(0,100) 'input num1,num2

AAA(,100) 'only input num2

END

SUB AAA(NUM1,NUM2)

IF SUB_IFPARA(0) THEN 'check if num1 was input when calls AAA

 ?1 'input and print 1

 ELSE

 ?0

 ENDIF

END SUB

Instructions SUB, SUB_PARA

355

GOSUB/CALL—SUB Calling

Type Procedure Structure

Description Call SUB process, which is only valid for SUB process in present file or

SUB process defined as global.

When call SUB process directly, GOSUB can be omitted.

If there are no parameters in SUB process, “()”in SUB can be omitted

After using GOSUB, the present content will be pushed onto stack, which

means the present local variables can not be accessed in called SUB process.

Contents will pop from stack when RETURN.

Grammar GOSUB/CALL label

label: SUB name

Controller General

Example 'Main process

main:

GOSUB sub1()

sub2(1,2) 'transfer 1 to para1, transfer 2 to para2.

call sub3

END

'defined SUB

SUB sub1()

a=100

PRINT "sub1"

RETURN

SUB sub2(para1,para2)

a=200

PRINT "sub2",para1,para2

RETURN

GLOBAL SUB sub3() 'It can be called in another procedure file

a=300

PRINT"sub3"

RETURN

GSUB--Self-defined Subfunction-G Code

Type Grammar Instructions

Description Users customize GSUB process.

GLOBAL description can be added before to define global use GUSB

process. When call GSUB, it will follow G code grammar, no need to add ().

Grammar GSUB label([char1] [,char2]…)

…

356

END SUB

Parameters

label: process name, which can not be same as some key words.

char1: input parameters when call SUB, which is changed into local

variables automatically.

char2: input parameters when call SUB, which is changed into local

variables automatically.

Alphabet Parameters can only be as single character

Controller General

Example G01 X100 Y100 Z100 U100 'call G01

END 'main process ends.

GLOBAL GSUB G01(X, Y, Z, U) 'define GSUB process G01

...

END SUB

Instructions GSUB_PARA, GSUB_IFPARA

GSUB_PARA--Input Parameters of GSUB

Type Grammar Instructions

Description Choose input parameters of GSUB.

Grammar GSUB_PARA(char)

char: input alphabet parameter when define GSUB

Controller General

Example GSUB AAA(X,Y,Z)

?GSUB_PARA(X) 'print the first parameter X when calls AAA

 ?GSUB_PARA(Y) 'print the second parameter Y

?GSUB_PARA(Z) 'print the third parameter Z

END SUB

Instructions GSUB, GSUB_IFPARA

GSUB_IFPARA-- Judgement of GSUB Input Parameters

Type Grammar Instructions

Description Judge if GSUB parameters were input.

Grammar GSUB_IFPARA(char)

-1-already input

0-not input

char: input alphabet parameter when define GSUB

Controller General

Example AAA X0 Y100 'input X,Y

AAA X0 'only input X

357

END

GSUB AAA(X,Y)

IF GSUB_IFPARA(Y) THEN 'check if Y was input when calls AAA

 ?1 'if Y was input, print 1.

 ELSE

 ?0

 ENDIF

END SUB

Instructions GSUB, GSUB_PARA

END SUB--End of Self-defined Function

Type Procedure Structure

Description Customized SUB process ends, see SUB for reference.

Controller General

RETURN--Function Value Return

Type Procedure Structure

Description It is used for users’ SUB process return or return value.

Default returned value is 0. Externally, read returned value in former SUB

process through RETURN .

Different tasks will return different values.

Grammar RETURN

Controller General

Example CALL sub1

?RETUEN 'result is 111

END 'main procedure ends

SUB sub1()

RETURN 111 'return 111

END SUB

XSUB – Custom XSUB Sub-Function

Type Procedure Structure

Description XSUB is the process customized by users to transfer parameters into

subfunction.

There is one difference between RSUB and XSUB, XSUB needs to add the

brackets when calling.

Grammar
Grammar is the same as SUB.

When calling, it can use the grammar of paraname = value.

358

Controller General

Example Example 1:

subX(ARR2=a2, VAR1 =a1, ARR3=pos4)

XSUB subX(byref var1, byref arr2(100), byref arr3(2) as pos)

?SUB_IFPARA(0)

?var1

?arr2(1)

?arr3(1).a

END SUB

Example 2:

TR VAR1 = 5,VAR2 = 1

dim a

a = 10

TX(var1 = a ,arr = "Zmotion")

RSUB TR(VAR1,VAR2)

?SUB_IFPARA(0)

?var1

?var2

END SUB

XSUB TX(byref var1,byref arr(100))

?var1

?arr

end sub

Instructions SUB, RSUB

RSUB – Custom RSUB Sub-Function

Type Procedure Structure

Description RSUB is the process customized by users to transfer parameters into

subfunction.

There is one difference between RSUB and XSUB, RSUB doesn’t need to

add the brackets when calling.

Grammar
Grammar is the same as SUB.

When calling, it can use the grammar of paraname = value.

Controller General

Example subR ARR2=a2, VAR1 =a1, ARR3=pos4

RSUB subR(byref var1, byref arr2(100), byref arr3(2) as pos)

?SUB_IFPARA(0)

?var1

?arr2(1)

?arr3(1).a

END SUB

359

Instructions SUB, XSUB

8.5 Structural Definition Instruction

STRUCTURE-Definition of Structural Body

Type Grammar instruction

Description Definition of structural body.

With firmware version above 5 xxx serials of 20180327 support.

With firmware fast version above 4 xxx serials of 20190107 support.

Grammar Structure name of structure

Dim: member 1 name [As data type1]

... ...

Dim: member n name [(array length)][As data type 1]

End Structure

Data type only supports structural body. Every element has the same array

element and occupies one array element space.

Structure is not recursive.

Structure variables definition:

DIM: variables name AS structure name

DIM: structure array name [(array length)] AS structure name

GLOBAL: variables name AS structure name

GLOBAL: structure array name [(array length)] AS structure name

The reserved function:

LOCAL variables name AS structure name

Support use FLASH_WRITE，FLASH_READ to read and write variables

and arrays of structure definition.

FLASH_WRITE id, structure variables

FLASH_WRITE id, structure array

FLASH_WRITE id, structure array(index)

FLASH_WRITE id, structure array(index).item

FLASH_WRITE id, structure array(index).item array(index)

FLASH_READ same as former.

Support use array operation instructions to operate arrays of structural body.

DMINS structure array(index) [,numes]

DMINS structure array(index).item array(index) [,numes]

DMDEL same as former.

DMCPY structure array 1(index1), structure array 2 (index2) [,size]

DMSET only supports operate the last level arrays, it can’t assign structural

360

array.

DMSET structure variables. item array(index, size, data)

DMADD: same as former.

Controller General

Example 'declaration structural body AA

GLOBAL Structure ClassAA

DIM AA_val1 'member variables

DIM AA_array(10) 'member array

END Structure

'declaration structural body BB

GLOBAL Structure ClassBB

DIM BB_val1 AS ClassAA 'member variables are structural body

END Structure

'build structural body variables

GLOBAL Class1 AS ClassAA

GLOBAL Class2 AS ClassBB

Class1.AA_val1=123

?Class1.AA_val1

class1.AA_array="abc"

?class1.AA_array

Class2.BB_val1.AA_val1=567

?Class2.BB_val1.AA_val1

Class2.BB_val1.AA_array="zxc"

?Class2.BB_val1.AA_array

AA_val1=8

FLASH_WRITE 0,AA_val1

AA_val1=123

FLASH_READ 0,AA_val1

?AA_val1

END

Instructions DIM, GLOBAL, UNION

UNION-Definition of Community

Type Grammar instruction

Description Definition of community.

With firmware version above 5 xxx serials of 20180327 support.

With firmware fast version above 4 xxx serials of 20190107 support.

Grammar UNION structure name

Dim: member 1 name[As data type1]

361

... ...

Dim: member n name[(array length)][As data type1]

End UNION

Structural variables definition：

DIM: variables name AS structure name

DIM: structure array name[(array length)] AS structure name

GLOBAL: variables name AS structure name

GLOBAL: structure array name[(array length)] AS structure name

The reserved function：

LOCAL: variables name AS structure name

Support use FLASH_WRITE，FLASH_READ to read and write variables

and arrays of structure definition.

FLASH_WRITE id, structure variables

FLASH_WRITE id, structure array

FLASH_WRITE id, structure array(index)

FLASH_WRITE id, structure array(index).item

FLASH_WRITE id, structure array(index).item array(index)

FLASH_READ same as former.

Support use array operation instructions to operate arrays of structural body.

DMINS structure array(index) [,numes]

DMINS structure array(index).item array(index) [,numes]

DMDEL: same as former.

DMCPY structure array 1(index1), structure array 2 (index2) [,size]

DMSET only supports operate the last level arrays, can’t assign structural

array.

DMSET structure variables. item array(index, size, data)

DMADD: same as former.

Controller General

Example Please refer to STRUCTURE for examples.

Instructions DIM, GLOBAL, STRUCTURE

8.6 Jump Instruction

GOTO--Forced Jump

Type Procedure Structure

Description Force to jump, the difference from GOSUB is that process called by

GOTO will not be pushed onto stack.

Grammar GOTO label

362

Controller General

Example a=100

GOTO label1 'force to jump to label1

a=1000

END 'main procedure ends

label1:

PRINT a 'result is a=100

END 'label1 ends

ON GOSUB--Condition Jump

Type Procedure Structure

Description When expression is true, then call label process.

Grammar ON expression GOSUB label

expression: judgement condition

label: jump to sub or label

Controller General

Example a=100

ON a>10 GOSUB label1 'when a>10, call label process.

a=1000

PRINT a

END 'main procedure ends

label1:

PRINT a

RETURN 'process will return

ON GOTO-- Condition Jump 2

Type Procedure Structure

Description Condition jump, procedure jump when expression is true, called

process will not be pushed onto stack.

Grammar ON expression GOTO label

expression: judgement condition

label: jump to sub or label

Controller General

Example a=100

on a>10 goto label1

a=1000

END 'main procedure ends

label1:

PRINT a

END 'can not return when use goto jump.

363

8.7 Condition Judgement Instruction

IF--Condition Judgement Structure

Type Procedure Structure

Description Condition Judgement, its structure same as standard BASIC grammar.

Grammar IF <condition1> THEN

commands

ELSEIF <condition2> THEN

commands

ELSE

commands

ENDIF

Parameters

condition1 condition

 condition2 condition

Controller General

Example Example one：

DIM a 'define variable

a=12 'assign value

IF a>11 then 'judgement condition

TRACE "the val a is bigger then 11"

ELSELF a<11 then

TRACE "the val a is less then 11"

ENDIF

Example two：

IF IN (0) THEN OUT(0,ON) 'if there is only one line, no need of endif.

Instructions THEN，ENDIF

THEN--Condition Judgement Structure

Type Procedure Structure

Description See：IF

Controller General

ENDIF--Condition Judgement Structure

Type Procedure Structure

Description See：IF

364

Controller General

ELSEIF--Condition Judgement Structure

Type Procedure Structure

Description See：IF

Controller General

8.8 Cycle Instruction

 FOR – “for” Cycle

Type Procedure Structure

Description “Loop”, it uses standard BASIC grammar.

Grammar FOR variable=start TO end [STEP increment]

commands

NEXT variable

Parameters：

variable: variable name

start: starting cycle value

end: end cycle value

increment: incremental value of cycle, it is selectable.

Please don’t use same “variable” (when it is not local) in multi-task,

otherwise, they will bother each other.

Controller General

Example Example 1:

LOCAL a

FOR a=1 to 100 'cycle from 1 to 100

PRINT a 'print a

NEXT

Example 2:

DIM i

FOR i = 0 TO 50 STEP 2 ‘cycle from 1 to 50, the space is 2

TABLE(i) = i

?TABLE(i)

NEXT

Instructions TO,STEP,NEXT

365

TO—for Cycle Structure

Type Procedure Structure

Description See：FOR

Controller General

STEP--For Cycle Structure

Type Procedure Structure

Description See：FOR

Controller General

NEXT--For Cycle Structure

Type Procedure Structure

Description See：FOR

Controller General

WHILE--while Cycle Structure

Type Procedure Structure

Description Execute cycle when condition is met.

Grammar WHILE condition

…

WEND

Controller General

Example a=0

WHILE IN(4)=OFF 'exit cycle until input 4 is ON.

a=a+1

PRINT a

DELAY(1000)

WEND

WEND--While Cycle

Type Procedure Structure

Description see：WHILE

Controller General

366

EXIT--Exit Cycle

Type Procedure Structure

Description Exit cycle sentence.

Grammar EXIT FOR, EXIT WHILE

Controller General

Example LOCAL a

FOR a=1 TO 100 'cycle from 1 to 100

PRINT a

IF a> 20 THEN EXIT FOR

'must use the method, or IF doesn’t match with ENDIF

NEXT

REPEAT--Condition Cycle

Type Procedure Structure

Description Cycle sentence.

Execute commands by cycle, exit cycle when condition is true.

Grammar REPEAT commands UNTIL condition

Controller General

Example a=0

REPEAT 'execute followed sentences by cycle

PRINT a

a=a+1

DELAY(1000)

UNTIL IN(4)=ON 'valid until input 4 is on

UNTIL--Condition Structure

Type Procedure Structure

Description See: REPEAT, WAIT

Controller General

8.9 Wait Execution Instruction

DELAY--Time Delay

Type Grammar Instructions

Description delay delay time, unit is ms.

Other name: wa

367

Grammar DELAY (delay time)

Delay time: the number of ms

Controller General

Example DELAY(100) 'delay 100ms

WAIT UNTIL--Wait for Meeting Condition

Type Procedure Structure

Description Wait until condition is met.

Grammar WAIT UNTIL condition1 [and codition2 or codition3 ...]

Use logic operation to operate multi conditions.

Controller General

Example Example 1

WAIT UNTIL DPOS(0) > 0 'wait until position of axis 0 exceeds 0.

Example 2 used with TICKS

TICKS=2000 'set ticks as 2000

WAIT UNTIL TICKS<0 'wait 2 seconds

?"execute next step"

Example 3 used with logic conditions

WAIT UNTIL IDLE(0)=-1 AND IDLE(1)=-1 AND IDLE(2)=-1

'wait until axis 0,1,2 stop.

WAIT IDLE--Wait Until Axes Stop

Type Grammar Instructions

Description Wait axis or axes of BASE to stop, when BASE axis / axes don’t finish,

following program will not be executed.

Same as WAIT UNTIL IDLE. IDLE is axis parameter, it supports grammar

of axis parameters.

Note: controller succeeds in sending motion that doesn’t represent servo

executed.

Grammar WAIT IDLE

Controller General

Example Example 1：

BASE(0,1)

MOVE(100,100)

WAIT IDLE 'wait until present interpolation motion end

Example 2：

BASE(0,1)

MOVE(100,100)

BASE(2,3)

368

MOVE(200,200)

WAIT UNTIL IDLE(0) AND IDLE(1) AND IDLE (2) AND IDLE(3)

'wait until motion axis 0,1,2,3 end.

?"motion finished"

WAIT LOADED--Wait Until Axes Buffer Clears

Type Grammar Instructions

Description Wait until axes buffer clears, this instruction will block and won’t

execute followed procedures.

The last motion in buffer can be executed correctly, followed procedures

continue to execute at the same time.

Same as WAIT UNTIL LOADED, LOADED is axis parameter, it supports

grammar of axis parameters.

Grammar WAIT LOADED

Controller General

Example Difference from WAIT IDLE

BASE(0)

ATYPE=1

UNITS=100

DPOS=0

SPEED=100

ACCEL=1000

MERGE=1

TRIGGER

MOVE(100) 'motion in process

MOVE(50) 'motion in buffer, there is only one motion in buffer

 'when the motion was executed, buffer has been cleared.

WAIT IDLE 'when use wait idle, followed procedures will be executed

until all motions are finished.

OP(0,ON) 'open op0

Motion Path:

DPOS(0) vertical scale 100

OP(0) vertical scale 1

369

WAIT LOADED 'when use wait loaded, followed procedures will execute

once buffer clears.

OP(0,ON)

8.10. ZINDEX Pointer Instructions

ZINDEX_LABEL – Build Pointer Index

Type Grammar Instructions.

Description Build pointer index, then it is convenient for behind to call pointer.

Grammar Pointer = zindex_label (subname)

 subname: array or SUB name

Controller General

Example DIM arr1(100) ‘define array

370

Arr1(0,1) ‘assign 1 to array address 0

Pointer = ZINDEX_LABEL (arr1) ‘build index pointer

PRINT ZINDEX_ARRAY (Pointer) (0)

‘access array, print the first bit data of array, the result is 1

Instructions ZINDEX_CALL, ZINDEX_ARRAY, ZINDEX_VAR

ZINDEX_CALL – Access SUB Function

Type Grammar Instructions.

Description Call SUB function through index pointer.

Grammar ZINDEX_CALL (zidnex) (subpara, …)

 zidnex: index pointer generated from ZINDEX_LABEL

 subpara: sub parameters calling

Controller General

Example

Pointer = ZINDEX_LABEL (sub1) ‘build index pointer

ZINDEX_CALL (Pointer) (2) ‘call function

SUB sub1 (a)

 PRINT a

END SUB

Instructions ZINDEX_LABEL

ZINDEX_ARRAY – Access Array

Type Grammar Instructions.

Description Access array through index pointer.

Grammar var = ZINDEX_ARRAY (Pointer) (index)

 pointer: pointer index generated from ZINDEX_LABEL

 index: array index

Controller General

Example

DIM arr1(100) ‘define array

Arr1(0,1) ‘assign 1 to array address 0

Pointer = ZINDEX_LABEL (arr1) ‘build index pointer

PRINT ZINDEX_ARRAY (Pointer) (0)

‘access array, print the first bit data of array, the result is 1

Instructions ZINDEX_LABEL

ZINDEX_VAR – Access Variables

Type Grammar Instructions.

Description Access variables through index pointer.

Grammar ZINDEX_VAR (zindex)

371

 zidnex: index pointer generated from ZINDEX_LABEL

zindex= ZINDEX_LABEL(varname)

ZINDEX_VAR(zindex)=value

VAR2 = ZINDEX_VAR(zindex)

Controller General

Example

global gTestVar

global VarAdd1

VarAdd1=ZINDEX_LABEL(gTestVar)

ZINDEX_VAR(VarAdd1)=10

?ZINDEX_VAR(VarAdd1)

Instructions ZINDEX_LABEL

ZINDEX_STRUCT – Access Structure

Type Grammar Instructions.

Description Access structural variables or arrays through pointer after getting the

pointer of structural variables.

Grammar GLOBAL structarrname(num) As structname

zindex = ZINDEX_LABEL(structarrname)

ZINDEX_STRUCT(structname,zindex)(arrindex).item = var

var = ZINDEX_STRUCT(structname,zindex)(arrindex).item

structarrname: generated structural arrays, variables.

num: the number of generated structural arrays and variables elements.

zidnex: generated index pointer through ZINDEX_LABEL

arrindex: structural array subscript

structname: structure name

item: structure memeber

Controller

The structural pointer function is only valid in controllers with special

firmware version.

Valid in ZMC5XX series controllers with firmware above 20180327.

Valid in ZMC4XX series controllers with fast version and firmware version

above 20190107.

Example

Example 1:

GLOBAL Structure ClassAA 'structure statement

DIM AA_val1 'member variables

DIM AA_array(10) 'member arrays

END Structure

GLOBAL Class1 AS ClassAA 'structure global variables definition

GLOBAL gStructureAdd

Class1.AA_array(0,1,2,3) 'assign structure arrays

?Class1.AA_array(0) 'result: 1

gStructureAdd = ZINDEX_LABEL(Class1) 'build structure index pointer

372

?ZINDEX_STRUCT(ClassAA,gStructureAdd).AA_array(0) 'result: 1

ZINDEX_STRUCT(ClassAA,gStructureAdd).AA_array(0)= 10

?ZINDEX_STRUCT(ClassAA,gStructureAdd).AA_array(0) 'result: 10

END

Example 2:

GLOBAL STRUCTURE stru_node 'define structure

DIM m_data

DIM m_Left

DIM m_right

DIM m_Temp

END STRUCTURE

DIM root

GLOBAL g_node(100) AS stru_node

root = ZINDEX_LABEL(g_node) 'build structure array pointer

ZINDEX_STRUCT(stru_node,root)(99).m_data = 11

?ZINDEX_STRUCT(stru_node,root)(99).m_data 'result: 11

END

Instructions ZINDEX_LABEL

373

Chapter IX Instructions Related to Task

ZBASIC supports real-time multi tasks run, one file can run multi tasks at the same time. It can

start to run task from the first line through RUN, and can assign any SUB process start to run

through RUNTASK.

9.1 Task Start and Stop Instruction

RUN--Start File Task

Type Task Instructions

Description Start a new task to execute a file on controller.

Restart the same task that will report error.

When use RUN instruction without task number parameters frequently, one

file will be matched with multi tasks. It is recommended to use RUNTASK

instruction to start task.

Multi-task running instructions：

END: Present task ends normally.

STOP: Stop assigned files.

STOPTASK Stop assigned tasks

HALT: Stop all tasks.

RUN Start file as new task.

RUNTASK Start task that executes on one SUB

Grammar RUN "filename"[, tasknum]

filename: procedure file name, no need to add extension name on bas

file

tasknum: Task NO., find first valid task NO. in default mode.

Controller General

Example RUN "aaa", 1 'start task 1 to run aaa.bas file

Instructions RUNTASK

RUNTASK--Start SUB TASK

Type Task Instructions

Description Make a sub process or a label process as one new task to execute

Restart the same task that will report error.

Grammar RUNTASK tasknum, label

tasknum: Task No.

 label: self-defined SUB process (it can attch parameters) or label

374

Controller General

Example RUNTASK 1, taska 'open task 1 to trace and print position.

MOVE(1000,100)

MOVE(1000,100)

END

taska: 'print position in cycle

WHILE 1

PRINT*mpos

 DELAY(1000)

WEND

END

Instructions RUN

END--End Task

Type Task Instructions

Description End Present Task.

If there are main process and SUB process in one file, do add END at the

end of main process, or the procedure will continue to execute followed

SUB process after main process is finished, it will end until meeting

subprogram END SUB.

Controller General

Instructions RUN，RUNTASK

STOP--Stop File Task

Type Task Instructions

Description Force to stop program, and operate file.

Do stop the tasks before restart tasks.

When use STOP instruction without task number, it only stops one task in a

time, not all tasks of the file. When there are multiple tasks in one file, it is

recommended to use STOPTASK to stop tasks.

Grammar STOP program name, [tasknum]

program name: procedure file name, no need to add extension name for

bas file.

tasknum: Task NO., when procedure file starts multi tasks, the default

task number is the minimal task.

Controller General

Example RUN aaa, 1 'execute aaa.bas

STOP aaa, 1 'stop task 1

Instructions STOPTASK，HALT

375

STOPTASK--Stop SUB Task

Type Task Instructions

Description Force to stop task. Operate SUB and Label.

Do stop the tasks before restart tasks.

Grammar STOPTASK [tasknum]

 tasknum: task NO., default value is present task NO.

Controller General

Example STOPTASK 2 'stop task 2

Instructions STOP, HALT

HALT--Stop All Tasks

Type Task Instructions

Description Stop all tasks.

This instruction is only used to PC software calling. There will cause whole

process stop if uses it in BASIC, the controller can’t work.

Grammar HALT

Controller General

Example HALT 'stop all tasks

Instructions STOP，STOPTASK

PAUSE--Pause All Tasks

Type Task Instructions

Description Pause all tasks.

It is usually used in PC, if breakpoint is built successfully, tasks will also

enter pause status.

This instruction is only used to PC software callings, there will cause whole

process stop, the controller can’t work, if uses it in BASIC.

Task will continue when it resumes after pause.

Grammar PAUSE

Controller General

Example PAUSE 'pause all tasks.

Instructions PAUSETASK

PAUSETASK--Pause Assigned Tasks

Type Task Instructions

Description Pause one specific task.

376

Task will continue when it resumes after pause.

Grammar PAUSETASK tasknum

tasknum: task NO., default value is present task NO.

Controller General

Example PAUSETASK 1 'Pause task 1.

Instructions RESUMETASK

RESUMETASK--Resume Assigned Tasks

Type Task Instructions

Description Resume a specific task.

Task will continue when it resumes after pause.

Grammar RESUMETASK tasknum

tasknum: task NO., default value is present task NO.

Controller General

Example PAUSETASK 1 'pause task 1.

RESUMETASK 1 'continue to run task 1.

Instructions PAUSETASK

9.2 Three-file Task Instruction

FILE3_RUN--Execute FILE3 Task

Type Task Instructions

Description Start Three-file procedure file.

Three-file procedure file is a kind of oversize file that can be uploaded

dynamically, it is used in Zbasic grammar. Condition judgement, procedure

jump and other operations are not supported. Three-file procedure can be

downloaded into controller by instructions or by tool: zfile3view to scan,

upload and download.

Grammar FILE3_RUN "filename", tasknum

filename: the file name of File3, it must be downloaded into controller

first.

tasknum: task No., find the first valid task by default.

Controller Controllers with large storage size and firmware version above 2015

support.

Example FILE3_RUN "aaa.z3p", 1 'run FILE3 procedure aaa.z3p in task 1.

Instructions FILE3_ONRUN

377

FILE3_ONRUN--FILE3 Callback Function

Type Callback Function

Description It will be triggered automatically when File3 starts.

Grammar GLOBAL FILE3_ONRUN: Label NO.

GLOBAL SUB FILE3_ONRUN()

self-defined SUB process (no attached parameters)

Callback functions belong to File3 task.

Controller General

Example FILE3_RUN "aaa.z3p", 1 'run aaa.z3p in task 1.

END

GLOBAL SUB FILE3_ONRUN() 'start automatically when file3 starts

IF 1= PROCNUMBER THEN

BASE(0,1,2) 'choose axes list for three-time file

SPEED=1000

ACCEL=10000

ELSE

 BASE(4,5,6)

ENDIF

END SUB

Instructions FILE3_RUN

FILE3_GOTO--FILE3 Process Forces to Jump

Type Task Functions

Description Valid in File3 task, it forces to jump into defined line number to run.

Grammar FILE3_GOTO(linenum)

linenum: line NO. to jump to, starting from 1.

Controller General

Instructions FILE3_LINE，FILE3_RUN

FILE3_LINE -- FILE3 line NO.

Type Task Functions

Description Return present running line NO. of File3, no matter the three-time file

enters BASIC file due to SUB process calling, it will always return

running line NO. of File3.

Grammar Value=FILE3_LINE([taskid])

taskid: task No. of file 3. When it is not filled, it will return function

calling for the present task.

Controller General

378

Instructions FILE3_RUN，FILE3_GOTO

9.3 Task Parameter Instruction

BASE_MOVE--Assign Main Axis

Type Task Parameters

Description Force to assign the main axis of interpolation motion fucntion, this

instruction does not change actual motion.

Default value is -1, which is not valid at this time.

Valid in firmware above 20160326.

Each task has its unique BASE_MOVE parameter.

Valid in interpolation instructions after BASE_MOVE setting: MOVE

MOVEABS, MOVECIRC, MOVE_OP, MOVE_TASK etc. are not valid in

single axis functions: cam, point-to-point etc.

Grammar VAR1 = BASE_MOVE，BASE_MOVE = value

Controller General

Example BASE_MOVE=2 'force axis 2 as main axis, followed interpolation

motion will execute by using axis 2 as main axis. and

speed related parameters will also obey axis 2.

MERGE(2)=ON 'defined as continuous interpolation

SPEED(2)=100

ACCEL(2)=1000

BASE(0,1)

MOVE(100,100) 'interpolation of axis 0 and axis 1, and axis 2 join this

interpolation as main axis, but its move distance is 0.

MOVE_OP(1,1)

BASE(1)

MOVE(100) 'axis 1 moves 100, and axis 2 as main axis.

BASE_MOVE=-1 'cancel forced axis of present task.

PROC_STATUS--Task Status

Type Task Status

Description Present Task Status

0 task stops

1 task is running

3 task pauses

Grammar VAR1 = PROC_STATUS(tasknum)

 tasknum Task NO.

Controller General

379

Example PRINT PROC_STATUS(0) 'Print status of task 0

Input remote instructions

>> PRINT PROC_STATUS(0)

Output:1

Instructions PROC

PROC--Task Serial Number

Type Task amendment subsidiary instructions

Description Appoint specific tasks when access to task parameters and task status.

Grammar PROC(tasknum)

tasknum task NO.

see instruction AXIS for reference to omit it.

Controller General

Example Example One: full format

Print PROC_STATUS PROC(1) 'print running status of task 1.

Exmple Two: brief fomat

Print PROC_STATUS(1) 'print running status of task 1.

Instructions PROCNUMBER

PROCNUMBER--Present Task NO.

Type Task Specific Status, System Status

Description Task NO. of present running task.

Get task NO. through this instruction, task can not be modified by PROC in

this situation.

Grammar VAR1 = PROCNUMBER

Controller General

Example Print PROCNUMBER 'Print present task NO.

Instructions PROC

PROC_LINE--Task Line

Type Task Status

Description Present line NO. of task, which is only valid in other tasks.

Grammar VAR1 = PROC_LINE(tasknum)

 tasknum task NO.

Controller General

Example Print PROC_LINE(0) 'Print the code line of task 0.

380

Input remote instructions

>>print PROC_LINE

Output:100

Instructions PROC

PROC_PROGRESS-Progress of task instruction

Type Task Status

Description The progress of task instruction, used by FILE, from 0-100.

Every task has the progress instruction.

When LOAD_ZAR in FILE, can see the progress situation in HMII.

Attention: FILE executes, only can be scanned synchronically in HMI task,

do not drive FILE instruction directly through HMI task.

Grammar VAR1 = PROC_LINE (tasknum)

tasknum：task NO.

Controller General

Instructions PROC

PROC_PRIORITY-Task priority

Type Task Status

Description Task priority, from 1-10, the highest is 10, the default value is 1, it is

recommended only to modify a task.

Every task has the task priority.

If needs to use the firmware that supports this function, it is recommended

to update the firmware when the configuration doesn’t take effect.

Grammar Command Grammar: PROC_PRIORITY(tasknum)=value

Read Grammar: VAR1=PROC_PRIORITY(tasknum)

tasknum：task NO.

Controller General

Example PROC_PRIORITY(5)=3 'the priority of task 5 is 3

?PROC_PRIORITY(5) 'check task 5 task priority

Instructions PROC

ERROR_LINE--Error Line

Type Task Status

Description Error Line NO. of present task.

Usually used through remote command after error happens.

Grammar VAR1 = ERROR_LINE(tasknum)

tasknum: Task NO.

Controller General

381

Example Input remote instruction

>>ERROR_LINE(1)

'print error lines of task 1

Instructions PROC，ERROR_SET

RUN_ERROR--Task Error Code

Type Task Status

Description First error serial number in task.

Grammar VAR1 = RUN_ERROR(tasknum)

tasknum: Task NO.

Controller General

Example ?* RUN_ERROR(0) 'Print error NO. of task 0.

2043

Instructions ERROR_LINE

TICKS--Task Count Period

Type Task Parameters

Description Present task count period, minus 1 after every period. The unit is ms.

Each task has its unique TICKS parameters, period is 1ms in ZMC00X

series and ZMC1XX series.

No influence on TICKS count after system refresh period modified.

Grammar VAR1 = TICKS, TICKS = value

Controller General

Example TICKS = 1000

WAIT UNTIL TICKS < 0 'wait until ticks<0.

MOVE(100)

Instructions TIME_TICKUS

TIME_TICKUS-Task Count Period

Type Task Parameters

Description Present task count period, us 1 after every period.

Each task has its unique TIME_TICKUS parameters, 32 bits integer.

No influence on TIME_TICKUS count after system refresh period

modified.

Grammar VAR1 = TIME_TICKUS, TIME_TICKUS = value

Controller General

Example TIME_TICKUS=0

DELAY(1) 'delay 1 ms

382

?TIME_TICKUS 'print result: 1000, unit is us

Instructions TICKS

383

Chapter X Operator and Mathematical

Function Instructions

ZBASIC supports all operational characters in standard BASIC grammar, and it can also obey

standard BASIC priority.

Priority: arithmetic operation> comparison operation >logic operation. If priority is the same, then

operation will start from left to right in order.

Arithmetic Character Comparison Character Logic Character

Description Character Description Character Description Character

exponentiation ^ Equal = Logic negation Not

Minus - Not equal <> Logic and And

multiply * Less than < Logic or Or or |

divide / More than > Logic XOR Xor

exact divide \
Less than or

equal to
<=

Logic

equivalence
Eqv

rermainder Mod or %
More than or

equal to
>=

plus +

subtract -

shift left <<

shift right >>

10.1 Arithmetic Operation Instructions

+--Plus Operation

Type Operational Character

Description Plus two expressions.

Grammar expression1+expression2

expression1: Any valid expressions

expression2: Any valid expressions

384

Controller General

Example Online command input

>>PRINT 1+2

Output：3

---Minus Operation

Type Operational Character

Description Minus two expressions.

Grammar expression1-expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Online command input

>>PRINT 2-(2-1)

Output：1

* --Multiply Operation

Type Operational Character

Description Multiply expression 1 and expression 2.

Grammar expression1 * expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Online command input

>>PRINT 10*(1+2)

Output：30

/ --Divide Operation

Type Operational Character

Description Use expression 1 to divide expression 2.

Grammar expression1 / expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Online command input

>>PRINT 10/3

Output：3.3333

385

\ --Exact Divide

Type Operational Character

Description Exact Divide.

Grammar expression1 \ expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Online command input

>>PRINT 10 \ (1+2)

Output：3

<< --Shift Left

Type Operational Character

Description Shift left

Grammar expression1 << expression2

expression1: Any valid expressions

expression2: Any valid expressions

Priority is lower than other operational characters, so use () when they are

commonly used. See example three for reference.

Controller General

Example Example one: operate number directly.

Online command input

>>PRINT 8<<1 'relevant binary shift left one bit

Output: 16

Online command input

>>PRINT 8<<2 'relevant binary shift left two bits

Output: 32

Example two: operate variable and registers

DIM bb

bb=8

MODBUS_REG(0)=8

PRINT bb<<1,bb<<2

PRINT MODBUS_REG(0)<<1,MODBUS_REG(0)<<2

Example Three: priority comparison

?PRINT 8<<1+1 'relevant binary shift left two bits

Output: 32

?PEINT (8<<1)+1 'relevant binary shift left one bit

Output: 17

386

>>--Shift Right

Type Operational Character

Description Shift Right

Grammar expression1 >> expression2

expression1: Any valid expressions

expression2: Any valid expressions

Priority is lower than other operational characters, so use () when they are

commonly used. See example three for reference.

Controller General

Example Example one: operate number directly.

Online command input

>>PRINT 8>>1 'relevant binary shift right one bit

Output: 4

Online command input

>>PRINT 8>>2 'relevant binary shift right two bits

Output: 2

Example two: Operate variable and registers

DIM bb

bb=8

MDOBUS_REG(0)=8

PRINT bb>>1,bb>>2

PRINT MODBUS_REG(0)>>1, MODBUS_REG(0)>>2

Example Three: priority comparison

?PRINT 8>>1+1 'relevant binary shift right two bits

Output: 2

?PRINT (8>>1)+1 'relevant binary shift right one bit

Output: 5

MOD--Remainder Operation

Type Operational Character

Description Remainder Operation

Grammar expression1 MOD expression2

expression1: Any valid expressions, get integer part.

expression2: Any valid expressions, get integer part

Controller General

Example Online command input

>>PRINT 10 MOD (1+2)

Output: 1

387

ABS--Absolute Operation

Type Mathematical Function

Description Evaluate absolute value.

Grammar ABS(expression)

expression Any valid expressions

Controller General

Example PRINT ABS(-11) 'result is 11

10.2 Comparison Operation Instructions

= --Comparison or Assign Operation

Type Operational Character

Description Comparison Operational Character ： if expression 1 is equal to

expression 2, then return TRUE, or it will return False.

Assign Operational Character：assign value of expression 2 to the former

variables or parameters.

Grammar expression1 = expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Example One：

ON IN(0)=ON GOTO label1

'if input channel 0 is ON, then jump to execute

label1. Start to execute from the first line.

label1:

PRINT12 'print 12

Example Two：

DIM aaa

aaa=100 'assign variable aaa as 100

PRINT aaa

<>--Not Equal

Type Operational Character

Description If expression 1 is not equal to expression 2, then return TRUE, or

return FALSE.

Grammar expression1 <> expression2

388

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example ON MODBUS_BIT(0)<>0 GOTO label1

'if MODBUS 0 is not 0, then go to execute label1.

label1:

PRINT11 'print 11

>--More Than

Type Operational Character

Description If expression 1 is more than expression 2, then return TRUE, or return

FALSE.

Grammar expression1 > expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example WAIT UNTIL MPOS>100

'Wait until position feedback is more than 100.

Example One：

Dim q 'define variable

q= 2>1 '2 is more than 1, return TRUE.

PRINT q 'print return value

Example two：

DIM a 'define variable

a=0 'assign variable

REPEAT 'execute in cycle

a=a+1 'plus 1

?a 'print

 DELAY(200) 'delay

UNTIL a>10 'when a is more than 10, cycle ends.

>= --More Than or Equal To

Type Operational Character

Description If expression 1 is more than or equal to expression 2, then return

TRUE, or return FALSE.

Grammar expression1 >= expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

389

Example DIM a 'define variables

a= 1>=3 '1<3, so return FALSE

PRINT a 'print the return value

< --Less Than

Type Operational Character

Description If expression 1 is less than expression 2, then return TRUE, or return

FALSE.

Grammar expression1 < expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example VAR1=1<0

Since 1<0, so var1=false.

<= --Less Than or Equal To

Type Operational Character

Description If expression 1 is less than or equal to expression 2, then return TRUE,

or return FALSE.

Grammar expression1 <= expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example VAR1=1<=1

Since 1=1, so var1=true (-1).

10.3 Logical Operation Instruction

AND--Bit Operation: AND

Type Operational Character

Description Operate data bit: AND, only operate integer part.

AND Result

0 0 0

0 1 0

1 0 0

1 1 1

390

Grammar expression1 AND expression2

expression1: Any valid expressions

expression2: Any valid expressions

Result is AND bits operation of expression 1 and expression 2.

Controller General

Example Online command input

>>PRINT 1 AND 2

Output: 0

Process:

1 bit format 01

2 bit format 10

after AND operation, bit is 00, which is 0 in decimal format.

OR--Bit Operation: OR

Type Operational Character

Description Operate data bit: OR, only operate integer part.

OR Result

0 0 0

0 1 1

1 0 1

1 1 1

Grammar expression1 OR expression2

expression1: Any valid expressions

expression2: Any valid expressions

Result is OR bits operation of expression 1 and expression 2.

Controller General

Example Online command input

>>PRINT 1 OR 2

Output: 3

Process:

1 bit format 01

2 bit format 10

after AND operation, bit is 11, which is 3 in decimal format.

NOT--Bit Operation: NOT

Type Operational Character

391

Description Operate data bit: NOT, only operate integer part. Be careful to operate

ON.

NOT Result

0 -1

1 -2

Grammar NOT expression1

expression1: Any valid expressions

Controller General

Example Online command input

>>print NOT 1

Output: -2

Process

1 bit format …0000 0001

after NOT operation, bit is …1111 1110, which is -2 in decimal format.

XOR--Bit Operation:XOR

Type Operational Character

Description Operate data bit: XOR, only operate integer part.

XOR Result

0 0 0

0 1 1

1 0 1

1 1 0

Grammar expression1 XOR expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Online command input

>>PRINT 1 XOR 1

Output: 0

Process:

1 bit format 01

after XOR operation, bit is 00, which is 0 in decimal format.

EQV--Bit Operation:EQV

Type Operational Character

392

Description Operate data bit: EQV, only operate integer part.

EQV Result

0 0 1

0 1 0

1 0 0

1 1 1

Grammar expression1 EQV expression2

expression1: Any valid expressions

expression2: Any valid expressions

Controller General

Example Online command input

>>print 2 EQV 1

Output: -4

Process:

2 bit format …0000 0010

1 bit format …0000 0001

after EQV operation, bit is …1111 1100, which is -4 in decimal format.

10.4 Trigonometry Instructions

SIN-- Trigonometric Function: SINE

Type Mathematical Function

Description Evaluate sine, input parameter should be arc unit.

Grammar SIN (expression)

expression Any valid expressions

Controller General

Example PRINT SIN(PI/6) 'result is 0.5000

ASIN--Trigonometric Function: Anti-SINE

Type Mathematical Function

Description Evaluate anti-sine, returned value is arc unit.

Grammar ASIN (expression)

expression Any valid expressions

Controller General

Example PRINT ASIN(0.5) 'result is 0.52360

393

COS--Trigonometric Function: Cosine

Type Mathematical Function

Description Evaluate Cosine, input parameter should be arc unit.

Grammar COS(expression)

 expression Any valid expressions

Controller General

Example PRINT COS(PI/3) 'result is 0.5000

ACOS -- Trigonometric Function: Anticosine

Type Mathematical Function

Description Evaluate anticosine, returned value is arc unit.

Grammar ACOS (expression)

 expression Any valid expressions

Controller General

Example PRINT ACOS (0.5) 'result is 1.04720=PI/3

TAN--Trigonometric Function: Tangent

Type Mathematical Function

Description Evaluate Tangent, input parameter should be arc unit.

Grammar TAN (expression)

expression Any valid expressions

Controller General

Example PRINT TAN(pi/3) 'result is 1.732

ATAN--Trigonometric Function: Antitangent

Type Mathematical Function

Description Evaluate antitangent, returned value is arc unit.

Grammar ATAN(expression)

expression Any valid expressions

Controller General

Example PRINT ATAN(1) 'result is 0.7854 = (45/180)*PI

394

ATAN2--Trigonometric Function: Antitangent 2

Type Mathematical Function

Description Evaluate antitangent, returned value is arc unit.

Grammar ATAN2(y, x)

y: y coordinate

 x: x coordinate

Controller General

Example PRINT ATAN2(1,0) 'result is 1.5708

10.5 Exponentiation Instructions

EXP--Exponent

Type Mathematical Function

Description Exponent function

Grammar exp([base,] expvalue)

base base number, default value is e

 expvalue exponent

Controller General

Example Example One：

PRINT EXP(2,4) 'result is 16 (2*2*2*2)

Example Two：

PRINT EXP(1) 'result is 2.7183

SQR-- Square Root

Type Mathematical Function

Description Square root function

Grammar SQR(expression)

 expression Any valid expressions

Controller General

Example a=SQR(4)

PRINT a 'result is 2

LN-- Natural Logarithm

Type Mathematical Function

395

Description Natural logarithm function

Grammar LN(expression)

expression Any valid expressions

Controller General

Example a= LN(1)

PRINT a 'result is 0

LOG--Logarithm of 10

Type Mathematical Function

Description Logarithmo, which base number is 10.

Grammar LOG(expression)

expression Any valid expressions

Controller General

Example a= LOG(100)

PRINT a 'result is 2

10.6 Data Operate Instruction

SET_BIT--Set Bit

Type Mathematics Instructions or Functions

Description Bit operation, only for integer, set bit as 1.

There are command grammar and function grammar.

For VR register, it can be set as 0-24.

Grammar Command Grammar: SET_BIT(bit#,vr#) Operate VR directly

bit#: bit NO.:0-24

vr#: VR variable NO. to operate, integer part.

There is no returned value when use command grammar, only modify value

of object directly.

Function Grammar: ret=SET_BIT(bit#,int)

ret operation result

 bit# bit NO.:0-24

int expression to operate, only get the integer part.

There is returned value after using function grammar, but value of object did

not change.

Controller General

Example Example One: Command Grammar

VR(23)=0.333

SET_BIT(0,23) 'set bit 0 of VR(23) as 1, and clear decimal part.

396

?VR(23) 'result is 1

Example Two: Function Grammar

Dim a,b

a=0.333

b=0

b=SET_BIT (0,a) 'set bit 0 of a as 1, and assign value to b, clear decimal

PRINT a,b 'print result:0.333,1, a didn’t change, b=1.

Instruction CLEAR_BIT, READ_BIT2, READ_BIT

CLEAR_BIT--Operate Bit 0

Type Mathematics Instructions or Functions

Description Bit operation, only for integer, modify bit 0.

There are command grammar and function grammar.

For VR register, it can be set as 0-24.

Grammar Command Grammar: CLEAR_BIT(bit#,vr#) Operate VR directly

bit#, bit NO.:0-24

vr# VR variable NO., integer part.

There is no returned value when use command grammar, only modify value

of object directly.

Function Grammar: ret = CLEAR_BIT(bit#,int)

ret operation result

 bit# bit NO.:0-24

int expression to be operated, only operate integer part.

There is returned value after using function grammar, but value of object did

not change.

Controller General

Example Example One: Command Grammar

VR(23)=3.333

CLEAR_BIT (0,23) 'set bit 0 of VR(23) as 0

?VR(23) 'print result: 2

Example Two: Function Grammar

Dim a,b

a=3.333

b=0

b= CLEAR_BIT(0,a)

'return value to b after clear bit 0 of a and get integer part.

PRINT a,b 'result is: 3.333,2 a didn’t change, b=2.

Instruction SET_BIT，CLEAR_BIT，READ_BIT2

397

READ_BIT--Read Bit

Type Mathematical Function

Description Bit operation, which is only for integer, read bit status.

Only operate VR, see READ_BIT2 if not VR.

For VR register, it can be set as 0-24.

Grammar ret = READ_BIT(bit#, vr#)

ret: result:1 or 0

bit#: bit NO.:0-24

vr#: VR variable No. to operate

Controller General

Example VR(23)=3.333

PRINT READ_BIT(0,23) 'read bit 0 of VR(23), result is 1.

Instruction SET_BIT，CLEAR_BIT，READ_BIT2

READ_BIT2--Read Bit 2

Type Mathematical Function

Description Bit operation, only for integer, read bit status.

Grammar ret = READ_BIT2(bit#, int)

ret: result:1 or 0

bit#: bit NO.:0-31

int: expression, use integer part.

Controller General, valid in firmware version above 20130813.

Example DIM a,b

b=1.64

a=READ_BIT2(0,b) 'read bit 0 of b, assign value to b.

PRINT a 'output a, result is 1.

Instruction SET_BIT，READ_BIT

FRAC--Return Decimal

Type Mathematical Function

Description Return decimal part, which is always over 0

Grammar FRAC(expression)

expression: number to operate

Controller General

Example a=FRAC(1.235)

PRINT a 'result is 0.235

398

INT--Return Integer

Type Mathematical Function

Description Return integer part.

Grammar INT(expression)

expression: Any valid expressions

Controller General

Example a=INT(1.235)

PRINT a 'result is 1

?INT(-1.1) 'print result: -2, since decimal part is aways converted to integer.

SGN--Return Sign

Type Mathematical Function

Description Return sign.

1: more than 0

0: equal to 0

-1: less than 0

Grammar SGN(expression)

expression: Any valid expressions

Controller General

Example a=SGN(-1.235)

PRINT a 'result is -1

IEEE_IN--Combine Float Number

Type Mathematical Function

Description Combine 4 bytes into a single-precision float point number

Grammar IEEE_IN(byte0,byte1,byte2,byte3)

byte0 – byte3 4 bytes

Controller General

Example VAR = IEEE_IN(VR(10),VR(11),VR(12),VR(13))

Make these 4 data into one single-precision float point number.

IEEE_OUT--Select Single Byte

Type Mathematical Function

Description Select one byte from a single-precision float point number

Grammar byte_n = IEEE_OUT(VAR, n)

var: single-precision float point number

N: 0-3, byte to be selected.

399

Controller General

Example Example 1

VAR = IEEE_OUT(VR(1),2) 'select the second byte of VR(1)

Example 2

GLOBAL VAR0,VAR1,VAR2,VAR3

VAR0=0

VAR1=0

VAR2=0

VAR3=0

VR(1)=123.456

VAR0 = IEEE_OUT(VR(1),0)

VAR1 = IEEE_OUT(VR(1),1)

VAR2 = IEEE_OUT(VR(1),2)

VAR3 = IEEE_OUT(VR(1),3)

VR(2)=0

VR(2)=IEEE_IN(VAR0,VAR1,VAR2,VAR3)

The result:

$--Hexadecimal

Type Special Character

Description Indicate the followed data is hexadecimal format.

Grammar $hexnum

Controller General

Example Online command input

>>PRINT $F

Output: 15

10.7 Character String Operation Instruction

CHR--ASCII Code Print

Type String Functions

Description Return ASCII, which is only used in PRINT.

400

Grammar CHR(expression)

expression: Any valid expressions

Controller General

Example Online command input

>>PRINT CHR(66)

Output: B

HEX--Print Hexadecimal

Type String Functions

Description Return hexadecimal format, which is only used for PRINT.

Grammar HEX(expression)

expression: Any valid expressions, only select integer part.

Controller General

Example Online command input

>>PRINT HEX(15);

Output: f 'hexadecimal

STRLEN-Return String Length

Type String Functions

Description Return string length

Grammar len=STRLEN(str)

str：string

Controller General

Example DIM str_a(20)

str_a="len123"

?STRLEN(str_a)

Print result: 6

TOSTR—Format Output

Type String Functions

Description Format output function. Convert variable to string.

Grammar TOSTR(VAR1, [N],[DOT])

VAR1: Any valid expressions

N: total output digits, including decimal digit and sign digit. when N

is set as minus value, which means right alignment.

DOT: decimal number to output, when N is too small, there is no

decimal digit, then will not output decimal part.

All Output is string type. Only the first parameter is printed to four decimal

401

places by default.

Controller General

Example Example One

Online command input

>> PRINT TOSTR(2-100,6,2)

Output：-98.00

Example two

Dim aa(20)

aa="asd13"+TOSTR(354)

?aa 'print result:asd13354.000

STRCOMP--String Comparison

Type String Functions

Description String comparison function, return logic result: >0 or =0 or <0 after

comparison of two strings.

The comparison length should not exceed 500 bytes, or the returned value

will appear error.

Grammar STRCOMP(str1, str2)

str1: string1

str2: string2

Controller General

Example DIM AAA(10)

AAA = "abc"

Online command input

>>PRINT STRCOMP(AAA, "abc")

Output: 0

STRFIND—String Search

Type String Functions

Description String searching function.

Grammar STRFIND(str1, str2 [, firstindex])

str1: string to search

str2: search sample string

firstindex: search from that position, default value is 0.

Return:

 >= 0, return aimed index after searching.

 < 0, no string is found.

Controller General

402

Example DIM AAA(10),BBB(3)

AAA="AD23GF41"

BBB="23G"

?STRFIND(AAA,BBB) 'print aimed index after searching, 2

STRCONV—Encoder Conversion

Type Character string function.

Description

Character string conversion of different codes.

Only support encoder without 0, UTF16 is invalid.

Encoders can be supported: CP936, UTF-7, UTF-8, GB2312, etc.

Grammar string2=STRCONV(“srccodename”, “descodename”, “string1”)

Controller Controllers with Linux and 7XX series.

Example

DIM arrstring(100)

arrstring = STRCONV("gb2312","utf8", "folder")

?STRCONV("utf8", "gb2312", arrstring) 'output result: folder

VAL--Convert String to Number

Type String Functions

Description Convert String to number.

Only convert string to number, when meets alphabet or sign, it will stop.

Grammar VAL(str1)

str1 string

Controller General

Example Example One

VAR1 = VAL("123")

?VAR1 'print result,123

Example two

VAR2 = VAL("123QWE23")

?VAR2 'print result,123

10.8 Constant Instruction

PI--Circular Constant

Type Constant

Value 3.14159

Controller General

403

TRUE--True Value

Type Constant

Value -1

Controller General

FALSE--False Value

Type Constant

Value 0

Controller General

ON--Open

Type Constant

Value 1

Controller General

OFF--Close

Type Constant

Value 0

Controller General

10.9 Advanced Operational Instruction

CRC16 --CRC Verification Calculation

Type Mathematical Function

Description CRC16 CCITT calculation.

Grammar CRC16(arrayname, index, size[, inital] [, poly])

arrayname: array where data are saved, one byte occupy one position

 index: array index

 size: array size.

 initial: default value of CRC calculation, default is $FFFF.

poly: polynomial, only supports $A001 of MODBUS and $1021 of

CCITT, default value is $A001

Controller General

404

Example TABLE(0, $FE, $48 , $06 , $00 , $6D , $00 , $00 , $00)

'store 8 data in TABLE.

CRCVALUE = CRC16(TABLE, 0, 8) 'CRC calculation, result is $1A0D

TABLE(8)= CRCVALUE \ 256 'add CRC to end of data, big end mode.

TABLE(9)= CRCVALUE and $FF

DTSMOOTH--Table Smooth

Type Mathematical Function

Description Smooth coordinate in TABLE

Grammar DTSMOOTH (axes, dtfirst, space, points, imode, referradius)

axis: axis number

 dtfirst: TABLE index of first coordinate

 space: index interval of two points. or space one point consumes.

 Points: total points.

 Imode: 0-absolute mode, adjust when curvature radius is under

reference value.

referradius: reference curvature radius, equal to speed^2/corner speed.

Controller ZMC3X series with firmware above 20161206.

ZMC4 series with firmware above 20170508.

Example TABLE(0, 0,0)

TABLE(5, 99,0)

TABLE(10, 100,0)

TABLE(15, 100, 1)

TABLE(20, 101, 1)

TABLE(25, 200, 1)

DTSMOOTH(2, 0, 5, 6, 0, 5)

?*TABLE(0, 2)

?*TABLE(5, 2)

?*TABLE(10, 2)

?*TABLE(15, 2)

?*TABLE(20, 2)

?*TABLE(25, 2)

B_SPLINE--B-Spline Smooth

Type Mathematical Function

Description Use data in table to do B-spline smooth.

Grammar B_SPLINE(type, data_start, points, data_out, ratio)

type: Type, valid in 1-B-spline.

data_start: graphics data starting position in TABLE

points: the number of graphics data.

data_out: graphics data starting position in TABLE after smooth.

405

ratio: smooth ratio of B_SPLINE function, the number after smooth is

points * ratio.

Add the automatic calculation function of spline control point. It is used

together with MOVESPLINE spine curve motion. Products above 4 series

support, 4 series with firmware above 20170621.

B_SPLINE(type, axises, dtstartpos, dtendpos, dtlastpos, dtnexpos,

dtoutcontrol1, dtoutcontrol2)

type：

1: compatible with original functions

11: calculate spined control points for the first segment of

continuous line segment.

12: calculate spined control points for the middle segment of

continuous line segment.

13: calculate spined control points for the last segment of

continuous line segment.

axises: axes to do spline interpolation

dtstartpos: table array index of segment starting point coordinate,

multi-axis saved in different table continuously. Same as

follow.

dtendpos: table array index of segment ending point coordinate

dtlastpos: front point’s coordinate index of segment starting point is

used to calculate for reference, the first segment parameter

is invalid.

dtnexpos: back point’s coordinate index of segment starting point is

used to calculate for reference, the last segment parameter is

invalid.

dtoutcontrol1: output control point data of spline, the first control point

of Bessel. (except starting point as control point)

dtoutcontrol2: output control point data of spline, the second control

point of Bessel.

There are four control points of Bessel, including starting point,

dtoutcontrol1, dtoutcontrol2 and ending point.

Controller General

Example Example 1 type1

B_SPLINE(1,0,10,100,10)

'smooth 10 picture data, saved in table(0) to table(9), after

smooth, become 100 data, save in table(100) to table(199).

Example 2 New Mode

TABLE(0,0,0,0,100,100,100,200,100)

'coordinate data of 4 consecutive points on XY axis.

B_SPLINE(11, 2, 0, 2, -1, 4, 100,200) 'the first segment

?TABLE(100),TABLE(101),TABLE(200),TABLE(201)

B_SPLINE(12, 2, 2, 4, 0, 6, 100,200) 'the second segment

406

?TABLE(100),TABLE(101),TABLE(200),TABLE(201)

B_SPLINE(13, 2, 4, 6, 2, 6, 100,200) 'the third segment

?TABLE(100),TABLE(101),TABLE(200),TABLE(201)

TURN_POSMAKE--Rotating Center Calculation

Type Mathematical Function

Description Center point calculation of rotating, positive direction of rotating

should be same as positive direction of XY.(right hand rule)

Grammar TURN_POSMAKE(tablenum, posx, posy, disR, tableout)

tablenum table NO. where save rotating parameters.

posx X coordinate.

posy Y coordinate

disR relative offset of rotating axis.

tableout save coordinate after calculation..

Controller General

Instructions MCIRC_TURNABS

ZCUSTOM--Motion Parameters Calculation

Type Mathematical Function

Description Calculate parameters in all kinds of motion commands, for detailed

grammar function, please refer to following.

Grammar Function 2: calculate the position of a point at a certain distance on a

space arc or straight line.

In Table parameters, according to 3-point circle making mode, fill in other

two parameters.

Fill in relative coordinates, then the returned coordinates are also relative.

Grammar: ZCUSTOM (2,tableend, tablemid, tableout, mode, vectdis)

tableend: table index that saves end point of circular arc.

tablemid: table index that saves middle point of arc, which together

with the current point constitutes the three points of the arc.

tableout: table index that outputs calculation data

mode: value meanings as follow:

Mode Description

1 Space circular arc length relates to starting point.

2 Space circular arc length relates to end point.

3 Linear distance, relate to starting point, now, tablemid is

invalid.

4 Linear distance, relate to end point, now, tablemid is

invalid.

5 Relatively calculate circle center of space arc, now, vectdis

is invalid, and tableout only outputs circle center xyz,

407

radian range, and arc length in sequence.

vectdis: the distance of point (to be calculated) that relates to “mode”,

minus value means forward. In arc mode, positive value

means clockwise, minus value means anticlockwise.

Function 6: calculate tangent angle direction of space arc’s starting

point and end point, the unit is radian.

Fill in relative coordinates, and returned coordinates are also relative.

Grammar: ZCUTOM (6, tableend, tablemid, tableout)

tableend: table index that saves end point of arc.

tablemid: table index that saves middle point of arc, consist 3 points of

arc together with present point.

tableout: table index that saves result data. It will output starting point

XY, starting point Z, end point XY, end point Z.

Function 7: input speed ratio, then calculate salve and main axis

position of MOVESLINK.

Grammar: ZCUSTOM(7, distance, link_dist, start_sp, end_sp, speed ratio,

tableout)

distance: distance that the slave axis moves during the link, unit is

units.

link_dist: absolute distance that reference axis moves during the link,

units is units.

star_sp: the speed ratio of slave axis to reference axis when starts, unit

is units/units, minus value means slave axis moves in negative

direction.

end_sp: the speed ratio of slave axis to reference axis when ends, unit

is units/units, minus value means slave axis moves in negative

direction.

speed ratio: speed ratio of points that needs calculating

tableout: forward salve axis distance, forward main axis distance, slave

axis distance from reverse, and main axis distance from the

reverse, they occupy 4 TABLE. (for one curve, there are

many several solutions of speed ratio.)

Function 8: MOVESLINK inputs slave axis position, then calculates

master axis position.

Grammar: ZCUSTOM(8, distance, link_dist, start_sp, end_sp,

distancemoved, tableout)

distance: distance that slave axis moves during links.

link_dist: absolute distance that master axis moves during links.

start_sp: speed ratio of starting pulse

end_sp: speed ratio of end pulse

distancemoved: motion distance that slave axis already moved

tableout: table index that saved position of master axis, if there are

multi results, return the first one.

408

Function 9: FLEXLINK inputs slave axis position, then gets main axis

position.

Grammar: ZCUSTOM (9, base_dist, excite_dist, link_dist, base_in,

base_out, excite_acc, excite_dec, distancemoved, tableout)

base_dist: uniform motion distance of slave axis.

excite_dist: excite motion distance of slave axis, when the value is

opposite to base_dist, it can’t calculate the main axis’

position.

link_dsit: whole process, after slave axis motion finished, motion

distance of main axis.

base_in: before excite motion, the percent of salve axis motion distance

to base_dist.

base_out: after excite motion, the percent of salve axis remain distance

to base_dist. Don't add them more than 100%.

excite_acc: in the process of excite motion, the precent of slave axis

acceleration distance to excit_dist, when excite_dist is

minus value, it’s the deceleration stage.

excite_dec: in the process of excite motion, the precent of slave axis

deceleration distance to excit_dist, when excite_dist is

minus value, it’s the acceleration stage.

distancemoved: pulse amounts of slave axis that had moved

tableout: output Table index, output relative main axis position, if there

are several solutions, return to the first one.

Function 10: calculate FRAME_ROTATE parameters in original

coordinate according to workpiece coordinate three

points. Every point needs to store xyz coordinates.

Grammar: ZCUSTOM (10, dtzero, dtx, dty, dtout)

dtzero: workpiece origin point position in original coordinate.

dtx: point (on the workpiece coordinate X) position at original

coordinate.

dty: point (on the workpiece coordinate Y) position at original

coordinate.

dtout: output TABLE index, and store respectively: X,Y,Z,RX,RY,RZ

Function 12: calculate circle center according to arc’ end point, radius.

Grammar: ZCUSTOM (12, xpos, ypos, radius, anticlock, dtout)

xpos: relative coordinate in X

ypos: relative coordinate in Y

radius: radius, negative value means the arc sector angle > 180°,

positive value means < 180°.

anticlock: 0: clockwise, 1: anticlockwise

dtout: output circle center relative distance xy, it needs two positions.

Note: dtzero, dtx, dty, and dtout are table index, it only needs to write index,

table saves x, y, z of three directions, for robotic arm algorithm, it fills in

409

virtual axis’ coordinates.

Controller General

Example Example one Use function 2

TABLE(0,50,-50,0) 'set end coordinate, relative position.

TABLE(3,50,50,0) 'set middle coordinate, relative position.

'mode1，relative to start point

ZCUSTOM(2,0,3,10,1,78.54) 'relative to start point, clockwise, arc length

is 78.54

?TABLE(10),table(11),table(12)'output relative coordinate:0,0,0

ZCUSTOM(2,0,3,10,1,-78.54) 'relative to start point, anticlockwise, arc

length is 78.54

?TABLE(10),TABLE(11),TABLE(12) 'output relative coordinate:50,-50,0

'mode2, relative to end point

ZCUSTOM(2,0,3,10,2,78.54) 'relative to end point, clockwise, arc length

is 78.54.

?TABLE (10),TABLE (11),TABLE (12) 'output relative coordinate: 50,-50,0

ZCUSTOM(2,0,3,10,2,-78.54) 'relative to end point, anticlockwise, arc

length is 78.54

?TABLE (10),TABLE (11),TABLE (12) 'output relative coordinate:100,0,0

'mode5, calculate center, radian, arc length.

ZXUTOM(2,0,3,10,5,0) 'distance parameters are not valid in this situation.

?TABLE (10),TABLE (11),TABLE (12) 'output relative coordinate: 50,-50,0

?TABLE(13),TABLE(14) 'output arc angle: 4.712, arc length: 235.62

Example two function 6, calculate tangent radian of start point and

end point

410

TBALE(0,50,-50,0) 'set end point, relative position.

TABLE(3,50,50,0) 'set middle point, relative position

ZCUSTOM(6,0,3,10) 'calculate tangent radian of present and end point.

?TABLE(10),TABLE(11) 'output present point:1.571,0 (1.571=90*PI/180)

?TABLE(12),TABLE(13) 'output end point:-3.142,0 (-3.142=-180*PI/180)

Example Three Function 8, calculate master axis position of

MOVESLINK

BASE(0,1)

DPOS=0,0

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

TRIGGER

MOVESLINK(50,100,0,1,1) 'build MOVESLINK connection

MOVEABS(100) AXIS(1)

ZCUSTOM(8,50,100,0,1,25,10) 'calculate master axis position when slave

axis moves 25.

?TABLE(10) 'output master axis position:73.801

Motion Path:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

411

ZMATH64-64 Bits Calculation

Type 64 bits calculation instruction

Description Calculate 64 bits stored in D Register. (MODBUS Register).

A 64 bits integer with symbol occupies 4 registers (the small end mode).

Only operate MODBUS register, not to VR mapping, etc.

4xxx series controller with firmware version above 20170629.

Grammar ZMATH64(opmode, dindex1, dindex2)

opmode: operation NO.

dindex1、dindex2：MODBUS register NO.

operation

No.
Execute operation Description

1
64-bit integer

addition
D64(dindex1)+=D64(dindex2)

2
64-bit integer

subtraction
D64(dindex1)-=D64(dindex2)

3
64-bit integer

multiplication
D64(dindex1)*=D64(dindex2)

4
64-bit integer

division
D64(dindex1)/=D64(dindex2)

5
64-bit integer is

redundant
D64(dindex1)%=D64(dindex2)

11 64-bit integer read D64(dindex1)=D64(dindex2)

12
64-bit integer

conversion
D32(dindex1)=D64(dindex2)

13 64-bit integer read D64(dindex1)=D32IEEE(dindex2)

14
64-bit integer

conversion
D32EEE(dindex1)=D64(dindex2)

412

15 assign D64(dindex1)=double64(dindex2)

16 assign double64(dindex1)=D64 (dindex2)

17 assign double64(dindex1)=D32EEE(dindex2)

18 assign
D32IEEE (dindex1) = double64

(dindex2)

21 double addition
double64 (dindex1) += double64

(dindex2)

22 double subtraction
double64 (dindex1) -= double64

(dindex2)

23 double multiplication
double64 (dindex1) *= double64

(dindex2)

24 double division
double64 (dindex1) /= double64

(dindex2)

25
double remainder,

decimals

double64 (dindex1) %= double64

(dindex2)

D321IEEE means float points storage, same as MODBUS_IEEE.

D64 means 64-bit integer with symbol storage, which can read 32-high-bit

and 32-low-bit through two MODBUS_LONG.

Controller General

Example MODBUS_LONG(0)=100

MODBUS_LONG(8)=20

ZMATH64(1,8,0) '64-bit integer addition, then stores in the start

address of MODBUS_LONG(8)

?MODBUS_LONG(0) 'print result, 100

?MODBUS_LONG(8) 'print result, 120

Instructions MODBUS_IEEE，MODBUS_LONG，MODBUS_REG

MODBUS_DOUBLE- Read MODBUS

Type 64-bit instruction

Description Read double data from MODBUS, and it can assign to other variable

arrays.

3 series and below arrays with float don’t support the instruction.

Grammar MODBUS_DOUBLE(index)

Index：modbus register NO.

Controller General

Example MODBUS_LONG(0)=100

MODBUS_LONG(8)=200

ZMATH64(16, 0, 8) 'assign 64-bit

?MODBUS_DOUBLE(0) 'print result, 200

413

?MODBUS_LONG(0) 'print result, 0

?MODBUS_LONG(8) 'print result, 200

Instruction ZMATH64

414

Chapter XI Axis Parameter and Axis Status

Instruction

Axis parameters modification grammar: SPEED=value, here is the speed of default axis:

BASE axis. If needs to modify appointed axis parameters through SPEED AXIS(axisnum)=value,

then grammar is: SPEED(axisnum)=value, and “axis” can be omitted.

Multiple BASE axis parameters can be set at the same time through SPEED=value1,

value2……

Axis parameters are able to be read or written, such as, VAR1=SPEED (axisnum).

Axis status is only able to be read, value will change as per inside variation, while some

unique axis status is also able to be written, such as MPOS, DPOS etc.

when in interpolation movement, parameters of main axis will be as interpolation

parameters. When BASE several axes, the first axis is the main axis.

11.1 Axis Selection

BASE-Axis Selection/Axis Group Selection

Type Axis parameter

Description Select axes to set parameters and to join in motion.

Default values:0, 1, 2…

Before the next BASE instruction is executed, select axis based on the

former BASE instruction.

Every task has its own axis list, axis or the axis group selected by BASE in

the task will be used to control different machines.

In the interpolation motion, the first axis motion parameter is interpolation

parameter. See example 1 for details.

If there is no axis list in BASE, BASE will place the remaining axes in

sequence. See example 2 for details.

Grammar BASE(axis<,second axis><,third axis>...)

axis: the first axis

second axis: the next axis

…

Parameter is most as the axis amount supported by controller, please refer to

relative controller hardware manuals.

Controller General

Example Example 1

BASE(0,1,2,3) 'axis list selection: 0,1,2,3

415

SPEED=100,10,20,30 'axis 0,1,2,3 sets corresponding speed, but in

interpolation, only speed 100 of main axis

(axis 0) is valid.

MOVE(100,100,100,100) 'axis 0,1,2,3 combined interpolation motion, the

resultant motion speed is 100, the speed

of each axis is partial speed

Example 2

BASE(1) 'axis list selection: 1

MOVE(100,100,100) 'axis 1,2,3 do interpolation motion

Example 3

BASE(0,2,5) 'axis list selection: 0,2,5

MOVE(100,100,100) 'axis 0,2,5 do interpolation motion

AXIS-Temporary Axis

Type Assistant instruction

Description Modify a motion instruction or axis parameter temporarily to execute a

defined axis.

For axis parameters, AXIS can be omitted.

Grammar AXIS(expression)

expression：new temporary modified axis, axis selection is still based

on BASE instruction after finish execution.

Controller General

Example Example 1

BASE(0)

MOVE(1000) AXIS(1) 'force axis 1 to move 1000units

MOVE(100) 'axis 0 moves 100 units

Example 2

BASE(1)

UNITS AXIS(0)=100

'force defined axis 0 to set UNITS as 100, UNITS(0)=100

UNITS(2)=200 'force defined axis 2 to set UNITS as 200

UNITS=10 'set axis 1 UNITS as 10

Instruction BASE

11.2 Basic Parameter Instruction

UNITS--Pulse Amount

Type Axis Parameters

416

Description Pulse Amount, assign pulse amount to send per unit, maximum precision is

5 decimal bits.

Controller takes UNITS as basic unit, the coordinate will change with

UNITS after it is modified.

For Example:

UNITS=10

Relative DPOS=3000, MPOS=3000

Modification: UNITS=100

Relative DPOS=300, MPOS=300

Grammar For read: VAR1=UNITS / VR1=UNITS(axis number)

For written: UNITS=expression / UNITS (axis number) = expression

Controller General

Example How to set

Suppose Motor U need 3600 pulse to run one circle, and the screw pitch of

guide screw p is 2mm(motor runs 1 circle, it moves 2 mm)

Set relative UNITS value of 1° rotation, as below:

UNITS=U/360=3600/360=10, now MOVE(1), 'motor runs 1°

Set UNITS value of 1 mm movement, as below:

 UNITS=U/P=3600/2=1800, now MOVE(1), 'guide screw runs 1°

Usually there is reduction ratio between motor and machine, suppose it is

2:1(i=2:1), then UNITS vale of 1 mm movement is:

 UNITS=U*i/P=3600*2/2=3600

How to Program

BASE(0,1,2) 'choose axis 0,1,2.

UNITS=10,100,1000,30 'UNITS of axis 0,1,2,3 is 10,100,1000,30

When UNITS setting axes exceed BASE list, additional UNITS value will

be mapped to followed axes automatically, however, if no more than BASE

list, then only set relevant axes.

UNTIS(2)=100 'set UNITS of axis 2 directly, no influence from BASE list.

ATYPE--Axis Type

Type Axis Parameters

Description Axis functions types configuration, only can set as axis types available.

(Find axis ATYPE in hardware manual or check in ZDevelop / RTSys.)

It is better to set ATYPE before initialization.

ZCAN extended axis should set AXIS_ADDRES first, and set delay 2 ticks,

then call motion instructions.

Due to limit of field bus bandwidth, extended axes through ZCAN should

not exceed 2.

417

For some products which have independent encoder inputs, then we can

appoint virtual axes as encoder. For example, In ZMC206, motor axes are 0-

5, then encoder axes can be 6-11, see details in ZDevelop / RTSys.

Grammar VAR1 = ATYPE, ATYPE = expression

ATYPE Description of Axis Type

0 Virtual-Axis

1 Stepper / Servo of Pulse Direction

2 Servo by Analog Signal Control

3 Quadrature Encoder

4 Pulse Dir OUT+ Quadrature Encoder IN

5 Pulse Dir OUT + Pulse Dir Encoder IN

6 Encoder of Pulse Dir

7 ATYPE 1 + EZ Signal IN

8 ATYPE 1 Expansion by ZCAN

9 ATYPE 3 Expansion by ZCAN

10 ATYPE 6 Expansion by ZCAN

20

SCAN-Axis with galvanometer State.

Bit2 of AXISSTATUS will reset when SCAN can’t be

connected, then ENCODER returns to original sending position,

the unit is Pulse.

Only for ZMC408SCAN.

21

SCAN-Axis, used by real controller.

Default System Period: 250us, SCAN Refresh Period: 50us

(Dpend on firmware).

All motion control commands of ordinary axes are valid,

including axis hybrid interpolation.

22

SCAN-Axis with galvanometer position feedback.

Bit2 of AXISSTATUS will reset when SCAN can’t be

connected, and bit3 resets when SCAN alarms.

MPOS returns to measurement position, anti-correction is done.

ENCODER returns to original feedback position, the unit is

Pulse.

Only for ZMC408SCAN.

24
Remote Encoder Axis

Used in ZHD500X handwheel, some controllers support.

25

Define one encoder axis, coordinates are read from MODBUS /

NODE_PDOBUFF.

Valid in version after Version_build 230810.

Example:

BASE(axisnum)

AXIS_ADDRESS = (slot <<16) + nodenum

ENCODER_ID=index<<16+subindex<<8+bites

ATYPE=25

 Slot:

 -1: read encoder position from MODBUS_LONG(nodenum)

 0-n: read encoder position from NODE_PDOBUFF (slot,

nodenum, index, subindex, type)

 ENCODER_ID: No. that saves data dictionary

26

Custom encoder: use C language to update encoder position,

support closed-loop, valid in version after version_build

240702.

418

48 SSI Absolute Encoder

49 BISS Absolute Encoder

50 RTEX Period Position Mode, only for RTEX controller.

51 RTEX Period Speed Mode, only for RTEX controller.

52
RTEX Period Torque Mode, only for RTEX controller.

Please off driver 2-DOF mode, and set speed limit.

65 EtherCAT Period Position Mode, only for EtherCAT controller.

66
EtherCAT Period Speed Mode, only for EtherCAT controller.

Note: PROFILE ≥ 20.

67
EtherCAT Period Torque Mode, only for EtherCAT controller.

Note: PROFILE ≥ 30.

70
EtherCAT Custom, read encoder only, and only for EtherCAT

controller.

For motion mode “INVERT_STEP” instruction configuration, it is pulse

direction by default.

Controller General

Example Example 1: Pulse type

BASE(0,1)

ATYPE = 1,1 'set axis 0,1 as pule type

UNITS=100,100 'set pulse amount as 100

SPEED=100,100 'set speed as 100 units/s

ACCEL=1000,1000 'set acceleration as 1000 units/s/s

DECEL=1000 'set deceleration as 1000 units/s/s

MOVE(100,100) 'linear interpolation

Example 2: EtherCAT Field bus control

SLOT_SCAN(0) 'scan field bus

BASE(0)

AXIS_ADDRESS(0)=1 'map first drive to axis 0.

ATYPE(0)=65 'axis type is 65, position control.

SLOT_START(0) 'start field bus

AXIS_ENABLE=1 'axis enable

WDOG=1 'enable all axes

UNITS=100 'pulse amount is 100

SPEED=100 'speed 100units/s

ACCEL=1000 'acceleration 1000units/s/s

DECEL=1000 'deceleration 1000units/s/s

MOVE(5000)

Example 3: Rtex torque mode

SLOT_SCAN(0) 'scan field bus

BASE(0)

AXIS_ADDRESS(0)=1 'map first drive to axis 0.

ATYPE(0)=52 'axis type is 52, Rtex torque mode.

DRIVE_WRITE(6*256+47,0) 'close 2 DOF control.

DRIVE_WRITE(3*256+17,0) 'choose parameter 3.21 as speed limit.

419

DRIVE_WRITE(3*256+21,2000) 'maximum speed limit is 2000r/min

SLOT_START(0) 'start Field bus

AXIS_ENABLE=1 'axis enable

WDOG=1 'enable all axes

DAC=100 'send control value by DAC, see DAC for details.

Example 4: galvanometer axis

BASE(4,5)

UNTIS=1,1

ATYPE=21,21 'set as galvanometer axis

Example 5: remote encoder axis

BASE(axisnum)

AXIS_ADDRESS = lcd NO

ATYPE=24

Example 6: define one encoder axis

BASE(0)

AXIS_ADDRESS = (0<<16) + 0

ENCODER_ID = $60640020

ATYPE = 25

Example 7: custom encoder

Added C function interface:

// read DAC_OUT, rea axis DAC output value

double motionrt_getaxisdacout(uint32 iaxis);

// virtual, custom encoder update “encoder”

uint32 motionrt_updatecoder(uint32 iaxis, int32 icoder);

// virtual, custom encoder update “encoderdot”, float -1 to 1

// usually don’t call

uint32 motionrt_updatecoderdot(uint32 iaxis, float fdot);

BASE(0)

ENCODER_SERVO = 2 ‘configure closed-loop, AOUT output is not

used, read output by motionrt_getaxisdaout

ATYPE=26

‘closed-loop processing, please refer to <<C Language Support>>

datum(0)

FE_LIMIT = 10000

FE_RANGE = 10000

axis_enable = 1

servo = 1

Instructions AXIS_ADDRESS, INVERT_STEP

420

AXIS_ADDRESS--Axis Address Configuration

Type Axis Parameters

Description Axis address configuration of extended axes.

1. When the axis extended by ZCAN, there is one 8-code DIP switch

(hardware version should be above V1.3)

Due to limit of ZCAN bandwidth, extended axes should not exceed 2.

Do set AXIS_ADDRESS first, then set ATYPE of extended axes. After

modification, ATYPE must be reset.

see example one for reference.

Bit 1-4 CAN address DIP code, combination value is 0-15

Bit 5-6 CAN speed DIP code, different values have different speed.

Bit 7 Special function: Reserved

Bit 8 120ohm resistor DIP code, be connected when ON.

Rule：

AXIS_ADDRESS(axis NO.)=(32*0)+CAN ID

‘local axis0 of expansion module.

AXIS_ADDRESS(axis NO.)=(32*1)+CAN ID

‘local axis1 of expansion module.

2. Bus driver axis No. mapping, map connected drives correspondingly

according to No. sequence.

Drive No. is sorted by connecting sequence, it ranges from 0 to EtherCAT

drive number - 1.

Drive No. is different from device No., device No. includes all connected

devices, but drive No. only includes drives.

Do set AXIS_ADDRESS first, then set ATYPE. After modification, ATYPE

must be reset.

See Example two for reference

Bit 0-15 Drive No.+1, 0-Auto Assign

Bit 16-31 Slot No. (when there are multiple slots)

Rule:

AXIS_ADDRESS(Axis No.)=(Slot No.<<16)+Drive No.+1

3. Local pulse axis No. remapping, 4 series motion controllers support

local pulse axis or encoder axis No. remapping, please note the

firmware should be above 160608.

While remapping, set ARTPE of original local pulse axis as virtual axis.

After modification, ATYPE must be reset.

see example three as reference.

Bit 0-15 Mapped local pulse axis No.

Bit 16-31 High 16-bit are set as 1 (under decimal system, high 16-bit

= -1).

421

Rule：

BASE(axis No. to be remapped)

ATYPE=0 set axis type as 0, low version will report errors if not be set.

BASE(local axis No. to be modified)

ATYPE=0 set axis type as 0

AXIS_ADDRESS(remapped axis No.)= (-1<<16) + local pulse axis

No. to be modified

BASE (axis No. to be remapped)

ATYPE=1/7

4. Pulse-axis, encoder axis (sub-card on MotionRT control card)

mapping. While mapping, it must set AXIS_ADDRESS at first, then

set ATYPE. If there is modification, please reset ATYPE.

Bit 0-15 On sub-card, Axis No. + 1

Bit 16-31 Sub-card CARD No.

Rule:

 BASE (axis No. that is to be remapped)

 ATYPE = 0, set axis type as 0, it will report error if there is no setting

in low version.

 BASE (local pulse axis No. that is to be modified)

 ATYPE = 0, set axis type as 0.

 AXIS_ADDRESS (axis No. to be remapped) = (sub-card No. << 16) +

physical axis No. on sub-card + 1

 BASE (axis No. that is to be remapped)

ATYPE=X (reset required axis type)

5. Cancel axis mapping: AXIS_ADDRESS = 0

BASE (remapped axis No.)

ATYPE (remapped axis No.) = 0

AXIS_ADDRESS = 0

Grammar VAR1 = AXIS_ADDRESS, AXIS_ADDRESS = expression

Controller General

Example

Example 1: ZCAN expansion-axis

AXIS_ADDRESS (6)=2+(32*1)

'map axis 6 to axis 1 of ID2 on ZCAN module

ATYPE(6)=8 'set ZCAN extended axis type, stepper or servo in

pulse direction

UNITS(6)=100 'pulse amount 100

SPEED(6)=100 'speed is 100uits/s

ACCEL(6)=1000 'acceleration is 1000units/s/s

MOVE(100) AXIS(6) 'extended axis moves 100units

Example 2: EtherCAT axes mapping by Manual

AXIS_ADDRESS(0)=0+1 'first Ecat drive, No. is 0, mapped as axis 0

AXIS_ADDRESS(2)=1+1 'second Ecat drive, No. is 1, mapped as axis 2

422

AXIS_ADDRESS(1)=2+1 'third Ecat drive, No. is 2, mapped as axis 1

ATYPE(0)=65 'set as Ecat type

ATYPE(1)=65

ATYPE(2)=65

Example 3: EtherCAT axes mapping automatically

AXIS_ADDRESS (0)=0

'automatically specify slot0 drive, the start to map axis No. from axis 0

according to the connection sequence (not recommended in this way.

example 2 is better)

ATYPE(0)=65 'axis 0 is set as ECAT mode

Example 4: change pulse axis No. of EtherCAT controller.

'before change, operate axis 0 (axis 0 interface on controller)

BASE(16) 'axis No. that is remapped

ATYPE(16)=0

BASE(0) 'the local pulse axis No. to be modified

ATYPE=0 'set local pulse axis 0 as virtual axis

AXIS_ADDRESS (16)= (-1<<16)+0

'bind with local pulse axis 0, high16 bits = -1.

ATYPE(16)=1

'set axis 16 as pulse axis, use local pulse axis 0. Then, at this

time, operate axis 0, corresponding to ECAT encoder,

operate axis 16, corresponding to controller axis 0 port.

Example 5: galvanometer axis remapping

ATYPE(4)=0

ATYPE(5)=0

BASE(X) 'axis NO. to be mapped

AXIS_ADDRESS = (-1<<16)+4 'remap the first SCAN axis

ATYPE = 21

BASE(Y) 'axis No. to be mapped

AXIS_ADDRESS = (-1<<16)+5 'remap the second SCAN axis

ATYPE = 21

Example 6: axis of sub-card on MotionRT control card remapping

‘remap axis 0 as axis 16

BASE(16) 'axis No. to be remapped

ATYPE=0

BASE(0) 'original axis No. to be modified

ATYPE=0 'set axis type as 0

AXIS_ADDRESS(16)=(0<<16)+ 0 + 1

BASE(16)

ATYPE =1 'configure axis 16 as pulse axis

Instructions ATYPE

423

AXIS_ENABLE--Axis Enable

Type Axis Parameters

Description Enable each axis.

EtherCAT Bus axis should be configured, and WDOG=1 general enable

must be set.

Grammar AXIS_ENABLE = 1/0， 1-open enable,0-close enable.

Controller General

Example AXIS_ENABLE(0) = 1 ′open axis 0 enable

Instruction WDOG

11.3 Speed Parameter Instruction

SPEED--Motion Speed

Type Axis Parameters

Description Axis speed, unit is units/s.

When multi-axis is in motion, SPEED as interpolation motion speed.

After modification of SPEED, SPEED will take effect immediately,

dynamic speed changing can be done in this way, but the moment of speed

changing, it may cause speed jumping, which will also cause machine

vibration, then we can use SPEED_RATIO to realize smooth speed

changing.

When SP instruction: FORCE_SPEED is more than SPEED, SPEED will

also take effect. (SPEED will not take effect in this situation in firmware

version above 140716).

Grammar VAR1 = SPEED, SPEED = expression

Controller General

Example BASE(0)

UNITS=100 'pulse amount

SPEED =500 'set speed of axis 0 as 500units/s

ACCEL=1000 'acceleration:1000units/s/s

DPOS=0 'coordinate clears

TRIGGER 'trigger oscilloscope automatically

VMOVE(1) 'continuous motion

WAIT UNTIL DPOS(0)>1000 'wait until axis 0 reaches 1000.

SPEED=1000 'change speed as 1000

Speed Curve:

MSPEED(0)=1000(vertical scale)

424

Instruction FORCE_SPEED，SPEED_RATIO

ACCEL--Axis Acceleration

Type Axis Parameters

Description Axis acceleration, unit is units/s/s.

In multi-axes motion, acceleration of interpolation motion will obey main

axis.

It is better to set acceleration and deceleration before motion starts, and

don’t change in motion, or will cause change of speed curve.

Grammar To read:VAR1=ACCEL(axis number)

To write: ACCEL(axis number) = expression

Controller General

Example Example 1

BASE(1,2,3,4) 'BASE select axis

ACCEL=100, 100, 100, 100 'set acceleration of axis 1,2,3,4

ACCEL(2)=200 'set acceleration of axis 2.

Example 2

BASE(0)

UNITS=100 'pulse amount

DPOS=0 'coordinate clears

ACCEL=2000

SPEED=100

MOVE(100)

Speed curve of Acceleration Process

MSPEED(0)=100(vertical scale)

425

Speed curve after acceleration and deceleration

ACCEL=500

DECEL=500

Instruction DECEL，SPEED

DECEL--Axis Deceleration

Type Axis Parameters

Description Axis deceleration, unit is units/s/s.

In multi-axes motion, deceleration of interpolation motion will obey main

axis.

When it is set as 0, it will get value of ACCEL, then deceleration and

acceleration will be symmetric.

It is better to set acceleration and deceleration before motion starts,and don’t

change in motion,or will cause change of speed curve.

Grammar VAR1 = DECEL，DECEL = expression

Controller General

Example Example one

BASE(1,2,3,4)

DECEL =100, 100, 100, 100 'set deceleration of axis 1,2,3,4.

DECEL (0)=200 'set deceleration of axis 0.

426

PRINT DECEL (0)

Example two

BASE(0) 'choose axis 0.

SPEED=100 'set speed as 100 units/s

DECEL=500 'deceleration is 500units/s/s

TRIGGER 'trigger oscilloscope automatically

MOVE(200) 'move 200units

Speed Curve

MSPEED(0) vertical scale 100

DECEL=200

Instruction ACCEL，FASTDEC

CREEP--Creep Speed

Type Axis Parameters

Description Axis creep speed while homing, which is used to search origin point, unit

is units/s.

Grammar VAR1 = CREEP, CREEP = expression

Controller General

Example BASE(0)

427

UNITS=100

ACCEL=1000

DECEL=1000

SPEED = 100

CREEP = 10 'set creep speed as 10units/s

DATUM_IN=0 'set IN0 as origin point of axis 0

INVERT_IN(0,ON) 'invert electric level.

TRIGGER 'trigger oscilloscope automatically

DATUM(3) 'search origin point at speed of 100, leave at speed of

10 after meeting origin point.

Speed Curve

MSPEDD(0) vertical scale 100

Instruction DATUM

LSPEED--Initial Speed

Type Axis Parameters

Description Axis starting speed, also can be used as stop speed, default value is 0,

unit is units/s

As the starting speed of interpolation in multi-axis motion.

When the motion needs efficiency, LSPEED starting speed can be set.

Please note in most of applications, LSPEED value is recommended to be 0,

otherwise, it may cause severe shake.

Grammar VAR1 = LSPEED, LSPEED = expression

Controller General

Example Example

BASE(0,1) 'select axis 0 as main axis

DPOS=0,0

UNITS=100,100 'pulse amount 100

SPEED=100,100 'main axis speed 100units/s

ACCEL=1000,1000

DECEL=1000,1000

428

LSPEED=40 'initial speed 40 units/s

TRIGGER 'trigger oscilloscope automatically

MOVE(100,100) 'motion distance of per axis

Speed Curve

MSPEED(0)=100(vertical scale), no offset

MSPEED(1)=100(vertical scale), offset 10

Instruction SPEED

FORCE_SPEED--SP Speed

Type Axis Parameters

Description Forced speed of self-defined speed SP motion, unit is units/s.

This parameter will enter buffer.

When FORCE_SPEED is bigger than SPEED, then SPEED value will also

limit the maximum speed in motion. (SPEED will not take effect after

firmware 140716)

If need FORCE_SPEED to decrease to required value before a new motion

segment, then set STARTMOVE_SPEED.

Grammar VAR1 = FORCE_SPEED, FORCE_SPEED = expression

Controller General

Example BASE(0)

DPOS=0

UNITS=100 'pulse amount100

ACCEL=500

DECEL=500

SPEED = 100 'speed is 100units/s

FORCE_SPEED=150 'self-defined speed is 150units/s

SRAMP=100 'S curve

MERGE=ON

TRIGGER= 'trigger oscilloscope automatically

MOVE(100) 'normal motion without SP

MOVESP(100) 'speed is 150

429

FORCE_SPEED=200

MOVESP(100) 'speed is 200

FORCE_SPEED=50

MOVESP(100) 'speed is 50

END

Speed Curve:

MSPEED(0)=100(vertical scale)

Instruction *SP

STARTMOVE_SPEED--Start Speed of SP Motion

Type Axis Parameters

Description Starting speed of SP motion, this parameter will enter buffer.

Only valid in motion instruction with SP.

Set a big value when this instruction is not required any more. Default value

of controller is 1000.

Grammar VAR1=STARTMOVE_SPEED, STARTMOVE_SPEED=expression

Controller General

Example RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0) ‘select XY axis

DPOS = 0

MPOS = 0

ATYPE = 1 ‘pulse stepper / servo

UNITS = 100 ‘pulse amount

SPEED = 100

ACCEL = 200

DECEL = 200

SRAMP = 100 ‘S curve

MERGE = ON ‘open continuous interpolation

430

‘first segment

FORCE_SPEED = 30 ‘the first segment speed is 30

STARTMOVE_SPEED = 1000 ‘not set, default value is 1000

ENDMOVE_SPEED = 1000 ‘not set, default value is 1000

MOVESP(40)

‘second segment

FORCE_SPEED = 50 ‘the second segment speed is 50

STARTMOVE_SPEED = 20 ‘the second segment’s initial speed is 20

ENDMOVE_SPEED = 40 ‘end speed is 40

MOVESP(50)

‘third segment

FORCE_SPEED = 60 ‘the third segment speed is 60

STARTMOVE_SPEED = 1000 ‘not set, default value is 1000

ENDMOVE_SPEED = 1000 ‘not set, default value is 1000

MOVESP(60)

END

Speed & Position Curve:

MSPEED(0) – vertical scale 50

DPOS(0) – vertical scale 100, offset -100

Instructions FORCE_SPEED，*SP,ENDMOVE_SPEED

ENDMOVE_SPEED--End Speed of SP motion

Type Axis Parameters

Description End speed of self-defined speed SP motion, this parameter will enter

motion buffer.

Only valid when SP motion instructions are used.

Set a big value when not used. Default value of controller is 1000.

431

Grammar VAR1 = ENDMOVE_SPEED, ENDMOVE_SPEED = expression

Controller General

Example BASE(0)

DPOS=0

UNITS=100

MERGE=1 'open continuous interpolation

SPEED=100

ACCEL=500

DEVEL=500

FORCE_SPEED=150 'limit speed is 150units/s

ENDMOVE_SPEED=50 'forced end speed is 50units/s

TRIGGER 'trigger oscilloscope automatically

MOVESP(100)

MOVESP(100)

Speed Curve with speed limit:

MSPEED(0) vertical scale 100

Speed Curve without speed limit (END_SPEED)

Instruction FORCE_SPEED，*SP，STARTMOVE_SPEED

432

FASTDEC--Fast Deceleration

Type Axis Parameters

Description Fast deceleration, unit is units/s/s.

Activated automatically when CANCEL is used and position limit or

unusual stop happens.

When set value is 0 or less than DECEL, then will set as DECEL

automatically.

Grammar VAR1 = FASTDEC, FASTDEC= expression

Controller General

Example BASE(0) 'select axis 0

DPOS=0

UNITS=100

SPEED=100 'set speed as 100

ACCEL=500

DECEL=500 'set deceleration as 500

FASTDEC=2000 'set fast deceleration as 2000

TRIGGER 'trigger oscilloscope automatically

VMOVE(1) 'continuous positive motion

DELAY (1000) 'wait 1 second

CANCEL(2) 'motion stops

Deceleration Curve

MSPEED(0) vertical scale 100

When FASTDEC=10, use DECEL to decelerate.

433

Instruction DECEL

MSPEED--Actual Speed Feedback

Type Axis Status

Description Measured speed feedback of axis, unit is units/s.

Grammar VAR1 = MSPEED

Controller General

Instruction UNITS, VP_SPEED

SPEED_RATIO--Speed Proportion

Type Axis Parameters

Description Axis speed proportion ratio:0-1.

Actual axis speed=SPEED*SPEED_RATIO.

It is used to smooth change speed of motion in process based on

acceleration or deceleration.

Grammar SPEED_RATIO (axis number) = value

value: ratio is 0-1

If not assign axis NO., use defined axis NO. by BASE instruction default.

Interpolation motion can be used in all axes, or only be valid in the first axis

of BASE.

When online command without axis NO., be valid in axis 0 by default.

Controller Controller with latest hardware version

Example RAPIDSTOP(2)

WAIT IDLE

SPEED_RATIO = 1

TRIGGER

BASE(0) 'select axis 0

DPOS = 0

UNITS = 100

434

SPEED = 100

ACCEL = 1000

DECEL = 1000

MERGE = ON

SRAMP = 50

MOVE(100)

DELAY(500) 'wait 0.5s

SPEED_RATIO = 0.5 'speed decrease to 50

WAIT UNTIL VP_SPEED < 80

DELAY(100) 'wait 0.1s

SPEED_RATIO = 0.3 'speed decrease to 30

END

Speed Curve

VP_SPEED(0) vertical scale 100

Instruction FORCE_SPEED,SPEED

SRAMP--Acceleration Curve

Type Axis Parameters

Description S curve setting of acceleration or deceleration process.

Grammar VAR1=SRAMP, SRAMP=smoothms

smoothms 0-250ms, acceleration or deceleration process time will

increase after setting.

Controller General

Example BASE(0) 'select axis 0

DPOS=0

UNITS=100 'pulse amount is 100

SPEED=100 'speed is 100units/s

ACCEL=1000 'acceleration is 1000units/s/s

DECEL=1000 'deceleration is 1000units/s/s

SRAMP=100 'S curve time is 100ms

TRIGGER 'trigger oscilloscope automatically

435

MOVE(100) 'move 100units

Speed Curve

MSPEED(0) vertical scale 100

When SRAMP=0

Instruction ACCEL,DECEL

VP_MODE—Acceleration & Deceleration Curve

Type Axis Parameters

Description Acceleration and deceleration curve’s type selection:

0: default value, use sramp to set S curve.

4: at the very beginning of motion, it uses the max acceleration, then

acceleration will gradually decrease to 0 when achieving the highest

speed.

6: new added SS curve, which belongs to the curve type of jerk continuity.

Deceleration time under SS mode will be more 87% than T mode. Mode

0 is used in this mode’s acceleration stage, but it will take effect until

decelerating, in this way, continuous small segment interpolations are

easy to achieve.

7: new added SS curve, which belongs to the curve type of jerk continuity.

If axis parameters or continuous interpolations are modified dynamically,

maybe jerk can’t be realized, then it will switch to mode 0, therefore,

436

SRAMP is recommended to set a suitable value.

VP_MODE and SRAMP both can smooth the “speed” parameter,

followings show difference:

Grammar VAR1=VP_MODE / VP_MODE(axis) = mode

 mode: select mode

Controller General

Example Example 1: mode 6

BASE(0) 'select axis 0 and axis 1

ATYPE=1,1

UNITS=100,100

DPOS=0,0

MPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

SRAMP=100,100

VP_MODE=6,0 'axis 0 with mode 6, axis 1 with mode 0

TRIGGER

MOVE(25) AXIS(0)

MOVE(25) AXIS(1)

Speed Curve: under mode 6, acceleration stage is not processed, it is only

for deceleration.

MSPEED(0) vertical scale 50

MSPEED(1) vertical scale 50

437

Example 2: mode 7

VP_MODE=7,0 'axis 0 with mode 7, axis 1 with mode 0

Others are same as example 1, mode 7 processed both acceleration and

deceleration stages.

Example 3: mode 4

VP_MODE=4,0 'axis 0 with mode 4, axis 1 with mode 0

Others are same as example 1, the max acceleration is at the very beginning

of motion, and acceleration will decrease to 0 when achieving the highest

speed.

438

Instruction MSPEED, SPEED, SRAMP

VP_SPEED--Present Motion Speed

Type Axis Status

Description Return present axis motion speed, unit is units/s.

In terms of muti axes interpolation motion, returned speed of main axis is

interpolation resultant speed, not component speed of main axis.

Returned speed of non-main axis is relevant component speed, the same as

MSPEED.

VP_SPEED is designed to show multi-axis resultant speed, no minus value,

except set SYSTEM_ZSET bit0 value as 0, in this way, it shows single axis

speed, and it can be positive or minus value.

Grammar VAR1 = VP_SPEED

Controller General

Example BASE(0,1)

DPOS=0,0 'coordinate clears

UNITS=100,100 'pulse amount

SPEED=100,100 'main axis speed is 100units/s

ACCEL=1000,1000 'acceleration is 1000units/s/s

DECEL=1000,1000 'deceleration is 1000units/s/s

TRIGGER 'trigger oscilloscope automatically

MOVE(100,100) 'two axes move 100units respectively

Speed Curve:

VP_SPEED of main axis is interpolation resultant speed.

VP_SPEED of non-main axis is relevant component speed, the same as

MSPEED.

VP_SPEED(0)=100(vertical scale), no offset

VP_SPEED(1)=100(vertical scale), no offset

439

MSPEED(0)=100(vertical scale), offset -20

MSPEED(1)=100(vertical scale), offset -40

Instruction MSPEED,SPEED

INTERP_FACTOR--Interpolation Speed

Type Axis Parameters

Description Axis participates speed calculation or not, default: participate (1).

This parameter only valid for any axis in linear interpolation or third axis in

helical interpolation.

Do cancel after motion, or will cause incorrectness to followed motion.

When some axes don’t participate speed calculation, calculate out

component speed and total motion time of axis which participate

interpolation motion, then speed of axis which don’t participate calculation

= motion distance/total motion time. See Example Two for reference.

Don’t set INTERP_FACTOR of all axes as 0, or will cause infinite actual

speed.

Grammar INTERP_FACTOR=0/1

0-not participate calculation 1-participate calculation

Controller General

Example Example one: All axes participate in speed calculation

BASE(0,1,2) 'axis 0 as main axis

DPOS=0,0,0

ATYPE=1,1,1

UNITS=100,100,100 'pulse amount:100

SPEED=100,100,100 'main axis speed:100units/s

ACCEL=1000,1000,1000

DECEL=1000,1000,1000

INTERP_FACTOR=1,1,1 'axis 0,1,2 participate speed calculation.

TRIGGER 'trigger oscilloscope automatically

440

MOVE(100,200,300) 'component distance of each axis

Calculate out component speed of each axis based on resultant motion

speed:100.

VP_SPEED(0)=100(vertical scale)

MSPEED(0)=100(vertical scale)

MSPEED(1)=100(vertical scale)

MSPEED(2)=100(vertical scale)

Example Two: Some axes don’t participate speed calculation

INTERP_FACTOR=0,1,1 'axis 0 don’t participate speed calculation.

Calculate out component speed and total motion time of axis 2 and axis 3,

then speed of axis 0=motion distance of axis 0/total motion time.

Scale same as the former.

Example Three: only one axis participates speed calculation

INVERT_FACTOR=0,1,0 'only axis 1 participates speed calculation.

Axis 1 in main axis in this situation, speed is 100, total motion time is

200/100, speed of axis 0 and axis 2=motion distance/total motion time.

Vertical scale same as the former example.

441

Instruction BASE_MOVE

CORNER_ACCEL – Corner Acceleration

Type Axis Parameter

Description Corner acceleration, the unit is units/s/s.

Used to set curve deceleration, default is 0 (not take effect), after setting,

replace FULL_SP_RADIUS.

When CORNER_MODE sets as “apart mode”, each axis’ set corner

acceleration all take effect.

Recommend use together with ZSMOOTH_MODE to smooth the speed and

curve.

Please refer to each axis’ acceleration limit, set machine real allowed corner

acceleration.

Grammar To read: VAR1 = CORNER_ACCEL (axis No.)

To write: CORNER_ACCEL (axis No.) = expression

Controller Valid in ZMC4XX controller’s fast firmware, after 230926.

Example SPEED = 500, 500, 500, 2000, 313

ACCEL = 8000, 5000, 5000, 4000, 4200

CORNER_ACCEL = 5000, 2000, 3000, 3000, 3000

Instruction ACCEL, SPEED

11.4 Axis Status Checking Instruction

MTYPE--Type of Present Motion

Type Axis Status

442

Description Type of present motion in process.

In terms of interpolation motion, slave axis always returns to master axis.

Grammar VAR1 = MTYPE

MTYPE Motion Type

0 IDLE (no motion)

1 MOVE

2 MOVEABS

3 MHELICAL

4 MOVECIRC

5 MOVEMODIFY

6 MOVESP

7 MOVEABSSP

8 MHELICALSP

9 MOVECIRCSP

10 FORWARD, VMOVE(1)

11 REVERSE, VMOVE(-1)

12 DATUMING

13 CAM

14 FWD_JOG

15 REV_JOG

16 MOVESYNC

20 CAMBOX

21 CONNECT

22 MOVELINK

23 CONNPATH

25 MOVESLINK

26 MSPIRAL

27

MECLIPSE/ MECLIPSEABS/

MECLIPSESP/

MECLIPSEABSSP

28

MOVE_OP/MOVE_OP2

MOVE_TABLE

MOVE_TASK

443

MOVE_PARA

MOVE_PWM

MOVE_ASYNMOVE

MOVE_AOUT

29

MOVE_DELAY

MOVE_WAIT

MOVE_SYNMOVE

31 MSPHERICAL/ MSPHERICALSP

32 MOVE_PT

33 CONNFRAME

34 CONNREFRAME

Controller General

Example WHILE 1 ′cycle judgment

IF MTYPE=0 THEN

?"no motion"

 ELSEIF MTYPE=1 THEN

?"Linear Interpolation"

 ELSEIF MTYPE=4 THEN

 ?"Circular Interpolation"

 …

 ENDIF

WEND

Instruction NTYPE，REMAIN_BUFFER

NTYPE--Motion Type of Next Motion

Type Axis Status

Description The next motion type of present motion instruction.

In terms of interpolation motion, slave axis always returns to master axis.

Grammar VAR1 = NTYPE

Controller General

Example WHILE 1 ′cycle judgment

IF NTYPE=0 THEN

?"End the motion"

 ELSEIF NTYPE=1 THEN

?"Linear Interpolation"

 ELSEIF NTYPE=4 THEN

 ?"Circular Interpolation"

 …

 ENDIF

WEND

444

Instruction MTYPE

AXISSTATUS--Axis Status

Type Axis Status

Description Check axis status.

Show value as per denary, check bit status as per binary.

Grammar VAR1 = AXISSTATUS

Bit Description Value

1 Alarm: Follow-Up Error Exceeds. 2 2h

2 Communication with Remote Axis Error 4 4h

3 Remote Driver Error 8 8h

4 Positive Hard Limit 16 10h

5 Negative Hard Limit 32 20h

6 Origin Searching 64 40h

7 Hold Signal IN at HOLD Speed 128 80h

8 Error: Follow-Up Error Exceeds. 256 100h

9 Positive Soft Limit Exceeds 512 200h

10 Negative Soft Limit Exceeds 1024 400h

11 CANCEL in Process 2048 800h

12 Pulse Frequency > MAX_SPEED. Please

Low the Speed / Reset MAX_SPEED.

4096 1000h

14 “Robot” Command Coordinates Error 16384 4000h

18 Power Abnormal 262144 40000h

19 Buffer of Precision OUT Exceeds 524288 80000h

20 Speed Protection. Axis Speed >

MAX_SPEED, it will Alarm.

1048576 100000h

21 Fail to Trigger Special Commands in

Motion.

2097152 200000h

22 Alarm Signal Input 4194304 400000h

23 Axis Paused 8388608 800000h

Controller General

Example Example one: Read bit directly (it is recommended when programming)

When meeting positive limit.

VAR = READ_BIT2(4,AXISSTATUS(0))

'check if axis 0 meets positive limit

Print VAR 'print result, it is 1, then already met positive limit

Example two: Check returned value

?AXISSTATUS(1) 'check status of axis 1, it is 48

'48=32+16, axis is met positive and negative limit at the same time, it

usually happens when limit electric level is not reversed.

Example Three: Field bus communication error

After enabling motor correctly:

Disconnect the communication wiring, then AXISSTATUS will show 4,

which means communication error with remote axes.

If disconnect encoder wiring, then AXISSTATUS will show 8, which means

445

remote drive error.

Instruction AXIS_STOPPREASON

IDLE--Motion Status

Type Axis Status

Description Axis motion status, only to judge whether motion is in process or stops.

0-in motion, -1-motion ends.

If motion parts are robotics, then in CONNFRAME mode, joint axis will

always return IDLE value 0, in CONNREFRAME mode, virtual axis will

return IDLE value 0.

Grammar VAR1 = IDLE

Controller General

Example Example One：

IF IDLE(0) then 'if axis 0 stops

BASE(1)

 MOVE (100)

ENDIF

Example Two：

BASE(0,1)

MOVE(100,100)

BASE(2,3)

MOVE(200,200)

WAIT UNTIL IDLE(0) AND IDLE(1) AND IDLE (2) AND IDLE(3)

'wait until axis0,1,2,3 stops

Instruction LOADED， WAIT IDLE

ADDAX_AXIS--Added Axis NO.

Type Axis Status

Description Axis NO. of added axis by instruction ADDAX, -1 means no axis was

added.

Grammar VAR1 = ADDAX_AXIS

Controller General

Example ADDAX(0) AXIS(1) 'add motion of axis 0 to axis 1.

?ADDAX_AXIS(1) 'print added axes on axis 1, result is 0.

ADDAX(-1) AXIS(1) 'cancel axis add.

Instruction ADDAX

446

AXIS_STOPREASON--Axes Stop Reason

Type Axis Status

Description Latch history reasons of axes stop.

Grammar Write as 0, which means clear. Latch as per bit, same meaning as

AXISSTATUS.

Valid in firmware above 20150731

Controller General

Example If AXIS_STOPREASON AND (512+1024) THEN

 PRINT "axis el stoped"

ENDIF

Instruction AXISSTATUS

LINK_AXIS--Link Axis NO.

Type Axis Status

Description Return reference axis NO. of present link motion. Return -1 if there is

no link.

Grammar VAR1 = LINKAX

Controller General

Example CONNECT(2,1) AXIS(0) 'link axis 0 to axis 1.

?LINK_AXIS(0) 'print result:1

Instruction CAMBOX，MOVELINK，CONNECT

11.5 Motion Look-ahead Instruction

CORNER_MODE--Corner Speed Setting

Type Axis Parameters

Description Corner deceleration mode configuration.

Grammar CORNER_MODE=mode

mode: different bits indicate different meanings, and bit can be used at

the same time.

Bit Value Description

0 1 Reserved

1 2 Automatic corner deceleration.

Acceleration, deceleration follow the value of ACCEL, DECEL.

This parameter is activated before MOVE is called.

See DECEL_ANGLE and STOP_ANGLE for the definition of

deceleration angle.

447

Reference speed of deceleration angle follows FORCE_SPEED,

do set reasonable FORCE_SPEED.

2 4 Reserved

3 8 Auto speed limit of small circle, when radius is smaller than

set value, there is speed limit, if radius is bigger than set

value, there is no speed limit.

This parameter is activated before MOVE is called.

Speed limit will follow FORCE_SPEED.

Limit speed = FORCE_SPEED* actual radius /

FULL_SP_RADIUS

The radius of limit speed is set by FULL_SP_RADIUS.

4 16 Reserved

5 32 Auto chamfer setting.

This parameter is activated before MOVE is called.

Present MOVE motion will chamfer with former MOVE motion

automatically, chamfer radius refers to ZSMOOTH.

This chamfer is valid in all axes which are doing interpolation

motion, firmware should be above 20150701.

6 64 Multi-axis interpolation separation speed, automatically

corner decelerate.

The same as mode 2, the difference is interpolation motion of

mode 2 uses speed parameter of main axis, but interpolation of

mode 64 uses speed parameters of each axis.

It is valid in the latest firmware above 4 series.

7 128 When MOVE runs robotic arm virtual axis, using joint-axis

speed and acceleration to limit combined speed and acceleration

at the same time.

It takes effect when it is used together with BIT6, the controller

firmware “version_build” of ZMC4XX and above should be

after 240521.

It only supports MOVE line command, doesn’t support circular.

8 256 MOVER command uses SP mode.

9 512 Reserved

10 1024 Max speed limit, if the axis speed exceeds MAX_SPEED,

please reduce the speed, it only supports line and screw axis.

Controller General

Example Example below only shows function of each bit, functions of multi-bit are

also available.

For Example, CONNER_MODE=2+8, it means bit 1 and bit 3 are opened,

then functions of auto corner deceleration and small circle speed limit are

448

opened.

Example One: Corner Speed Limit

BASE(0,1)

DPOS=0,0

UNITS=100,100

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SPEED=100,100 'set speed

MERGE=ON 'open continuous interpolation

CORNER_MODE=2 'start corner deceleration

DECEL_ANGLE = 15 * (PI/180) 'set angle where starts to decelerate

STOP_ANGLE = 45 * (PI/180) 'Set angle where deceleration ends.

FORCE_SPEED=100 'geometric deceleration activates

TRIGGER 'trigger oscilloscope automatically

MOVE(100,0)

MOVE(0,100) 'motion angle is over 45°,total deceleration.

MOVE(60,100) 'motion angle is 30.96°,between 15° and 45°,

geometric deceleration

MOVE(70,100) 'motion angle is 4.03°,below 15°, no deceleration.

Trace Curve

DPOS(0) vertical scale 200

DPOS(1) vertical scale 200

Speed Curve:

MSPEED(0)=100(vertical scale)

MSPEED(1)=100(vertical scale)

449

Some precision errors may happen in simulator, it is better to check with

actual controllers connected.

Example Two: Speed Limit of Small Circle

BASE(0,1)

DPOS=0,0

UNITS=100,100

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SPEED=100,500 'running speed

CORNER_MODE=8 'start speed limit of small circle

FORCE_SPEED=120 'limit speed of small circle

FULL_SP_RADIUS=60 'speed limit radius is 60

TRIGGER 'trigger oscilloscope automatically

MOVECIRC(200,0,100,0,1) 'when motion radius is over limit, there is no

limit speed, and it will follow SPEED, at the

speed of 100.

Trace Curve:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Speed Curve:

MSPEED(0)=100(vertical scale)

MSPEED(1)=100(vertical scale)

450

'When radius is smaller than limit value, limit speed = FORCE_SPEED*

actual radius/FULL_SP_RADIUS

MOVECIRC(-60,0,-30,0,0) 'now speed 60=120*30/60

Trace Curve:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Speed Curve:

MSPEED(0)=100(vertical scale)

MSPEED(1)=100(vertical scale)

451

Example Three: Chamfer

Chamfer mode can be used in linear, circular, helical motion etc. here only

shows chamfer linear motion.

BASE(0,1)

DPOS=0,0

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SPEED=100,100 'running speed

CORNER_MODE=32 'start chamfer

ZSMOOTH=10 'chamfer reference radius.

TRIGGER 'trigger oscilloscope automatically

MOVE(100,0)

MOVE(0,100) 'chamfer between former two linear motions.

Interpolation trace with chamfer.

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

Interpolation trace without chamfer:

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

452

Instruction MERGE，STOP_ANGLE，DECEL_ANGLE，FULL_SP_RADIUS

ZSMOOTH.

DECEL_ANGLE--Corner Deceleration Angle

Type Axis Parameters

Description Angle where deceleration starts, unit is rad.

Corner deceleration speed refers to FORCE_SPEED, FOR_SPEED should

be set properly.

Convert angle to radian: angle*(PI/180).

Deceleration Angle means the changing value between reference angle of

the motor and its former motion. Please see the below figure.

This angle value is not the actual path angle, which converts to motion

changing angle and is only for reference.

If the next interpolation motion is under below, then get its absolute value

instead.

When line links with circle arc, calculate angle according to the tangent

direction of arc.

DECEL_ANGLE is usually used with STOP_ANGLE together, when angle

of actual motion is between DECEL_ANGLE （ upper limit ） and

STOP_ANGLE（lower limit）, then deceleration will happen.

453

Grammar VAR1 = DECEL_ANGLE，DECEL_ANGLE = expression

Controller General

Example Refer to CORNER_MODE routine 1.

CORNER_MODE=2

DECEL_ANGLE = 25 * (PI/180) 'set start angle of deceleration.

STOP_ANGLE = 45 * (PI/180) 'set end angle of deceleration.

FORCE_SPEED=SPEED 'FORCE_SPEED must be set.

Instruction STOP_ANGLE

STOP_ANGLE--Corner Deceleration Stops

Type Axis Parameters

Description Angle where deceleration stops, unit is rad.

Corner deceleration speed refers to FORCE_SPEED, FOR_SPEED should

be set properly.

Convert angle to radian: angle*(PI/180).

Deceleration Angle means the changing value between reference angle of

the motor and its former motion. Please see the below figure.

This angle value is not the actual path angle, which converts to motion

changing angle and is only for reference.

If the next interpolation motion is under below, then get its absolute value

instead.

When line links with circle arc, calculate angle according to the tangent

direction of arc.

DECEL_ANGLE is usually used with STOP_ANGLE together, when angle

of actual motion is between DECEL_ANGLE （ upper limit ） and

STOP_ANGLE（lower limit）, then deceleration will happen.

Grammar VAR1 = STOP_ANGLE，STOP_ANGLE= expression

Controller General

Example See example one in CORNER_MODE

454

CORNER_MODE=2

DECEL_ANGLE = 25 * (PI/180)

STOP_ANGLE = 90 * (PI/180)

FORCE_SPEED=SPEED 'FORCE_SPEED must be set

Instruction DECEL_ANGLE, CORNER_MODE

FULL_SP_RADIUS--Speed Limit Radius

Type Axis Parameters

Description Maximum arc radius of speed limit, unit is units.

When radius is over FULL_SP_RADIUS, motion speed will follow the

value assigned by user procedure, or if below FULL_SP_RADIUS, motion

speed will decrease in proportion.

VP_SPEED=FORCE_SPEED * radius/FULL_SP_RADIUS

It refers to radius of chamfer in auto chamfer mode.

Grammar VAR1 = FULL_SP_RADIUS, FULL_SP_RADIUS = expression

Controller General

Example BASE(0,1) 'select axis 0 as main axis

DPOS=0,0 'coordinate clears

UNITS=100,100

ATYPE=1,1 'set axis type

SPEED=100,100 'main axis speed is 100units/s

ACCEL=1000,1000 'acceleration speed is 1000units/s

DECEL=1000,1000 'deceleration speed is 1000units/s

FORCE_SPEED=150 'self-defined speed is 150units/s

CORNER_MODE=8 'open small circle speed limit

FULL_SP_RADIUS=8 'limit radius is 8

TRIGGER 'trigger oscilloscope automatically

MOVECIRC(10,10,0,10,1)'arc radius is 10, no speed limit, and move at

speed = 100

MOVECIRC(4,4,0,4,1) 'arc radius is 4, speed limit is activated, and move

at the speed 4/8*150=75.

Speed Curve:

MSPEED(0)=100(vertical scale)

MSPEED(1)=100(vertical scale)

mk:@MSITStore:C:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV4/TrioBASIC.chm::/VP_SPEED.html
mk:@MSITStore:C:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV4/TrioBASIC.chm::/FORCE_SPEED.html

455

Instruction CORNER_MODE，FORCE_SPEED，SPLIMIT_RADIUS

SPLIMIT_RADIUS--Speed Limit Value

Type Axis Parameters

Description Minimum speed in small circle limit mode, unit is units.

When value is below LSPEED, follow LSPEED.

Grammar VAR1 = SPLIMIT_RADIUS, SPLIMIT_RADIUS = expression

Controller ZMC4XX series controller with firmware above 170518 supports.

Instruction CORNER_MODE, FULL_SP_RADIUS

ZSMOOTH--Chamfer Radius

Type Axis Parameters

Description See chamfer radius and CONER_MODE for reference.

Calculate actual corner radius based on corner angle. if exceeds angle, it is

50% of set value(ZSMOOTH).

When it is 90°, corner radius is set value (ZSMOOTH).

Grammar VAR1 = ZSMOOTH, ZSMOOTH=smoothdistance

Controller General

Example See Example Three in CONER_MODE

Instruction CORNER_MODE

MERGE--Continuous Interpolation

Type Axis Parameters

Description Motions in buffer will be integrated without deceleration, which is used

456

to realize continuous interpolation.

When MERGE is ON, multi-interpolation motions still decelerate in

between, some possible reasons as follow:

1.MERGE is not set successfully, print result to check.

2.Controller is point-to-point model, which means it doesn’t support

continuous motion. Please contact with manufacturers.

3.CORNER_MODE was set to define corner deceleration, print result to

check.

4.SP motion instructions are in process, and ENDMOVE_SPEED and

STARTMOVE_SPEED are set, then speed will follow value of these two

instructions.

5.Main Axis was switched between interpolation motions, and main axis

parameters were also changed.

6.MOVE_DELAY was added between interpolation motions, even

MOVE_DELAY was set as 0, it also will cause deceleration.

Grammar MERGE = ON/OFF

Controller General

Example BASE(0) 'select axis 0

DPOS=0

UNITS=100

SPEED=1000 'set speed as 1000units

ACCEL=1000

DECEL=1000

MERGE=ON 'open continuous interpolation

TRIGGER 'trigger oscilloscope automatically

MOVE(100) 'move 100units

MOVE(100)

Speed Curve:

MSPEED(0) vertical scale 100

When MERGE=OFF

MSPEED(0) vertical scale 100

457

Instruction *SP，CORNER_MODE

11.6 Motion Buffer Instruction

LOADED--Buffer Empty

Type Axis Status

Description If there are no other motion instructions in buffer except present

motion, return TURN.

This instruction can’t judge whether axis stops or not. Please use IDLE

command to judge.

Grammar VAR1 = LOAED

Controller General

Instruction IDLE, WAIT LOADED

MOVES_BUFFERED--Present Buffer Number

Type Axis Status

Description Return motion instructions number in buffer

Do not use total buffer space minus MOVES_BUFFERED to judge how

many buffers are left, since special instructions may consume multi buffers.

It is more accurate to use REMAIN_BUFFER.

Grammar VAR1 = MOVES_BUFFERED

Controller General

Example Print MOVES_BUFFERED 'result: 0

Instruction LOADED, LIMIT_BUFFERED, REMAIN_BUFFER

REMAIN_BUFFER--Rest Buffers

Type Special Axis Status

458

Description Return rest motion buffers number.

Since this status instruction has its own parameters, AXIS can’t be omitted

when try to modify axis NO..

If returned value is 0, it means buffer space is full, when try to call

additional motion instructions of axis, then task will be blocked until there is

space in buffer.

Grammar VAR1 = REMAIN_BUFFER ([mtype]) AXIS(AXISNUM)

Default value of Mtype is type of motion which is most complex, such as

spherical interpolation.

Controller General

Example DIM movetime 'define variable

movetime = 0

WHILE movetime < 100 'condition cycle

IF REMAIN_BUFFER(1) > 0 THEN 'if there is buffer left, call linear

motion instruction

 MOVE(10)

 movetime = movetime +1

ENDIF

WEND 'MOVE(10) was 100 times called

Instruction LOADED, LIMIT_BUFFERED

MOVE_MARK--Move Mark

Type Axis Parameters

Description MARK number of next motion instruction, and it will enter buffer

together with motion instructions.

Every time an instruction was called, MOVE_MARK will increase with 1

automatically.

If needs to set required MOVE_MARK value, then set MOVE_MARK

before motion instruction.

To pause motion between different MARK numbers through

MOVE_PAUSE

Grammar VAR1 = MOVE_MARK, MOVE_MARK = expression

Controller General

Example MOVE_MARK =1 'set mark number as 1

MOVE(100)

MOVE_MARK =1 'set mark number as 1

MOVE(100)

MOVE_MARK =2 'set mark number as 2

MOVE(200)

MOVE_PAUSE (2) 'pause before MOVE(200)

Instruction MOVE_CURMARK

459

MOVE_CURMARK--Return Move Mark

Type Axis Status

Description Return MOVE_MARK value of present motion instruction in process.

Grammar VAR1 = MOVE_CURMARK

Controller General

Example MOVE_MARK =1

MOVE(100)

MOVE_MARK =2

MOVE(200)

MOVE_MARK =3

MOVE(300)

WAIT UNTIL MOVE_CURMARK=2

'wait until MOVE(200) starts to run, open output 1 OP(1,ON)

Instruction MOVE_MARK

LIMIT_BUFFERED--Motion Buffer Limit

Type System Parameters

Description Limit motion buffer numbers, it can not exceed maximum buffer value

of controller.

Grammar LIMIT_BUFFERED=value, VAR1 = LIMIT_BUFFER

Controller General

Example Online print commands:

Modify motion buffer number limit:

Instructions REMAIN_BUFFER,MOVES_BUFFERED

11.7 Instructions Related to Position

DPOS--Axis Instruction Position

Type Axis Status

Description Virtual coordinate position of axis, or required position.

Value written into DPOS will not cause motor motion, it will be converted

to OFFPOS offset automatically.

460

UNITS as unit.

Grammar VAR1 = DPOS, DPOS=expression

Controller General

Example DPOS(0) = 0 'coordinate of axis 0 offsets to 0.

?*DPOS 'print DPOS, result:0 0 0 0 0 0 0 0 0 0 0 0

Instruction MPOS，ENDMOVE，OFFPOS，DEFPOS

MPOS--Encoder Feedback Position

Type Axis Status

Description Measured position feedback of axis, unit is units.

Written MPOS value will be converted to OFFPOS amount

Grammar VAR1 = MPOS, MPOS=expression

Controller General

Example MPOS(0) = 50 'MPOS offset is 50

?*MPOS 'print result:50 0 0 0 0 0 0 0 0 0 0 0

Instruction DPOS,ENDMOVE

DEFPOS--Position Offset

Type Coordinate instruction.

Description Set the present position as another new absolute position value, which

has no influence on the motion in process or motion in buffer.

Grammar DEFPOS(pos1 [,pos2[, pos3[, pos4.....]]])

pos1: Absolute position, using units as unit

pos2: Absolute position of next axis, using units

Controller General

Example Example 1:

BASE(0,1) 'choose axis 0 and 1

ATYPE=1,1

UNITS=100,100 'set units as 100

DPOS=0,0 'clear DPOS

MOVE(100,100) 'axis 0 and axis 1 move 100

WIAT IDLE

?DPOS(0),DPOS(1) 'print present DPOS, both are 100

DEFPOS(0,10) 'set present DPOS

?DPOS(0),DPOS(1) 'print present DPOS, DPOS are 0,10

Example 2:

Different from OFFPOS, DEFPOS is used to change the absolute position.

BASE(0,1) 'choose axis 0,1

DPOS=100,100 'set position as 100,100

?DPOS(0), DPOS(1) 'print position, the present position is 100,100

461

DEFPOS(10,20) 'set present position as 10,20

?DPOS(0), DPOS(1) 'print position, they are 10,20

DEFPOS(10,20) 'set the present position again

DEFPOS(10,20)

?DPOS(0), DPOS(1) 'print position, they are still 10,20

OFFPOS=10,20 'call OFFPOS several times

OFFPOS=10,20

?DPOS(0),DPOS(1)'now present position is 30,60（10+10+10,20+20+20）

Instructions DPOS, OFFPOS

OFFPOS--Offset Position

Type Axis Parameters

Description Relative offset to change all coordinates, which has no influence on

motion in process or motion in buffer.

After modification was finished, OFFPOS recovers to 0.

Grammar VAR1 = OFFPOS, OFFPOS = expression

Controller General

Example Example One: relative offset position

BASE(0)

MOVEABS(1000)

WAIT IDLE

OFFPOS=-1000 'coordinate offset is 1000

PRINT DPOS(0) 'print result is 0

Example Two: no change of motion in process

BASE(0)

MOVEABS(1000) 'move to absolute position 1000

OFFPOS=500 'position offset is 500

WAIT IDLE

PRINT DPOS(0) 'print present coordinate position: 1500, motor

still runs 1000.

Example Three

DEFPOS is to change absolute coordinate position, while OFFPOS is to

change relative coordinate position.

BASE(0,1) 'select axis 0, axis 1

DPOS=100,100 'set present position as:100,100

?DPOS(0), DPOS(1) 'print to check

DEFPOS(10,20) 'set present coordinate position as 10,20

?DPOS(0), DPOS(1) 'print result:10,20

DEFPOS(10,20) 'call DEFPOS several times

DEFPOS(10,20)

?DPOS(0), DPOS(1) 'print result:10,20

462

OFFPOS=10,20 'call DEFPOS several times

OFFPOS=10,20

?DPOS(0), DPOS(1) 'print result: 30,60(10+10+10,20+20+20)

Instruction DPOS ，DEFPOS

ENDMOVE--Target Position

Type Axis Status

Description Absolute target position of present axis motion.

For instructions: VMOVE, DATUM, etc. ENDMOVE is not accurate, it

changes as per the motion status.

Grammar VAR1 = ENDMOVE

Controller General

Example BASE(0)

SPEED = 10 'speed is 10units/s

DPOS = 0 'coordinate clears

MOVE(100) 'move 100units

WAIT IDLE

PRINT ENDMOVE(0) 'result:100

MOVE(200)

WAIT IDLE

PRINT ENDMOVE(0) ''result:300

Instruction DPOS，MPOS，ENDMOVE_BUFFER

VECTOR_MOVED--Present Motion Distance

Type Axis Status

Description Return motion distance of present axis, unit is units.

This distance is vector distance in terms of muti axes interpolation motion.

It is better to clear value of this parameter before use.

This command is only valid for motion instructions, invalid in superposition

instructions, such as, ADDAX, CONNECT, etc.

Grammar VAR1=VECTOR_MOVED, VECTOR_MOVED=0

Controller General_

Example Example 1: single axis

VECTOR_MOVED=0 'clear parameter

MOVE(100)

WAIT IDLE

? VECTOR_MOVED 'print motion distance of axis 0, result is 100.

Example 2: multi-axis

BASE(0,1)

DPOS = 0,0

463

VECTOR_MOVE = 0 'manually clear resultant vector motion

distance of axis 0 as 0

BASE(2,3)

DPOS = 0,0

VECTOR_MOVE = 0 'manually clear resultant vector motion

distance of axis 2 as 0

BASE(0,1)

MOVE(-300,-400)

WAIT IDLE(0)

?VECTOR_MOVED

MOVE(300,400)

WAIT IDLE(0)

?VECTOR_MOVED 'print resultant vector motion distance

of axis 0, result: 500

BASE(2,3)

MOVE(30,-40)

WAIT IDLE(2)

?VECTOR_MOVED

MOVE(30,40)

WAIT IDLE(2)

?VECTOR_MOVED

Instruction ENDMOVE

REMAIN--Rest Target Motion Distance

Type Axis Status

Description Return remain distance need to move, unit is units.

Grammar VECTOR_BUFFERED

Controller General

Example BASE(0) 'select axis 0

DPOS=0

UNITS=100

SPEED=100 'speed is 100units/s

ACCEL=1000 'acceleration is 1000units/s

DECEL=1000

TRIGGER 'trigger oscilloscope automatically

MOVE(100) 'move 100units

WAIT UNTIL REMAIN<20 'wait until remain distance is less than 20

SPEED=10 'change speed

Speed Curve:

MSPEED(0) vertical scale 100

464

Instruction VECTOR_BUFFERED

VECTOR_BUFFERED--Remain Distance in Buffer

Type Axis Status

Description Return distance of motion in process and motion in buffer, unit is units.

This distance is vector distance in terms of muti axes interpolation motion.

Grammar VAR1 = VECTOR_BUFFERED

Controller General

Example BASE(0) 'select axis 0

UNITS=100 'pulse amount is 100

SPEED=100 'speed is 100units/s

ACCEL=1000 'acceleration is 1000units/s/s

MOVE(100) 'motion in process is 100units

MOVE(300) 'motion in buffer is 300units

MOVE(-1000) 'motion in buffer is -1000units

?VECTOR_BUFFERED 'return remain motion distance, result is 1400

Instruction REMAIN

VECTOR_BUFFERED2—Target Vector Distance

Type Axis Status

Description It is used to read the target vector position after current interpolation

command is called, unit is units.

VECTOR_BUFFERED2=VECTOR_BUFFERED+VECTOR_MOVED

It can be read for HW comparison output.

Grammar VAR1 = VECTOR_BUFFERED2

Controller General

Example BASE(0,1) 'select axis 0 and axis 1

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

465

DECEL=1000,1000

MERGE=0,0

VECTOR_BUFFERED2=0,0

DPOS=0,0

MOVE(100,100) '3 interpolation motions

MOVE(200,200)

MOVE(-100,-100)

?“start to move”

?VECTOR_BUFFERED 'return remain motion distance, result is 565.68

?VECTOR_MOVED 'current motion distance, result is 0

?VECTOR_BUFFERED2 'return required target vector distance, result is

565.68

DELAY(1000) 'delay is 1s

?“in motion”

?VECTOR_BUFFERED 'remain motion distance, result is 470.63

?VECTOR_MOVED 'the current motion distance, result is 95.05

?VECTOR_BUFFERED2 'return required target vector distance, result is

565.68

WAIT IDLE 'wait until axis stops

?“motion ends”

?VECTOR_BUFFERED 'remain motion distance, result is 0

?VECTOR_MOVED 'current motion distance, result is 565.68

?VECTOR_BUFFERED2 'required target vector position of interpolation

command, result is 565.68

Instruction VECTOR_BUFFERED

ENDMOVE_BUFFER--Final Position in Buffer

Type Axis Status

Description Final target position based on present motion and motion in buffer.

It can be used to realize conversion between absolute position and relative

position, see Example Two.

Instructions have no fixed distance, such as, VMOVE, DATUM, etc.

ENDMOVE is not accurate, it changes as per the motion status.

After REP_OPTION cycle coordinate instruction is used,

ENDMOVE_BUFFER will decrease as per set value: REP_DIST in

REP_OPTION mode, which means minimum precision is REP_DIST

(mode1) or 2*REP_DIST (mode0), see Example Three.

Grammar VAR1 = ENDMOVE_BUFFER

466

Controller General

Example Example One

BASE(0)

SPEED = 10

DPOS = 0

MOVE(100)

MOVE(200)

PRINT ENDMOVE_BUFFER(0)

'print final absolute coordinate, result:300.

Example Two: conversion between absolute and relative

Use ENDMOVW_BUFFER and relative motion instructions together to

realize absolute motion, such as MOVE, MSPHERICAL, etc.

BASE(0)

UNITS=100

SPEED=100

ACCEL=1000

DPOS=0

WHILE 1

MOVE(100- ENDMOVE_BUFFER(0))'move to position 100, then stop.

WEND

Example Three: returned value of cycle coordinate.

BASE(0)

UNITS=100

SPEED=100

ACCEL=1000

DPOS=0

TRIGGER

MOVE(1000)

REP_DIST=100 'set coordinate cycle range.

REP_OPTION=1 'cycle range: 0~100

WHILE 1

?ENDMOVE_BUFFER(0) 'print result:1000,900,800...,100,0

 'minimum precision:100

WEND

Instruction DPOS, MPOS, ENDMOVE

11.8 Instructions for Origin Homing

DATUM_IN--Origin Input

Type Axis Parameters

467

Description Configure general input as origin signal input, -1 means invalid.

Input is valid when signal is OFF in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

Grammar VAR1 = DATUM_IN，DATUM_IN = expression

Controller General

Example BASE(0,1,2,3)

DATUM_IN = 6,7,8,9 'origin inputs of axis 0,1,2,3 relate to input 6,7,8,9.

INVERT_IN(6,ON) 'reverse origin signal.

INVERT_IN(7,ON)

INVERT_IN(8,ON)

INVERT_IN(9,ON)

Instruction DATUM, FWD_IN, REV_IN, INVERT_IN

HOMEWAIT—Reversely Find Delay when Homing

Type Axis Parameters

Description This parameter sets waiting time, units is millisecond.

In terms of pulse servo drives, there needs time delay when back finding

origin point.

Default value of controller is 2ms.

Grammar VAR1 = HOMEWAIT, HOMEWAIT = expression

Controller General

Example BASE(0)

DPOS=0 'axis 0 clears

UNITS=100 'coordinate clears

ATYPE=1

SPEED=100 'speed of finding origin point is 100units/s.

ACCEL=1000,1000 'acceleration is 1000units/s

DECEL=1000,1000 'deceleration is 1000units/s

CREEP=10 'speed of backing finding origin point

DATUM_IN=0 'IN0 as homing signal input

INVERT_IN(0,ON) 'reverse signal

HOMEWAIT=1000 'set time delay of back finding

TRIGGER 'trigger oscilloscope automatically

DATUM(3) 'positive finding origin point

Speed Curve:

When meeting IN0, it will stop for 1 second, then back to find origin point

at speed of CREEP

MSPEED(0) vertical scale 100

468

When HOMEWAIT=2, it almost doesn’t stop.

MSPEED(0) vertical scale 100

Instruction DATUM

11.9 JOG Motion Instruction

FAST_JOG--Jog Input Mapping

Type Axis Parameters

Description Fast Jog input NO., -1 means invalid.

If fast jog input was set, then speed of motion will follow SPEED, or it will

follow JOGSPEED. See Example One.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

Grammar VAR1 = FAST_JOG, FAST_JOG = expression

Controller General

Example BASE(0) 'select axis 0

DOPS=0 'axis o clears

UNITS=100

ATYPE=1

SPEED=100 'set speed as 100 units/s

ACCEL=500 'set acceleration is 500 units/s

469

JOGSPEED=200 'jog move speed is 200units/s

FAST_JOG(0)=0 'fast jog input of axis 0 is IN0.

FWD_JOG(0)=1 'positive jog move input IN1

INVERT_IN(0,ON) 'reverse electric level

INVERT_IN(1,ON)

TRIGGER 'trigger oscilloscope automatically

Speed Curve:

When IN0 doesn’t input, button IN1 and keep this status, axis speed is

JOGSPEED=200

MSPEED(0)=200(vertical scale)

IN0:ON, IN1:ON, axis speed is SPEED=100

Instruction REV_JOG, FWD_JOG, SPEED, JOGSPEED

FWD_JOG--Positive JOG Input Mapping

Type Axis Parameters

Description Input number relates to positive JOG input, -1 means invalid.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

When there is input signal, axis will move at speed of JOGSPEED in

positive direction.

470

Grammar VAR1 = FWD_JOG, FWD_JOG= expression

Controller General

Example Example One

BASE(0) 'select axis 0

DPOS=0 'axis 0 clears

UNITS=100

ATYPE=1

SPEED=100 'set speed as 100

ACCEL=500 'set acceleration is 500 units/s/s

DECEL=500

JOGSPEED=50 'JOG speed is 50

FWD_JOG=0 'IN0 as positive JOG switch

INVERT_IN(0,ON) 'reverse signal

TRIGGER 'trigger oscilloscope automatically

When IN0 is ON, axis move at speed of 50 in positive direction.

When IN0 is OFF, axis motion stops.

Speed Curve:

MSPEED(0) vertical scale 100

Instruction REV_JOG, JOGSPEED, FAST_JOG

REV_JOG--Negative JOG Input Mapping

Type Axis Parameters

Description Input number relates to negative JOG input, -1 means invalid.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

When there is input signal, axis will move at speed of JOGSPEED in

negative direction.

When both signals of REV_JOG and FWD_JOG come, axis moves as per

FWD_JOG

mk:@MSITStore:D:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV3/TrioBASIC.chm::/REV_IN.html

471

Grammar VAR1 = REV_JOG, REV_JOG= expression

Controller General

Example See in Example FWD_JOG.

Instruction FWD_JOG, JOGSPEED, FAST_JOG

JOGSPEED--JOG Speed

Type Axis Parameters

Description JOG motion speed, unit is units/s.

When REV_JOG or FWD_JOG is activated, motor will run at speed of

JOGSPEED slowly. When input port is loosened, motion will stop.

Grammar JOGSPEED= value, VAR1=JOGSPEED

Controller General

Example Example One:

BASE(0) 'select axis 0

DPOS=0 'axis 0 clears

UNITS=100 'pulse amount

SPEED=100 'main axis speed is 100 units/s

ACCEL=1000 'acceleration is 1000 units/s/s

DECEL=1000 'deceleration is 1000 units/s/s

TRIGGER 'trigger oscilloscope automatically

JOGSPEED=50 'JOG speed is 50

FWD_JOG=0 'IN0 as positive JOG input

REV_JOG=1 'IN1 as negative JOG input

INVERT_IN(0,ON) 'reverse signal

INVERT_IN(1,ON)

When IN0=ON, axis 0 moves at speed of 50 in positive direction.

When IN1=ON, axis 0 moves at speed of 50 in negative direction.

When IN0=ON and IN1=ON, axis 0 moves at speed of 50 in positive

direction.

Speed Curve:

MSPPED(0) vertical scale 100

472

Instruction REV_JOG, FWD_JOG, FAST_JOG

FHOLD_IN--Hold Input Mapping

Type Axis Parameters

Description Hold related input number, -1 means invalid.

If there is input signal, then speed of motion axis is FHSPEED, present is

not cancelled. when input signal is cancelled, then motion speed will follow

speed defined in procedure. See example one.

Input is valid when signal is OFF in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

This parameter is only valid in speed control mode (instruction with sp

suffix). If motion is not controlled by speed, such as, CAMBOX,

CONNECT, MOVELINK, then it will not activate.

Grammar VAR1 = FHOLD_IN, FHOLD_IN = expression

Controller General

Example BASE(0) 'select axis 0

DPOS=0 'coordinate clears

UNITS=100

ATYPE=1

SPEED=100

ACCEL=500 'acceleration is 500 units/s/s

DECEL=500

FORCE_SPEED=200 'set speed as 200 units/s

FHSPEED=200 'set hold speed as 200units/s

FHOLD_IN(0)=0 'set hold input of axis 0 as IN0

INVERT_IN(0,ON) 'reverse electric level

TRIGGER 'trigger oscilloscope automatically

VMOVE(1) 'continuous motion

473

When IN0=OFF, axis moves at FORCE_SPEED of 200.

When IN0=ON, axis moves at FHSPEED of 100, turn IN0 into off, speed

becomes 200.

Speed Curve:

MSPEED(0) vertical scale 200

Instruction FHSPEED

FHSPEED--Hold Speed

Type Axis Parameters

Description Axis holds speed, the speed when FHOLD_IN is activated, unit is

units/s.

When input position keeps hold status, it can move at this speed.

Grammar VAR1 = FHSPEED, FHSPEED = expression

Controller General

Example See example in FHOLD_IN

Instruction FHOLD_IN, SPEED

11.10 Instructions Relate to Encoder

ENCODER—Original Value of Encoder

Type Axis Status

Description Original value of encoder hardware register.

Inner parameters are only valid after correcting ATYPE setting.

If drive encoder is multiturn, then multiturn value is read.

Grammar VAR1 = ENCODER(axis No.)

Controller General

Example ?*ENCODER 'print encoder value, result:0 0 0 0 0 0 0 0 0 0 0 0

Instruction MPOS, ENCODER_RATIO

474

ENCODER_STATUS--Encoder Status

Type Axis Status

Description Status of encoder EA, EB, EZ.

Grammar VAR1 = ENCODER_STATUS

Bit Value Description

0 1 EA Status

1 2 EB Status

2 4 EZ Status

Controller General

Example ?*ENCODER_STATUS 'print encoder status of all axes

Instruction ATYPE, MPOS

ENCODER_FILTER—Encoder Filter

Type Axis parameters

Description Inner encoder filter setting, motion speed of belt encoder can be

uniform, default value is 1, from 0.001~1.

Default 1- no filter, 0.5- 2 periods filter, 0.25- 4 periods filter.

ZMC5XXX series controllers support, ZMC 4XXX series with firmware

version above 170706 supports.

grammar ENCODER_FILTER = VALUE

controller General

Instruction ENCODER_RATIO

PP_STEP--Encoder Internal Proportion

Type Axis Parameters

Description Internal inputs of encoder will multiply this parameter.

The parameter effect superposes ENCODER_RATIO, default value is 1.

Grammar PP_STEP = value

Controller General

Instruction ENCODER_RATIO

ENCODER_BITS – Encoder Absolute Value Setting

Type Axis Parameters

Description Set SSI/BISS encoder absolute value.

475

Grammar ENCODER_BITS = VALUE

Encoder Type Bit Value Function Description

SSI/BISS Bit0-5 0-32 The total bit of encoder

communication.

Bit6 64 Whether it is Gray code

Bit8-10 256*(0<n<15) Invalid bit, BISS = 8

(usually)

Bit16-18 65536*(0<n<7) Frequency division

adjustment, default 0-

2MHz.

ATYPE = 48 ‘SSI absolute encoder

ATYPE = 49 ‘BISS absolute encoder

Before using this commands, axis mapping must be done.

Controller General

Example SSI Example:

BASE(n)

AXIS_ADDRESS = (-1<<16) + 4 ‘map the fourth physical axis position

ENCODER_BITS = 26 ‘26-bit absolute value

ATYPE = 48

BISS Example:

BASE(n)

AXIS_ADDRESS = (-1<<16) + 5 ‘map the fifth physical axis position

ENCODER_BITS = 26

‘26-bit absolute value, it is with 8 state bits automatically

ATYPE = 49

DRIVE_POSMIN – Encoder Transfer Original Min Value

Type Axis Parameters

Description Set the minimal value of original value range transferred by encoder.

Grammar DRIVE_POSMIN = VALUE

Set before modifying ATYPE.

If MPOS also does coordinates loop, modify REP_OPTION.

Range: 32-bit integer, 0 to 2^32-1

DRIVE_POSMAX = 2^32-1

DRIVE_POSMIN = -2^31

Controller General

Example BASE(0)

AXIS_ADDRESS=(0<<16)+nodenum

ENCODER_ID=$60640020

DRIVE_POSMIN=0

DRIVE_POSMAX = 2^18-1 ‘PDOBUFF value is in this range

476

ATYPE=25

Instruction DRIVE_POSMAX

DRIVE_POSMAN – Encoder Transfer Original Max Value

Type Axis Parameters

Description Set the maximal value of original value range transferred by encoder.

Grammar DRIVE_POSMAX = VALUE

Set before modifying ATYPE.

If MPOS also does coordinates loop, modify REP_OPTION.

Range: 32-bit integer, 0 to 2^32-1

DRIVE_POSMAX = 2^32-1

DRIVE_POSMIN = -2^31

Controller General

Example Same as DRIVE_POSMIN.

Instruction DRIVE_POSMIN

11.11 Instructions Relate to Latch

REGIST-Position Latch

Type Position Latch Instruction

Description REGIST is used to latch the measured position of axis.

It can latch encoder axis and bus axis. Different controller models can latch

different axis types. ZMC4XX series controllers or above with the latest

firmware support latching virtual axis and pulse axis.

Support drive latch in EtherCAT based motion controller through IO of

drive, see the instructions for details.

For Rtex, it only supports controller latch.

ZMC4XX series controller or above supports 4 latch channels.

channels refer to MARK, MARKB, MARKC, MARKD, using

REG_INPUTS to define high-speed input that corresponds to each latch

channel, default IN ports are 0, 1, 2, 3. For details, please refer to IN of user

manual.

Latches in EtherCAT based drive and latches in controllers can be used

synchronously, but it should support 4-channel latching. For bus latching,

please use MARK and MARKB channels. For controller latching, please

use MARKC, MARKD channels.

Latch mode corresponding rising edge and falling edge are determined by

477

PNP or NPN.

When latch occurs, MARK status of axis will turn into ON, position latch

will be saved in REG_POS.

Each axis’ latch channel is mutually independently.

Grammar Grammar 1:

REGIST(mode)

mode: latch mode

Rising or falling edge is determined by the inner status of controller.

Different inputs type may cause difference, which needs to confirm depend

on the actual latch edge. (if sets as rising edge, latch will be triggered when

external input port change linking status to cut-ff status in a flash. Instead, if

sets as falling edge, latch will be triggered when external input port changed

its cut-off status to linking status in a flash.)

Pulse axis type uses R0, R1 and Z these 3 latched generally, bus axis

type uses R2 and R3 latches:

value Description

1 Save absolute position in REG_POS when meets rising edge of

Z pulse

2 Save absolute position in REG_POS when meets falling edge of

Z pulse

3 Save absolute position in REG_POS when meets rising edge of

R0 signal

4 Save absolute position in REG_POS when meets falling edge of

R0 signal

6 Save absolute position in REG_POS when meets rising edge of

R0 signal, save absolute position in REG_POSB when meets

rising edge of Z signal

7 Save absolute position in REG_POS when meets rising edge of

R0 signal, save absolute position in REG_POSB when meets

falling edge of Z signal

8 Save absolute position in REG_POS when meets falling edge of

R0 signal, save absolute position in REG_POSB when meets

rising edge of Z signal

9 Save absolute position in REG_POS when meets falling edge of

R0 signal, save absolute position in REG_POSB when meets

falling edge of Z signal

10 Save absolute position in REG_POS when meets rising edge of

R0 signal, save absolute position in REG_POSB when meets

rising edge of R1 signal.

11 Save absolute position in REG_POS when meets rising edge of

R0 signal, save absolute position in REG_POSB when meets

falling edge of R1 signal.

12 Save absolute position in REG_POS when meets falling edge of

478

R0 signal, save absolute position in REG_POSB when meets

rising edge of R1 signal.

13 Save absolute position in REG_POS when meets falling edge of

R0 signal, save absolute position in REG_POSB when meets

falling edge of R1 signal.

14 Save absolute position in REG_POSB when meets rising edge of

R1 signal (in controller with firmware version above 14XXXX,

each latch channel is individual and supports 4 latch channels.)

15 Save absolute position in REG_POSB when meets falling edge

of R1 signal.

16 Save absolute position in REG_POSB when meets rising edge of

Z signal.

17 Save absolute position in REG_POSB when meets falling edge

of Z signal.

18 Save absolute position in REG_POSC when meets rising edge of

R2 signal.

19 Save absolute position in REG_POSC when meets falling edge

of R2 signal.

20 Save absolute position in REG_POSD when meets rising edge of

R3 signal.

21 Save absolute position in REG_POSD when meets falling edge

of R3 signal.

Grammar 2:

REGIST(100+mode, tableindexn, numes)

 mode: latch mode

 tableindex: table position of saving continuously latched content. The

first table element saves latched numbers, later saves

latched coordinates, maximum number = numes-1, write

cycle when overflow.

 numes: occupied table numbers.

Through mode + 100 to support continuous latch, the result is saved in

TABLE

Continuous latch to two channels separately, which can realize rising and

falling edge of continuous latch.

ECI: with firmware version above 20150829.

4XXX series Controller: with firmware version above 20170523.

100+mode: only used in single channel, +100 means use continuous latch.

value Description

1 Save absolute position in REG_POS when meets rising edge of

Z pulse

479

2 Save absolute position in REG_POS when meets falling edge of

Z pulse

3 Save absolute position in REG_POS when meets rising edge of

R0 signal

4 Save absolute position in REG_POS when meets falling edge of

R0 signal

14 Save absolute position in REG_POSB when meets rising edge of

R1 signal

15 Save absolute position in REG_POSB when meets falling edge

of R1 signal

16 Save absolute position in REG_POSB when meets rising edge of

Z signal

17 Save absolute position in REG_POSB when meets falling edge

of Z signal

18 Save absolute position in REG_POSC when meets rising edge of

R2 signal

19 Save absolute position in REG_POSC when meets falling edge

of R2 signal

20 Save absolute position in REG_POSD when meets rising edge of

R3 signal

21 Save absolute position in REG_POSD when meets falling edge

of R3 signal

23 Save absolute position in REG_POSB when meets rising edge of

R0 signal

24 Save absolute position in REG_POSB when meets falling edge

of R0 signal

33 Save absolute position in REG_POS when meets rising edge of

R0 signal, the next time switches to falling edge. Switch in turn.

34 Save absolute position in REG_POS when meets falling edge of

R0 signal, the next time switches to rising edge. Switch in turn.

35 Save absolute position in REG_POSB when meets rising edge of

R1 signal, the next time switches to falling edge. Switch in turn.

36 Save absolute position in REG_POSB when meets falling edge

of R1 signal, the next time switches to rising edge. Switch in

turn.

Controller Controllers with latch input ports

Example

(based on

ZMC432)

Example1: latch position of pulse axis 0 when meets jumping edge of R0

signal, and print

BASE(0)

REG_INPUTS=0 'R0-R3 are matched with input port 0

ATYPE=1 'pulse axis

REGIST(3) 'select R0 latch mode

480

WAIT UNTIL MARK 'wait until latch be triggered

PRINT REG_POS 'print latch position

Example2: latch position of encoder axis 0 when meets jumping edge of

R1 signal, and print

BASE(0)

REG_INPUTS=0 'R0-R3 are matched with input port 0

ATYPE=3 'encoder axis

REGIST(14) 'select R1 latch mode

WAIT UNTIL MARK 'wait until latch be triggered

PRINT REG_POS 'print latch position

Example3: latch position of EtherCAT bus axis 0 when meets jumping

edge of R2 signal, and print

'before latch, please do bus initialization enable, use R2R3 latch.

BASE(0)

REG_INPUTS=$1000 'map latch channel R3-R0 into input 1,0,0,0

REGIST(imode)

IF imode = 15 OR imode = 19 THEN 'latch channel R2

 WAIT UNTIL MARKC 'probe

 ?“mode”, Imode, “latch position REG_POSC”, REG_POSC

ELSELF imode = 20 OR imode = 21 THEN 'latch channel R3

WAIT UNTIL MARKD 'wait until latch be triggered

?“mode”, Imode, “latch position REG_POSD”, REG_POSD

ENDIF

Example 4: transfer latched position data between controller and PC,

which is used to capture motion, then get the actual position

through latch function while the Capture happened.

GLOBAL g_start

GLOBAL g_posx, g_posy

WHILE 1

WAIT UNTIL g_start=1 'wait until PC is triggered.

REGIST(4) AXIS(0) 'latch input 0, when 24V become 0V.

REGIST(4) AXIS(1)

WAIT UNTIL MARK(0) AND MARK(1)

g_start=0

g_posx=REG_POS(0)

g_posy=REG_POS(1)

PRINT g_posx, g_posy

WEND

Example 5: 100+mode continuous latch

DIM num

num=1

481

BASE(6)

ATYPE=6

REGIST(100+4,5,100) 'cycle automatically, no need to write in WHILE

cycle, table(5) saves latched times, table(6)-

table(105) save latched data over 99 every time,

table(5) clears 0, restarts to memorize data from

table(6).

WHILE 1

 local test

 test = table (5)

 WAIT UNTIL table (5)

 ?reg_pos,TABLE(num),TABLE(0) 'print

 IF num=100 THEN

 num=1

 ELSE

 num=num+1

 ENDIF

 WA 1 'delay 1ms, anti-shake

WEND

Example 6: bus drive latch, which should be configured

DRIVE_PROFILE with probe mode.

BASE(iaxis) 'select axis No. to latch position

REGIST(imode) 'latch mode

IF imode = 3 OR imode = 4 THEN

 WAIT UNITL MARK 'probe 1

?“mode”, imode, “latch position REG_POS”, REG_POS

 DELAY(100)

ELSELF imode = 14 OR imode = 15 THEN

 WAIT UNITL MARKB 'wait until latch to be triggered

?“mode”, imode, “latch position REG_POS”, REG_POS

 DELAY(100)

ELSELF imode = 11 TEHN

 WAIT UNTIL MARK OR MARKB 'wait until latch to be triggered

 IF MARK THEN

?“mode”, imode, “latch position REG_POS”, REG_POS

WAIT UNTIL MARKB

?“latch position REG_POSB”, REG_POSB

ELSELF MARKB THEN

?“mode”, Imode, “latch position REG_POSB”, REG_POSB

WAIT UNTIL MARK

?“latch position REG_POSB”, REG_POS

 ENDIF

 DELAY(100)

ENDIF

Instructions MARK, MARKB, REG_POS, REG_POSB

482

REG_INPUTS--Latch Input Mapping

Type Axis Status

Description Configure inputs of position latch signals: R0-R3, every 4 bits was

mapped to one latch signal input.

Grammar VAR1 = REG_INPUTS

Bit Latch signal Input range (ZMC306E)

Bit0-3 R0 0-3

Bit4-7 R1 0-3

Bit8-11 R2 0-3

Bit12-15 R3 0-3

Inputs Range: Different controller modes have different inputs ranges.

Controller Some ZMC3XX series and ZMC4XX series with latest firmware version

support latch function.

Example BASE(6)

ATYPE=3

REG_INPUTS=$3210 ‘R0-R3 are mapped to inputs:0,1.2.3

REG_INPUTS=$1111 ‘R0-R3 are all mapped to input 1.

Instruction REGIST

MARK--Latch Trigger

Type Axis Status

Description Return value to check if position latch happened.

When REGIST is executing, MARK is true, returned value is -1, once

execution of REGIST is finished, MARK becomes false, returned value is 0.

Grammar VAR1 = MARK

Controller General

Example BASE(0) 'select axis 0

MOVE(100) 'move 100units

REGIST(3) 'rising edge trigger, get signal R0.

WAIT UNTIL MARK 'wait to be triggered.

Instruction REG_POS, REGIST

MARKB--Latch 2 Trigger

Type Axis Status

Description Return value to check if position latch 2 happened.

When REGIST is executing, MARKB becomes true, returned value is -1,

once execution of REGIST is finished, MARKB becomes false, returned

value is 0.

Grammar VAR1 = MARKB

483

Controller General

Example BASE(0) 'select axis 0

MOVE(100) 'move 100units

REGIST(14) 'rising edge trigger, get signal R1.

WAIT UNTIL MARKB 'wait to be triggered.

Instruction REG_POSB，REGIST

MARKC-- Latch 3 Trigger

Type Axis Status

Description Return value to check if position latch 3 happened.

When REGIST is executing, MARKC is true, returned value is -1, once

REGIST is finished, MARKC becomes false, returned value is 0.

Grammar VAR1 = MARKC

Controller General

Example BASE(0) 'select axis 0

MOVE(100) 'move100units

REGIST(18) 'rising edge trigger, get signal R2

WAIT UNTIL MARKC 'wait to be triggered.

Instruction REG_POSC, REGIST

MARKD-- Latch 4 Trigger

Type Axis Status

Description Return value to check if position latch 4 happened.

When REGIST is executing, MARKD is true, returned value is -1, once

REGIST is finished, MARKD becomes false, returned value is 0.

Grammar VAR1 = MARKD

Controller General

Example BASE(0) 'select axis 0

MOVE(100) 'move 100units

REGIST(20) 'rising edge trigger, get signal R3

WAIT UNTIL MARKD 'wait to be triggered.

Instruction REG_POSD, REGIST

OPEN_WIN--Coordinate Range for Latch Starts

Type Axis Parameters

Description Start coordinate range point of position latch

Reserved

Grammar OPEN_WIN = pos

484

Instruction REGIST, CLOSE_WIN

CLOSE_WIN-- Coordinate Range for Latch Ends

Type Axis Parameters

Description End coordinate range point of position latch.

Reserved

Grammar CLOSE_WIN = pos

Instruction REGIST, OPEN_WIN

REG_POS--Latch Position

Type Axis Status

Description Save latched measurement feedback position (MPOS), unit is units.

Grammar VAR1 = REG_POS (axis No.)

Controller General

Example MOVE(100) 'move 100units

REGIST(3) 'trigger when meets rising edge of signal R0.

WAIT UNTIL MARK 'wait until position latch happens

PRINT REG_POS 'print latched position

Instruction REGIST, MARK

REG_POSB--Latch 2 Position

Type Axis Status

Description Return MPOS latched by register 2, unit is units.

Grammar VAR1 = REG_POSB (axis No.)

Controller General

Example MOVE(100) 'move 100units

REGIST(16) 'trigger when meets rising edge signal EZ

WAIT UNTIL MARKB 'wait until the second latch happens.

PRINT REG_POSB 'print latched position

Instruction REGIST，MARKB

REG_POSC--Latch 3 Position

Type Axis Status

Description Return MPOS latched by register 3, unit is units.

Grammar VAR1 = REG_POSC (axis No.)

Controller General

485

Example MOVE(100) 'move 100units

REGIST(18) 'trigger when meet rising edge signal

WAIT UNTIL MARKC 'wait until the second latch happens.

PRINT REG_POSC 'print latched position

Instruction REGIST，MARKC

REG_POSD--Latch 4 Position

Type Axis Status

Description Return MPOS latched by register 4, unit is units.

Grammar VAR1 = REG_POSD (axis No.)

Controller General

Example MOVE(100) 'move 100units

REGIST(20) 'trigger when meets rising edge signal

WAIT UNTIL MARKD 'wait until the second latch happens.

PRINT REG_POSD 'print latched position

Instruction REGIST, MARKD

11.12 Position Limit Parameter Instructions

FS_LIMIT--Soft Positive Limit

Type Axis Parameters

Description Soft positive position limit setting, unit is units.

When FS_LIMIT is bigger than REP_DIST, FS_LIMIT will become

invalid, and soft positive position limit function is forbidden.

If needs to cancel soft positive position limit, it is not recommended to

modify value of REP_DIST, it is better to set FS_LIMIT as a bigger value.

Default value of FS_LIMIT is 200000000.

Soft position limit can not be as signal reference of homing when use

DATUM.

Grammar VAR1 =FS_LIMIT，FS_LIMIT = expression

VAR1 =FS_LIMIT(axisnum)，FS_LIMIT = expression (axisnum)

Controller General

Example BASE(0) 'select axis 0

ATYPE=1 'axis type setting

UNITS=100 'pulse amount is 100

DPOS=0 'coordinate clears

SPEED=100 'speed is 100units/s

ACCEL=1000 'acceleration is 1000 units/s/s

486

FS_LIMIT=200 'set positive limit as 200units

MOVE(300) 'move 300units

When axis reaches 200, it will stop, and show error: Axis:0 AXISSTATUS:

200h, FSOFT.

If wants to move axis, then only motion in negative direction is allowed.

It can be cancelled through set a bigger value.

FS_LIMIT=2000000 'cancel soft positive position limit setting.

Instruction RS_LIMIT, FWD_IN, REV_IN

RS_LIMIT--Soft Negative Limit

Type Axis Parameters

Description Soft negative position limit setting, unit is units.

If RS_LIMIT is bigger than REP_DIST, RS_LIMIT will become invalid,

and soft negative position limit function is forbidden.

If needs to cancel Soft negative position limit, it is not recommended to

modify value of REP_DIST, it is better to set RS_LIMIT as a bigger value.

Default value of RS_LIMIT is -200000000.

Soft position limit can not be as signal reference of homing when use

DATUM.

Grammar VAR1 =RS_LIMIT, RS_LIMIT = expression

VAR1 =RS_LIMIT(axisnum), RS_LIMIT = expression (axisnum)

Controller General

Example RS_LIMIT = -50 'set soft negative limit is 50 units

RS_LIMIT= - 2000000 'cancel soft negative limit

Instruction FS_LIMIT, FWD_IN, REV_IN

FWD_IN--Positive Limit Mapping Input

Type Axis Parameters

Description Input number related to positive position limit input in hardware, -1 is

invalid.

When limit signal comes, axes motion will stop immediately at speed of

FASTDEC.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

Grammar VAR1 = FWD_IN, FWD_IN = expression

VAR1 =FWD_IN(axisnum), FWD_IN = expression (axisnum)

Controller General

487

Example BASE(0,1,2,3) 'select axis0,1,2,3

FWD_IN=6,7,8,9 'set positive limit inputs.

INVERT_IN(6,ON) 'reverse signal

INVERT_IN(7,ON)

INVERT_IN(8,ON)

INVERT_IN(9,ON)

When limit signals come, axis status will show error:

Axis:0AXISSTATUS:10h,FWD.

then only motion in negative direction is allowed.

Instruction REV_IN, FS_LIMIT, FASTDEC

REV_IN--Negative Limit Mapping

Type Axis Parameters

Description Input number relates to negative position limit input in hardware, -1 is

invalid.

When limit signal comes, axes motion will stop immediately at speed of

FASTDEC.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

Grammar VAR1 = REV_IN, REV_IN = expression

VAR1 =REV_IN(axisnum), REV_IN = expression (axisnum)

Controller General

Example See Example in FWD_IN

Instruction FWD_IN, RS_LIMIT,FASTDEC

ALM_IN--Alarm Input

Type Axis Parameters

Description Drive alarm input configuration, -1 means invalid.

Once controller gets alarm signal, all axes will stop, acceleration will obey

FASTDEC.

After Alarm input was set, ZMC controller is valid when off, if signal is

normally opened, then use INVERT_IN to reverse electric level; while in

ECI controller, it is valid when ON, if signal is normally closed, then use

INVERT_IN to reverse electric level.

Grammar VAR1 = ALM_IN, ALM_IN = expression

VAR1 =ALM_IN(axisnum), ALM_IN = expression (axisnum)

Controller General

mk:@MSITStore:D:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV3/TrioBASIC.chm::/REV_IN.html

488

Example BASE(0,1)

ALM_IN = 10,11 'map alarm signal of axis 0 to input 10, and alarm

 signal of axis 1 to input 11

INVERT_IN(10,ON) 'reverse electric level.

INVERT_IN(11,ON)

Instruction DATUM_IN，FWD_IN，REV_IN，INVERT_IN，FASTDEC

11.13 On-Position Parameter Instructions

IN_POS – On Position Mark

Type Axis Parameters

Description Read whether axis arrives the position or not, after axis stops, return

value -1 means on position, return value 0 means not on position.

IN_PSO_DIST and IN_POS_SPEED must be configured well, or

AXISINP_IN must be configured well.

When this function is not used, directly use IDLE to judge motion finish

status.

Grammar VAR1 = AXISEMG_IN, AXISEMG_IN = expression

VAR1 = AXISEMG_IN (axisnum), AXISEMG_IN (axisnum) = expression

Controller General, valid in 4xx series controllers with the latest firmware version.

Example BASE(1)

DPOS=0

UNITS=1000

SPEED=100 'set speed as 100

ACCEL=500

DECEL=500 'set deceleration as 500

FASTDEC=2000 'set fast deceleration as 2000

AXISINP_IN(1) = 0 'set input 0 as on-position signal of axis 1

INVERT_IN(0,ON) 'signal reverse

MOVE(1000) AXIS(1)

?IN_POS(1) 'print value: 0, not on position

WAIT UNTIL IDLE(1) 'wait until axis 1 stops

?IN_POS(1) 'on position signal is triggered, print value: -1,

it arrives position

Instruction IN_POS_DIST, IN_POS_SPEED, AXISINP_IN

AXISINP_IN – On-position Signal Input

Type Axis Parameters

Description Configure axis on-position input, default (-1) means not to use on-

489

position signal.

When controller on-position signal took effect, and axis stopped, on-

position mark takes effect.

When on-position input was set, ZMC controller default OFF is valid, and

commonly opened signal uses INVERT_IN to reverse the electric level.

ECI controller default ON is valid, commonly-closed signal uses

INVERT_IN to reverse electric level.

Grammar VAR1 = AXISINP_IN, A XISINP_IN = expression

VAR1 = AXISINP_IN (axisnum), AXISINP_IN (axisnum) = expression

Controller General, valid in 4xx series controllers with the latest firmware version.

Example BASE(0) 'select axis 0

ATYPE=1

UNITS=100 'set pulse amount as 100

DPOS=0 'clear coordinates as 0

SPEED=100 'set speed as 100units/s

ACCEL=1000 'set acceleration as 1000units/s/s

DECEL=1000 'set deceleration as 1000units/s/s

AXISINP_IN(0) = 0 'set input 0 as on-position of axis 0

INVERT_IN(0,ON)

MOVE(10000) AXIS(0)

TRIGGER

?IN_POS(0)

WAIT UNTIL IDLE(0) 'after stopped, on-position changes

?IN_POS(0)

Instruction IN_POS_DIST, IN_POS_SPEED, IN_POS, INVERT_IN,

IN_POS_DIST – On-position Distance

Type Axis Parameters

Description Configure on-position distance, FE is less than this distance, and

MSPEED is less than IN_POS_SPEED, it means it arrives the position.

Parameters start from 0, when this parameter and on-position parameter are

used together, on-position mark is controlled by on-position signal.

Grammar VAR1 = IN_POS_DIST, IN_POS_DIST = expression

VAR1 = IN_POS_DIST (axisnum), IN_POS_DIST (axisnum) = expression

Controller General, valid in 4xx series controllers with the latest firmware version.

Example BASE(0)

ATYPE=4 'with encoder feedback

UNITS=1000

SPEED=100 'set speed as 100

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

490

DPOS=0

AXISINP_IN(0) = -1 'cancel on-position signal

IN_POS_DIST = 0.5 'on-position distance

IN_POS_SPEED =0.5 'on-position speed

MOVE(100)

DELAY(100)

?FE

?MSPEED

?IN_POS 'print on-position mark

WAIT UNTIL IDLE(0)

DELAY(100)

?"----------------------"

?FE

?MSPEED

?IN_POS

Instruction IN_POS_SPEED, IN_POS, AXISINP_IN

IN_POS_SPEED – On-position Speed

Type Axis Parameters

Description Configure on-position speed, MSPEED is less than this speed, and FE is

less than IN_POS_DIST, it means it arrives the position.

Parameters start from 0, when this parameter and on-position parameter are

used together, on-position mark is controlled by on-position signal.

Grammar VAR1 = IN_POS_SPEED, IN_POS_SPEED = expression

VAR1 = IN_POS_SPEED (axisnum), IN_POS_SPEED (axisnum) =

expression

Controller General, valid in 4xx series controllers with the latest firmware version.

Example BASE(0)

ATYPE=4 'with encoder feedback

UNITS=1000

SPEED=100 'set speed as 100

ACCEL=1000

DECEL=1000 'set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

DPOS=0

AXISINP_IN(0) = -1 'cancel on-position signal

IN_POS_DIST = 0.5 'on-position distance

IN_POS_SPEED =0.5 'on-position speed

MOVE(100)

DELAY(100)

?FE

?MSPEED

?IN_POS 'print on-position mark

491

WAIT UNTIL IDLE(0)

DELAY(100)

?"----------------------"

?FE

?MSPEED

?IN_POS

Instruction IN_POS_DIST, IN_POS, AXISINP_IN

11.14 Range Limit Parameter Instructions

REP_OPTION--Coordinate Cycle Mode

Type Axis Parameters

Description Repeat set the coordinate.

It can be used to limit main axis coordinate cycle range of CAM type

motion and to realize continuous of multiple CAM profiles.

When in absolute mode, if target position is between coordinate cycle range,

then motion is correct, or motion is incorrect.

No influence on relative motion.

Grammar VAR1 = REP_OPTION, REP_OPTION = opt

opt, different bits indicate different meanings.

Bit Value Description

0 1 0-cycle range – REP_DIST to + REP_DIST.

1- cycle range 0 to + REP_DIST.

1 2 1 means repeat motion is forbidden in CAMBOX and

MOVELIK, once it activates, value recovers to 0.

2 4 reserved

4 16 1-Don’t use REP_DIST.

0-Use REP_DIST.

Controller General

Example BASE(0) 'select axis 0

ATYPE=1

UNITS=100 'pulse amount is 100

DPOS=0 'coordinate clears

SPEED=100 'speed is 100units/s

ACCEL=1000 'acceleration is 1000units/s/s

DECEL=1000 'deceleration is 1000units/s/s

REP_DIST=100 'set cycle coordinate range

REP_OPTION=0 'set cycle mode

TRIGGER 'trigger oscilloscope automatically

VMOVE(1) 'continuous motion

492

Coordinate Curve:

DPOS(0) vertical scale 100

REP_OPTION=1,

MSPEED(0) vertical scale 100

Instruction CAMBOX，MOVELINK，REP_DIST

REP_DIST--Coordinate Cycle Position

Type Axis Parameters

Description Auto cycle DPOS and MPOS of axis through REP_OPTION setting.

Grammar VAR1 = REP_DIST, REP_DIST = expression

Controller General

Example See REP_OPTION as reference

Instruction REP_OPTION

FE—Current Follow-up Error

Type Axis Status

Description Follow-up error, value=DPOS-MPOS.

493

Grammar VAR1=DPOS

Controller General

Instruction MPOS, DPOS

FE_RANGE-- Follow-up Error when Alarm

Type Axis Parameters

Description Follow-up error when alarm happens.

Grammar VAR1 = FE_RANGE, FE_RANGE = expression

Valid: set assigned value through FE_RANGE AXIS (axis) method.

Example Refer to SERVO.

Instruction FE, FE_LIMIT, P_GAIN, D_GAIN, I_GAIN, OV_GAIN, VFF_GAIN,

FE_LIMIT.

FE_LIMIT--Maximum Follow-Up Error

Type Axis Parameters

Description Allowed maximum follow-up error, default: 3

When follow error exceeds, real-time error will be caused, and enable relay

(WDOG) clears, which means it prevents other generators from running.

This limit usually is used for protect default status, such as, machine is

locked, encoder feedback is lost, etc. It will report alarms when timeout,

2h/100h/102h are reported usually for AXISSTATUS.

Grammar VAR1 = FE_LIMIT, FE_LIMIT= expression

Valid: set assigned value through FE_LIMIT AXIS (axis) method.

Example Refer to SERVO.

Instruction FE, P_GAIN, D_GAIN, I_GAIN, OV_GAIN, VFF_GAIN, FE_LIMIT.

SERVO

11.15 Advanced Setting Instruction

INVERT_STEP--Pulse Mode Setting

Type Axis Parameters

Description Servo/Step pulse output mode setting.

There are three modes: pulse direction, double pulse and quadrature pulse,

the default mode is pulse direction control (mode 0).

Now, only some controllers support quadrature pulse.

MPOS information involves many complicate modes, such as, MOVE_OP

high-precision output mode, so controller can’t support modify MPOS

494

direction at present, if needs, modify drive or other related parameters, such

as, Mitsubishi PA 14.

Grammar INVERT_STEP = mode

parameters：mode (default is 0) lower 8 bits (bit0-7) indicate mode value,

as follow:

Mode

value
Description Reference (positive logical mode0

0-3

pulse

direction.

Pulse line +

direction line.

4-7

double pulse

(or

CW/CCW),

positive pulse

line + negative

pulse line.

8-9

AB output,

quadrature

pulse (some

controllers are

customized)

Electric levels in different modes: if polarity is reverse, the motion

direction will be opposite to original direction.

Mode

value
Description

Panasonic setting Mitsubishi

setting

Pr0.06 Pr0.07 PA13

0
Pulse/direction(pulse

positive logic) (positive)

0 3 ××01h

1
Pulse/direction(pulse

negative logic) (positive)

/ / ××11h

2
Pulse/direction(pulse

positive logic) (negative)

1 3 ××01h

3
Pulse/direction(pulse

negative logic) (negative)

/ / ××11h

4
Double pulse (direction

negative logic) (positive)

/ / ××10h

5
Double pulse (direction

negative logic) (negative)

/ / ××10h

6
Double pulse (direction

positive logic) (positive)

1 1 ××00h

(default)

7
Double pulse (direction

positive logic) (negative)

0

(default)

1

(default)

××00h

(default)

495

Upper 8 bits(bit8-15) indicate protect time of direction changing, unit

is microsecond, value is:0-255

Commonly used modes are 0, 2, 6, 7.

If mode is set incorrectly, step motor will lose 1 step position when change

direction, if can not confirm motor setting, set change protect time as about

100 ms.

Controller General

Example Set as pulse direction mode:

INVERT_STEP = 256*100+0 'protect time is 100ms, mode is 0.

Set as double pulse mode:

INVERT_STEP = 256*100+6 'protect time is 100ms, mode is 6.

Check pulse mode setting:

Online input instructions to check, as follow:

?INVERT_STEP(0) 'print axis 0 pulse mode setting value

?*INVERT_STEP 'print all axes pulse mode setting value

Instruction STEP_RATIO

MAX_SPEED--Pulse Frequency Limit

Type Axis Parameters

Description Limit of maximum pulse frequency output.

Once exceed this value, frequency will be limited, and AXISSTATUS will

be set.

In terms of encoder axis, when set frequency is under 500K, encoder

smoothing will start, when set frequency is over 1M, encoder smoothing

will be canceled. Default value is 1000000 (the default pulse frequency of

old firmware is 500000).

When use linear motor, and the speed is too high, it is easy to exceed pulse

frequency limit, then it’s better to set a bigger value.

Grammar MAX_SPEED = value

Controller General

Example MAX_SPEED AXIS(n)=4000000 'set axis n pulse speed limit is 4000000

BASE(6)

ATYPE=3

MAX_SPEED =500000 'start encoder filter

Instruction AXISSTATUS

AXIS_ZSET--Setting of Precision Output

Type Axis Parameters

Description To set precision output function of MOVE_OP, which is used for the

496

main axis of axes group.

When SYSTEM_ZSET is modified, AXIS_ZSET of present BASE axes

will also be modified. In order to fit old procedure, usually it is not

recommended to use SYSTEM_ZSET instruction.

Parameters:

bit 1: 1 - use precision output function of MOVE_OP, 0 - MOVE_OP

original method.

bit 4: 1 - when encoder axes are attached, use MOVE_OP precision mode

based on encoder position, if multiple encoder axes interpolate, then

use the mode of configuration of BASE motion main axis.

bit 5: 1 – CANCEL (2) / RAPIDSTOP (2) emergency deceleration is

DECEL, 0 – emergency deceleration is FASTDEC

Grammar To read: VALUE=AXIS_ZSET

To write: AXIS_ZSET=VALUE

Controller Firmware version above 20170517

Example Example 1: Open Precision Output

BASE(0)

ATYPE=1

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000

AXIS_ZSET(0)=2 'open precision output of MOVE_OP

MOVE(100)

MOVE_OP(0,1) 'precision takes effect, and select channel 0

Example 2: Open Multi-Encoder Precision Output Port

Normally, there are 4 channels used for precision output in ZMC4XX series,

but some have 8 channels. Suppose there are 3 dispensing positions on

device, all need precision output.

BASE(0,1,2) 'select axis 0 as main axis

AIXS_ZSET(0)=19 'open MOVE_OP encoder precision output for main

axis 0

……

BASE(3,4,5)

AIXS_ZSET(3)=19

……

BASE(6,7,8)

AIXS_ZSET(6)=19

……

Example 3: Emergency Deceleration Selection

BASE(0)

DPOS=0

497

ATYPE=1

SPEED=100

ACCEL=10000

DECEL=10000 ‘set deceleration as 1000

FASTDEC = 100000 ‘set fast deceleration as 100000

AXIS_ZSET=32 'deceleration selection

TRIGGER ‘trigger oscilloscope automatically

MOVE(1000) ‘motion in process

MOVE(-2000) ‘motion in buffer

DELAY(500)

CANCEL(2) ‘emergency stop

Please see below, when AXIS_ZEST is not set, the deceleration should be

100000, and it is 10000 when set.

Instruction SYSTEM_ZSET，MOVE_OP

AXIS_MODE—connect Motion Holds

Type Axis parameters]

Description Set BIT=1 to prevent CONNECT motion from exiting caused by position

limit and soft limit.

BIT1 = 0, when meets position limit, connection “CONNECT” between

master axis and slave axis is interrupted. Then, after position limit alarm is

cleared, operate master axis now, which means slave axis doesn’t follow

anymore.

BIT1 = 1, when meets position limit, connection still exists, after position

limit alarm is cleared, slave axis still follows.

BIT5 = 0, default configuration, tracking MPOS preferentially when main

axis is with encoder.

498

BIT5 = 1, set cam or cam motion on the main axis, and assign compulsively

the DPSO that is to track main axis. Involved instructions: CAMBOX,

CONNECT, MOVELINK, MOVESLINK, MOVESYNC, HW_PSWITCH2.

Valid in controllers with firmware version 20170616 and above.

Grammar VAR1 = AXIS_MODE, AXIS_MODE = expression

Example Example 1: not set AXIS_MODE parameters

RAPIDSTOP(2)

WAIT IDLE

BASE(0,1)

ATYPE=1,1

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

AXIS_MODE=0,0 'set parameters

FS_LIMIT=1000,500

TRIGGER 'trigger oscilloscope automatically

CONNECT(1,0) AXIS(1) 'axis 1 connects to axis 0, ratio is 1

MOVE(1000) AXIS(0)

MOVE(-1000) AXIS(0)

Motion Path:

DPOS(0)=1000(vertical scale), no offset

DPOS(1)=1000(vertical scale), no offset

Axis 1 accesses limit position, then stops, and disconnects with axis 0, which

means they have no any relation on following motions.

Example 2: set AXIS_MODE parameters

RAPIDSTOP(2)

WAIT IDLE

BASE(0,1)

ATYPE=1,1

499

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

AXIS_MODE=0,2

FS_LIMIT=1000,500

TRIGGER 'trigger oscilloscope automatically

CONNECT(1,0) AXIS(1) 'axis 1 connects to axis 0, ratio is 1

MOVE(1000) AXIS(0)

MOVE(-1000) AXIS(0)

Motion Path：

DPOS(0)=1000(vertical scale), no offset

DPOS(1)=1000(vertical scale), no offset

Axis 1 accesses position limit, then stop, but it keeps connection with axis 0,

then it moves to position that is in the position limit, and follows axis 0.

Controller General

Instruction CONNECT，FS_LIMIT，RS_LIMIT

MOVEOP_DELAY-Output Delay in Buffer

Type Axis parameters

Description Make buffer signal delay output for BASE axis.

When high precision output mode of MOVE_OP is used on axis appointed by

BASE, it can adjust the actual trigger time of OP, ms (millisecond) as unit, the

value can also be decimals format, maximum of the delay time is 100 ms.

If value is set as minus, OP can be opened in advance, it is 2ms in advance for

stepper, and 20ms in advance for servo. It can be used to stop the glue output

in dispensing machine.

The command will be affected by axis FE, if you only want to verify the

500

command function (ignore this affection), you can set ATYPE as 0 or 1 to test.

Grammar MOVEOP_DELAY= timems

timems: delay time.(ms)

Controller With firmware version above 20170505 supports.

Example MOVEOP_DELAY = 2 ‘real output time delays 2ms

Instruction MOVE_OP，HW_PSWITCH，HW_PSWITCH2

MOVEOP_ADIST—Close the glue in advance

Type Axis parameters

Description MOVE_OP can configure that output in advance one certain distance,

default 0 means it won’t be taken effect. Compare to default value, an

assigned vector distance will be output in advance if it is positive value. If

it is the minus, an assigned vector distance will be delayed.

This command is only valid when one single OP is operated by MOVE_OP,

and for each axis, their actions have the sequence, namely, former one

MOVE_OP operation (that is to change position) is not finished, behind will

not act.

It will clear automatically after MOVEOP_ADIST entering buffer to avoid

affecting other MOVE_OP.

Controllers that are with HW functions can open HW precision output

through AXIS_ZSET, same as MOVE_OP precision, this command only

supports MOVE interpolations or MOVESCAN motions, it doesn’t support

cam, MOVE_PT, etc. And cross-small segments output in advance can be

achieved through MOVE instruction.

Grammar MOVEOP_ADIST= distance

distance: how far

Controller 4xx series controllers with fast firmware version above 190201.

Example BASE(0)

ATYPE=1

UNITS=100

DPOS=0

MPOS=0

SPEED=100

ACCEL=1000

DECEL=1000

MERGE=1

SRAMP=100

TRIGGER

MOVEOP_ADIST = -10 ′delay 10 units (distance), then glue ON

MOVE_OP(0,1)

MOVE(5)

MOVE(50) ′include actual glue ON and glue OFF

501

MOVE(5)

MOVEOP_ADIST = 10 ′make glue off in advance 10 units

MOVE_OP(0,0)

END

Motion curve:

MSPEED(0) 100 (vertical scale)

DPOS(0) 50 (vertical scale)

OP(0) 5 (vertical scale)

Instruction MOVE_OP, MOVEOP_DELAY, AXIS_ZEST

DAC--Analog Control of Field Bus Axes

Type Axis Parameters

Description Servo axis DA control directly, speed or torque mode support.

Unit is DA module scale, 12 bits or 16 bits.

When doing speed control, see exact unit of drive.

When doing torque control, the unit is milli, 100% torque when equals 1000.

Grammar VAR1 = DAC, DAC = expression

Controller With EtherCAT port or Rtex port, firmware above 2017 support.

Example Example 1: Rtex speed control

Please use Rtex initialization procedure at first, and set ATYPE=51.

Then do ZDevelop online instruction, as follow:

At this time, rotation speed of motor is 10r/min, send dac=-10, it will rotate

inversely.

Also it can send dac instruction in the procedure.

Speed unit can refer to drive manual. As follow:

Instruction speed

502

[size]: 32 bits with symbol

[unit]: set through Pr7.25(RTEX speed unit)

Pr7.25 unit

0 [r/min]

1 [instruction unit/s]

[set unit]: maximum speed level in negative direction ~ maximum speed level

in positive direction.

When set unit as r/min, it will convert into instruction unit when doing

internal calculation, the converted value should be from -800000001h to

7FFFFFFFh

At this time, the unit is 【r/min】

Example 2: Rtex torque control

Please set the first position of drive motor parameter pr6.47 as 0, close 2 DOF

control mode, parameter pr3.17 set speed limit, as follow. (Panasonic Rtex

manual for reference)

The set value of Pr3.17(speed limit selection) is 1, can switch to speed limit

value under torque control through SL_SW.

Type 3 3 3

No. 17 21 22

Propert

y

B B B

Paramet

er name

speed limit

selection

Speed limit value is

1

Speed limit value is

2

Set

range

0-1 0-20000 0-20000

Unit / r/min r/min

Functio

n

valu

e

SL_SW

0 1

0 Pr3.21

1 Pr3.2

1

Pr3.2

2

Set speed limit

value selection

mode if turn to

torque control.

Set speed limit

when turn to torque

control. In torque

control, control is

carried out within

the speed set by the

speed limit, and the

internal values are

limited in the

smallest set speed

of Pr5.13 (over

speed level), Pr6.15

(the over second

speed

WhenPr3.17(speedl

imit selection)=1,

set SL_SW speed

limit as 1h, and

internal value is

limited in the

smallest set speed

of Pr5.13 (over

speed level), Pr6.15

(the over second

speed level0),

Pr9.10(maximum

over speed level).

503

level),Pr9.10(maxi

mum over speed

level)

Then use Rtex initialization procedure, and set ATYPE=52.

Next, can send dac online instruction in zdevelop, now, motor starts.

Now, the torque of drive motor is 0.03. If dac is too small, motor can not

overcome friction force to operate.

Also can send dac in the procedure.

When in the torque control, unit is milli, dac=1000 means 100%.

[size]: 32 bits with symbol

[unit]: 0.1%

[set range]: maximum speed level in negative direction ~ maximum speed

level in positive direction.

Maximum torque limit[%]=100×Pr9.07/(Pr9.06×2½)

Example 3: EtherCAT speed control

FOR I=0 TO 1 'first use, set all axes as ordinate pulse type

ATYPE(I)=1

NEXT

SLOT_SCAN(0) 'bus scan start

IF NODE_COUNT(0,0)>0 THEN

AXIS_ADDRESS(0)=1 'first drive motor is mapped to axis 0

ATYPE(0)=66 '66 as speed control mode

DRIVE_PROFILE(0)=20 'set speed control as 20

DELAY (200)

SLOT_START(0) 'scan bus successfully, start bus

DRIVE_CONTROLWORD(0)=128 'clear errors of drive motor out

DELAY (2)

DRIVE_CONTROLWORD(0)=6

DELAY (2)

DRIVE_CONTROLWORD(0)=15

DELAY (2)

DELAY(20)

DATUM(0) 'clear controller errors out

BASE(0)

AXIS_ENABLE=1 'mapped axis enable open

WDOG=1 'axis enable

DAC=10000 'motor rotates at speed of 10000/s

ENDIF

504

Example 4: EtherCAT torque control

Just make some modification of example 3.

ATYPE=67, DRIVE_PROFILE=30.

Now, send range of dac is 0~1000, 1000 means 100% torque, if needs inverse

select, just send minus value.

Instruction SERVO

ERRORMASK--Operation when Error

Type Axis Parameters

Description To decide which errors are closed through AND operation between

ERRORMASK and AXISSTATUS.

Grammar VAR1 = ERRORMASK, ERRORMASK = expression

Controller General

Example BASE(0)

WDOG=1 'open enable

?AXISSTATUS 'print 16, positive hardware position limit alarm

ERRORMASK=16

DELAY(10) 'delay for operation

?WDOG 'print 0, enable is off.

Instruction AXISSTATUS，WDOG

ZSCAN_CORRECT—Galvanometer Correction

Type Axis parameters

Description Correct galvanometer axis parameters.

Grammar ZSCAN_CORRECT(ixy,imode,imaxline,imaxrow,x1,y1,x2,y2,tableindex)

ixy: value as 0/1, select two galvanometers. 0-the first galvanometer 1-

the second galvanometer.

imode: 0-close correction, 1-use partition correction, table input

mearused actual postion, 2-use partition correction, table input

pulse position needed to achieve, 210701 add this function.

imaxline: line, Y direction, the more data is, the higher precision is.

imaxroe: row, X direction.

x1,y1: bottom right corner position in theory.

x2,y2: above right corner position in theory.

tableindex: measured actual corrdinate start to save in thr table index,

first

 X then Y, the first line(save in the row sequence), the next

line.

 Attention: XY is the actual physical axis, the first is X, the

second is Y, no relation with mapped virtual axis number.

Coordinate written is actual pulse position of galvanometer.

505

(support decimals)(XY2 protocal coordinate is from 32768

to 32767)

Controller Valid in controllers with galvanometer axis

Example TABLE(0, -40.6,-41.2)

TABLE(2, 0,-41)

TABLE(4, 41,-42)

TABLE(6, -41,0)

TABLE(8, 0,0)

TABLE(10, 41.2,0)

TABLE(12, -40.4,41.2)

TABLE(14, 0,41.2)

TABLE(16, 41,42.4)

FOR i=0 TO 17

 TABLE(i) = TABLE(i)*500 'all are pulse coordinate

NEXT

ZSCAN_CORRECT(0,1,3,3,-20000,-20000,20000,20000,0)

11.16 Reserved Instructions

D_GAIN--Differential Gain

Type Axis Parameters

Description Differential gain, which is only valid in analog servo.

D_GAIN includes differential gain of axis. Differential output is in direct

proportion to change number of follow error, default is 0.

It will produce smoothing response if superpose differential gain for system,

which means bigger proportion gain can be permitted. Vibration will be

caused if too high.

Attention: servo gain should be changed when SERVO = OFF to avoid

unsteadiness.

Grammar VAR1=D_GAIN, VAR1=D_GAIN

Valid: set assigned axis through D_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction SERVO, P_GAIN, D_GAIN, OV_GAIN, VFF_GAIN, FE_LIMIT,

FE_RANGE

I_GAIN--Integral Gain

Type Axis Parameters

Description Integral gain, which only valid in analog servo.

Integral outputs through calculating sum total of follow error. Default: 0.

506

Position errors when running or in still can be decreased through superposing

integral gain into servo system. And overshoot and vibration can be

decreased.

Therefore, it is applied in constant speed and low-speed process.

Attention: servo gain should be changed when SERVO = OFF to avoid

unsteadiness.

Grammar VAR1=I_GAIN, I_GAIN = expression

Valid: set assigned axis through I_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction SERVO, P_GAIN, D_GAIN, OV_GAIN, VFF_GAIN, FE_LIMIT,

FE_RANGE

OV_GAIN--Speed Gain

Type Axis Parameters

Description Speed gain, which is only valid in analog servo.

Speed outputs through multiple changes of MPOS and parameter value of

OV_GAIN. Default: 0.

In system, add output speed gain and damping equivalence of machine, output

will be smooth and proportion gain will be promoted. However, it will cause

big follow errors. And vibration, big follow errors will be produced if there is

too high output gain.

Attention: servo gain should be changed when SERVO = OFF to avoid

unsteadiness.

Grammar VAR1=OV_GAIN, OV_GAIN = expression

Valid: set assigned axis through OV_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction SERVO, P_GAIN, D_GAIN, OV_GAIN, VFF_GAIN, FE_LIMIT,

FE_RANGE

P_GAIN--Proportion Gain

Type Axis Parameters

Description Proportion gain, which is only valid in analog servo.

Proportion outputs through multiple follow errors and P_GAIN. Default: 0

Proportion gain sets the rigidity of servo responses, vibration will be caused if

value is too high, but big follow errors will be produced if value is too low.

Attention: servo gain should be changed when SERVO = OFF to avoid

unsteadiness.

Grammar VAR1=P_GAIN, P_GAIN = expression

Valid: set assigned axis through P_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction SERVO, D_GAIN, OV_GAIN, VFF_GAIN, FE_LIMIT, FE_RANGE,

507

I_GAIN

VFF_GAIN--Feedforward Gain

Type Axis Parameters

Description Feedforward gain feedbacked by speed, don’t support non-bus servo.

Speed feedforward is the multiple value of changes of DPOS and parameter

value of VFF_GAIN. Default: 0.

60B1 pdo = axis pulse speed * VFF_GAIN

How to calculate closed-loop axis PID: axis pulse speed * VFF_GAIN (as

speed feedforward)

System follow errors in motion can be decreased and output proportion of

speed can be increased through superposing speed feedforward gain.

Note: servo gain should be changed when SERVO = OFF to avoid

unsteadiness.

Grammar VAR1=VFF_GAIN, VFF_GAIN = expression

Valid: set assigned axis through VFF_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction SERVO, D_GAIN, OV_GAIN, FE_LIMIT, FE_RANGE, I_GAIN, P_GAIN

AFF_GAIN -- Acceleration Feedforward Gain

Type Axis Parameters

Description Feedforward gain feedbacked by acceleration, don’t support non-bus

servo.

60B2 pdo = (pulse speed change of axis in each period) * AFF_GAIN

Grammar VAR1=AFF_GAIN, AFF_GAIN = expression

Valid: use AFF_GAIN AXIS(axis) to set assigned axis.

Example Refer to SERVO

Instruction SERVO, D_GAIN, OV_GAIN, FE_LIMIT, FE_RANGE, I_GAIN, P_GAIN

SERVO—Closed-Loop Switch

Type Axis Parameters

Description Close loop switch setting

Value range: ON/OFF, default is OFF.

It is used as closed-loop control system together with P_GAIN, D_GAIN,

I_GIAN, OV_GAIN, VFF_GAIN commands, attention analog servo needs to

be used.

Attention:

1. ATYPE of ECAT bus suits to mode 66 and mode 67.

2. PID can be adjusted to the best according to actual situation only by

508

manual, it is recommended to bring load.

3. PID adjust reference

Grammar VAR1 = SERVO, SERVO = ON/OFF

Controller General

Example RAPIDSTOP(2)

WAITIDLE

TRIGGER 'trigger oscilloscope

BASE(0)

UNITS=1000

ACCEL=100

DECEL=100

SPEED=1000

CREEP=100

LSPEED=0

MERGE=0

SRAMP=0

DPOS=0

MPOS=0

FE_LIMIT=10 'max follow error limit range can be modified,

it will alarm when timeout

FE_RANGE=10 'follow error value when set alarm

P_GAIN AXIS(0)=100 'proportion gain, and it can use assigned axis method

D_GAIN=5 'integration gain

I_GAIN=1 'differential gain

OV_GAIN=0 'speed gain

VFF_GAIN=0 'feedforward gain

SERVO=ON 'open closed-loop control

BASE(0)

MOVE(5000)

WAITIDLE

SERVO AXIS(0)=OFF 'close closed-loop control, and can through

assigned axis, and it is recommended to close

after each time usage

DELAY(3000) 'stop detection after 3 seconds

DPOS(0)

MPOS(0)

END

Global curve is below, it can be seen DPOS and MPOS are adjusted to be

real-time synchronous through PID under closed-loop control.

509

Local curve:

Instruction

TRANS_DPOS

Type Axis Status

Description reserved

510

Chapter XII Instructions Related to Input

and Output

12.1 Instructions Related to Input

IN--Inputs

Type Input and output functions

Description Read inputs, return status of in0-31 if there is no parameter.

Read value is the status reversed by INVERT_IN.

IO channel number is related to dial-up switch configuration on expansion

module, start value is (16+dial-up value*16), EIO bus expansion IO uses

NODE_IO instruction, the value can only be a multiple of 8. See hardware

manual for reference.

Attention: IO mapped number should be over IO max NO. of controller

itself, and can not superpose with controller number.

Grammar IN([channel1],[channel2])

channel1 start input channel to read.

channel2 end input channel to read, return signal input status if

no this parameter.

Controller General

Example a=IN(1) 'read status of input 1

Instructions OP, INVERT_IN

AIN--Analog Input

Type Input and output functions

Description Read analog input, return scale value of AD conversion module.

12-bit scale range: 0~4095, mapped voltage: 0-10v.

16-bit scale range: 0~65536, mapped voltage: 0-10v.

ZAIO channel number is related to dial-up switch configuration on

expansion module, start value is (8+dial-up value*8), ZMIO bus IO

expansion AD uses NODE_IO instruction, the value can only be a multiple

of 8. See hardware manual for reference.

Attention: AIO mapped number should be over AIO max NO. of controller

itself, and can not superpose with controller number.

Grammar Var=AIN(channel)

channel analog input channels:0-127

511

Controller General

Example a=AIN(1) 'read AD value of channel 1.

a=AIN(1) *10 /4096 'voltage value of channel 1.

Instructions AOUT

ZSIMU_IN--Inputs Simulation

Type Simulator specialized instructions.

Description Simulate input of IN.

Grammar ZSIMU_IN[([ionum ,] value)]

ionum input NO., start from 0, return status of in0-31 if no this parameter

value output status

Controller General

Example ZSIMU_IN(0,1) 'input 0 is ON.

Instructions IN

ZSIMU_AIN--Analog Inputs Simulation

Type Simulator specialized instructions

Description Simulate analog input of IN.

Grammar ZSIMU_AIN(ionum, value)

Controller General

Example ZSIMU_AIN(0,1024) 'analog input 0

Instructions AIN

ZSIMU_ENCODER--Encoder Inputs Simulation

Type Simulator specialized instructions

Description Simulate input of encoder.

Grammar ZSIMU_IN(axis num, value)

axis num axis NO., start from 0

 value ENCODER simulation value

Controller General

Example ZSIMU_ENCODER(0,1024) 'ENCODER=1024

Instructions ENCODER

INVERT_IN--Reverse Inputs

Type Special instructions

Description Reverse inputs status, it can be checked if inputs were reversed.

512

Grammar INVERT_IN(channel, state); VAR1= INVERT_IN(channel)

channel: inputs channels

state: ON/OFF

Controller General

Example INVERT_IN(1,ON) 'it is valid when OFF in terms of special signal,

reverse input to avoid input is not valid when limit

signal comes.(except ECI series.)

FWD_IN(0)=1 'IN1 as positive position limit signal of axis 0.

Instructions IN

IN_SCAN--Scan Inputs Change Status

Type Input and output functions

Description Scan inputs change status, if returned value is 1(TURN), change

happened; if returned value is 0(FALSE), change did not happen.

This function must be used to scan the inputs cycle-by-cycle, returned value

is change status between two cycles. Status details can be checked through

IN_EVENT, read value is status reversed by INVERT_IN.

Only controller with firmware version above 20140214 is valid, scan range

has width limit.

ZMC00X series only is valid in single task.

Grammar VAR1=IN_SCAN([channel1][,channel2])

channel1: start channel to be read.

channel2: end input channel to be read, scan signal input status if no

this parameter.

Controller General

Example WHILE 1

IF IN_SCAN(0,23) THEN 'scan electric level change of IN0-23.

IF IN_EVENT (0) > 0 THEN 'triggered meet rising edge of IN0

 PRINT “IN0 UP”, IN_BUFF(0)

ELSELF IN_EVENT(0) < 0 THEN 'trigger falling edge of IN0

 PRINT “IN0 DOWN”, IN_BUFF(0)

ENDIF

ENDIF

WEND

Instructions IN_EVENT, SCAN_EVENT, IN_BUFF

IN_EVENT--Read Input Change

Type Input and output functions

Description Read inputs change details.

513

1-rising edge. -1-falling edge, 0-no change

This function should be used with IN_SCAN together.

Grammar VAR1 = IN_EVENT(IONUM)

Controller General

Example See IN_SCAN

Instructions IN_SCAN, SCAN_EVENT

SCAN_EVENT--Check Change

Type Input and output functions

Description Check change status of expressions.

1:off- on, -1:on-off, 0:no change.

Don’t call the same SCAN_EVENT of SUB in the cycle or the multi-task.

Valid in controller with firmware version above 150810, or use IN_EVENT

and IN_SCAN instead.

Grammar ret = SCAN_EVENT (expression)

expression any valid expression, result will become BOOL Type.

Controller General

Example Example One: Scan inputs signals

WHILE 1

IF SCAN_EVENT(IN(0))>0 THEN 'trigger rising edge of IN0

 PRINT “IN0 ON”

ELSELF SCAN_EVENT(IN(0))<0 THEN 'trigger falling edge of IN0

PRINT “IN0 OFF”

ENDIF

WEND

Example Two: Scan register, variables

WHILE 1

IF SCAN_EVENT(TABLE(0))>0 THEN

'trigger rising edge of TABLE0

 PRINT “TABLE0 ON”

ELSELF SCAN_EVENT(TABLE (0))<0 THEN

'trigger falling edge of TABLE0

PRINT “TABLE0 OFF”

ENDIF

WEND

Operate table(0) online, and print results.

Instructions IN_SCAN, IN_EVENT

IN_BUFF--Read Inputs Buffer

Type Input and output functions

514

Description Read present inputs scanned by IN_SCAN, return status of in0-31 if no

parameters.

Read value is status reversed by INVERT_IN.

Grammar IN_BUFF([channel1],[channel2])

channel1: start channel to be read, which must be inputs range of

IN_SCAN.

channel2: last channel to be read, return single input status if no last

channel input

Controller General

Example See IN_SCAN

Instructions IN_SCAN

INFILTER—Input Filter

Type System Parameter

Description

Local input filter parameter.

The bigger value is, the longer filtering time will last, value is:2-9, default is

2.

Grammar VAR1 = INFILTER, INFILTER= expression

Controller General

Example INFILTER= 5 'increase the filtering time when there is terrible interruption.

IN_SMFILTER – Set IN Filter

Type Special Command

Description Set the filter for one single input.

Grammar

IN_MSFILTER (channel, timems), VAR1=IN_MSFILTER (channel)

 channel: input channel

 timems: the filtering time, the unit is ms, and the precision only can

reach system period, up to >200 periods, the default value is 0.

Controller Valid in 5xx series and the firmware version is above 20230808.

Example IN_MSFILTER (0,5) 'set IN0 as the filter, the filtering time is 5ms

12.2 Instructions Related to Output

OP--Outputs

Type Input and output instructions and functions

Description Out or read outputs status

515

When it is used in expression, it is regarded as function grammar

automatically.

IO channel number of ZIO expansion board is related to dial-up code switch

configuration, start value is (16+dial-up value*16), EIO bus expansion IO

uses NODE_IO instruction, the value can only be a multiple of 8. see

hardware manual for reference.

Attention: IO mapped number should be over IO max NO. of controller

itself, and can not superpose with controller number.

Maximum operation output port number is 32.

Grammar OP([ionum],value)

or OP(ionum1, ionum2,value[,mask])

OP([firstnum[,[finalnum])

ionum: output number, starts from 0

value: output status, define multi-port status as bit when operating

multiple outputs.

ionum1: the first channel to be operated

ionum2: the last channel to be operated

mask: it is used to assign IOs to be operated, the first and the last c

channels both are operated when it is not filled.

firstnum: output number, starts from 0.

finalnum: output number, starts from 0, it reads single output status if

this parameter is not filled.

Controller General

Example Example 1: single operation

'reverse output 0

IF OP (0) = ON THEN

OP (0,OFF)

ELSE

 OP (0,ON)

ENDIF

Example 2: regional operation

OP(0,7,$FF) 'bit0-bit7 full open

DELAY(1000)

OP(0,7,0)

OP(8,15,$FF) 'bit8-bit15 full open

DELAY(1000)

OP(8,15,0)

OP(0,15,$FFFF) 'bit0-bit15 full open

DELAY(1000)

OP(0,15,0)

OP(0,31,$FFFFFFFF) 'bit0-bit31 full open

DELAY(1000)

516

OP(0,31,0)

Instructions READ_OP,MOVE_OP

AOUT--Analog Output

Type Input and output instructions and functions

Description Analog channel output:

12-bit scale range: 0~4095, mapped voltage: 0-10v.

16-bit scale range: 0~65536, mapped voltage: 0-10v.

AOUT(2) relates to parallel port 0~255, which is used to set the power of

laser, such as, valid in ZMC408SCAN and 504SCAN.

Grammar AOUT(channel) = value

channel analog output channels:0-63

DA channel number is related to dial-up switch configuration on expansion

module, start value is (4+dial-up value*4), see hardware manual for

reference.

Controller General

Example AOUT(1) = 0 'close output DA channel 1.

AOUT(1) = 4095 'DA1 output voltage is 10V.

Instructions AIN

READ_OP--Read Outputs

Type Input and output functions

Description Read outputs status.

Same as OP, output as per bits in terms of multi-output operation.

Grammar READ_OP ([firstnum[,[finalnum])

firstnum first output number, starts from 0.

 finalnum last output number, starts from 0, it reads single output

status if no this parameter

Controller General

Example 'reverse output 0

IF READ_OP (0) = ON THEN

OP (0, OFF)

ELSE

 OP (0, ON)

ENDIF

Instructions OP

517

EXIO_DIR – Configure EXIO Interface

Type Input and output functions

Description Assign inputs and outputs of EXIO expansion interface as per bit, and

it needs to be used together with customized adapter board.

Use Fiber adapter board IO configuration instruction “EXIO_DIR(0,

$8FFFF), YAG adapter board IO configuration instruction “EXIO_DIR(0,

$FCBFE) and SPI adapter board IO configuration instruction

“EXIO_DIR(0, $FFFFA).

Grammar Command grammar: Exio_Dir(isel, idirbit)

Function grammar: Exio_Dir(isel)

 isel: Exio selection, fix 0 currently

 idirbit: assign inputs and outputs as per bit, 1–output, 0–input (default)

Controller ZMC408SCAN

Example EXIO_DIR(0, $8FFFF) 'Fiber adapter board

Instructions OP

12.3 Position Comparison Output Instructions

PSWITCH--Position Comparison by Software

Type Inputs and Outputs Instructions

Description Operate outputs based on result of position comparison.

If more than one PSWITCH are mapped to the same output, then relevant

comparers should be arranged in order.

For pulse type motor, when ATYPE=4, it is the MPOS. Default

ATYPE=1/7, it’s DPOS.

Grammar PSWITCH(num,enable,[,axis,op num,op state,set pos,reset pos])

num: comparer NO., ZM1XX has 16 comparers, NO.:0-15.

enable: enable comparers, ON-Start, OFF-Cancel.

 axis: axis NO. which position is required.

 op num: IOs to be operated.

op state: output status, 1-output is ON in followed position range, 0

output is OFF in followed position range.

set pos: set start position that output activates. Unit is units.

 reset pos: set position that output reset. Unit is units.

Different controllers support different comparison numbers, use ?*max to

print and check max_pswitch parameters to determine the number.

Controller General

518

Example RAPIDSTOP(2)

WAIT IDLE

DELAY(1000)

ERRSWITCH = 3

BASE(0,1) 'select axis NO.

ATYPE=1,1 'pulse type stepper or servo

DPOS = 0,0

UNITS = 1,1 'pulse amount

SPEED = 10000,10000

ACCEL=SPEED(0)*10,SPEED(1)*10

DECEL=SPEED(0)*10,SPEED(1)*10

REP_OPTION=1,1 'set coordinate cycle range: 0 ~ +REP_DIST

REP_DIST=1000,1000

TRIGGER

MOVE(10000,8000)

PSWITCH(0,ON,0,0,ON,500,520)

PSWITCH(1,ON,1,1,ON,300,400)

END

DPOS(0) vertical scale 1000, no offset

MSPEED(0) vertical scale 10000, no offset

OP(0) vertical scale 1, no offset

DPOS(0) vertical scale 2000, offset -2000

MSPEED(0) vertical scale 10000, offset -10000

OP(0) vertical scale 1, offset -1

As former example, just modify some instruction as follow:

REP_OPTION=0,0

'set coordinate cycle range: -REP_DIST~+REP_DIST

DPOS(0) vertical scale 1000, no offset

519

MSPEED(0) vertical scale 10000, no offset

OP(0) vertical scale 1, no offset

DPOS(0) vertical scale 2000, offset -2000

MSPEED(0) vertical scale 10000, offset -10000

OP(0) vertical scale 5, offset -1

Instructions HW_PSWITCH

HW_PSWITCH—Hardware Position Comparison Output

Type Axis Instructions

Description Position Comparison Output by hardware, different axes are mapped

to different outputs.

Default mapping relationship: axis 0-5 are mapped to output 0,1,2,3,0,1.

There are totally 4 hardware comparison outputs.

Two HW_PSWITCH can be called continuously, and the number of called

instructions can be gained by related functions.

Each compare point is triggered, present output electrical level will be

reversed.

HW busffers are 1024, totally 1024 HW instrutions can be called

continuously.

After HW instrution is called, it won’t be affected by followed coordinate

change caused by related functions, coordinate saved in TABLE should be

correct, it is better to modify coordinate by manual, and try to avoid conflict

between HW instrution and change caused by auto coordinate

cycle(REP_OPTION) .

Since coordinate is not determined by procedure in auto coordinate cycle

520

mode, not able to confirm if HW is before or after the coordinate, so

coordinate in TABLE can also not be confirmed.

This instruction only supports pulse axis hardware position comparison

output, use HW_PSWITCH2 in fieldbus axis.

For pulse type motor, when ATYPE=4, it is the MPOS. Default

ATYPE=1/7, it’s DPOS.

Grammar HW_PSWITCH(mode, direction, reserve, tablestart, tableend)

Buff=HW_PSWITCH([axisnum])

mode: 1-start comparer, 2-stop and delete comparer that’s not finished

direction: 0-negative direction of coordinate, 1-positive direction

of coordinate, 2-no direction.

reserve: reserved

tablestart: TABLE NO. that saves first comparison coordinate.

tableend : TABLE NO. that saves last comparison coordinate.

If not compare all points, mode must be set as 2, stop and delete those

compare points through HW_PSWITCH(2) instruction, or will cause

abnormal work of output channel.

Controller ZMC4XX series or above, with firmware version above 20170704.

ZMC420SCAN doesn’t support HW_PSWTICH.

Example Testing environment as follow:

ZMC432, firmware: 20170709 (the simulator can not run this instruction)

BASE(0) 'select axis 0 to output OP(0) by default

ATYPE=4 'encoder position as comparison output reference, if no

encoder, use pulse type

UNITS=100

SPEED=100

ACCEL=500

MPOS=0

OP(0,OFF)

TABLE(0,100,150,250,300,400,450)

'MPOS100-150: OP0 opens, MPOS150-250: OP0 closes, MPOS250-

300: OP0 opens, MPOS300-400: OP0 closes, MPOS400-450: OP0

opens, MPOS after 450: OP0 closes.

HW_PSWITCH(2) 'stop and cancel those comparison points not be

compared completely.

HW_PSWITCH(1, 1, 0, 0, 5) 'start comparison output

TRIGGER

MOVEABS(500)

Comparison Output Curve:

MPOS(0)=200(vertical scale)

OP(0)=2(vertical scale)

521

Instructions PSWITCH, HW_PSWITCH2

HW_TIMER--Hardware Timing

Type Special Instructions

Description Hardware timer is used to restore electric level after hardware

comparison output for a certain time.

Recommendation: don’t exceed 100ms.

Note:

There is only 1 HW_TIMER for the controller that is without independent

HW. And each calling will stop former calls compulsively. For HW

independent controller, each HWOP has one HW_TIMER.

The function HW_TIMER of ZMC420SCAN’s every output port is

independent.

When HW_TIMER is not used, please use mode 0 to stop, otherwise, it is

ON continuously, then behind comparison output may be affected.

Use mode 2 firstly to open hardware timer, then other modes can be used to

modify.

Galvanometer controllers with firmware version above 20170709 support

this function.

OP and MOVE_OP can close HW_TIMER pulse that is operating, which

means HW_TIMER can be used as PWM, OP outputs, pulse output will be

ON, then next OP outputs, pulse output will be OFF. When use MOVE_OP

precision output, infinite pulse of precision PWM output can be realized.

Use ?*HW_TIMER to see the number of remaining pulses.

Grammar HW_TIMER(mode, cyclonetime, optime, reptimes, opstate, opnum)

done = HW_TIMER_DONE

mode 0-stop hardware timer, 1-modify parameters dynamically

(start the setting when no modification), 2-start (it can’t

start repeatedly), 3-stop hardware timer (similar to 0, but

522

this is for galvanometer controller), when current pulse

completed and no output, behind OP still trigger sending

pulses.

cyclonetime cycle time, us is the unit

optime valid time, us is the unit

reptimes repeat times, start mode, when reptimes=0, HW_TIMER

will be softly closed, and continue to output remained

undone pulse. When it is -1, output infinitely, except

close it manually.

opstate output default status, start to do timing when output port

became non default status (initial status of output is OFF,

generally the parameter is set as OFF, so it starts to

timing when it is ON)

opnum outputs NO., the port must support hardware comparison

output.

Galvanometer controllers with firmware version above 20170710 add mode

3, like 0, it will not output after current pulse finished, but following OP still

trigger pulse. For mode 0, mode 0 stops, OP also can’t trigger, it must turn

on again.

Galvanometer controllers with firmware version above 20170710 add mode

1. Mode 1 supports modifying timer parameters dynamically after again

sending, but mode 1 can’t be used to turn on hardware timer, and it takes

effects when comparison in mode 2 is not completed. Mode 2 can’t be

turned on repeatedly.

ZMC420SCAN 221017 adds mode 4, namely, pulse duty changing

function, it is used together with mode 1 / 2.

HW_TIMER(mode4, [trigremaintime,][changetimes][changeonetick],

reverse, opnum)

 trigremaintine: start to adjust the width of pulse when remaining one

certain number of pulses, attention the first pulse doesn’t change, 0 means

no to use

523

 changetiems: the number of changed pulses

 changeonetick: the width change of each pulse, the unit is us, it can be

negative.

 reverse: reverse, set as 0

 opnum: output number, the port must support hardware comparison

output

Note: please set suitable pulse width when mode 4 is applied, if the pulse

width that is accumulated exceeds the period, it can’t output normally.

When mode 4 is not used, set the parameter 2-4 as 0, otherwise, it will take

effect next time.

Controller Valid in some ZMC3XX, ZMC4XX series and above controllers with

firmware version 20170704 and above.

Example Testing: ZMC420SCAN. firmware: 221017(simulator can’t run this

instruction)

For show waveform intuitively, set a bigger period.

Example 1: mode 2, output pulse in cycle

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

HW_TIMER(0, 1000000, 500000, 2, OFF, 0) ‘mode 0 stops hardware timer

TRIGGER

OP(0, OFF)

HW_TIMER(2, 1000000, 500000, 2, OFF, 0)

'when 0 turn to ON, hardware timer trigger START

to do timing, arrive 500ms, then turn to OFF.

OP(0, ON)

Running effect: set 1000ms as period, output two periods, before 500ms of

every period start, then later half period close.

Example 2: mode 1, output pulses in cycle. When mode 2 is turned on,

524

use mode 1 to modify dynamically.

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

OP(0, OFF)

TRIGGER

HW_TIMER(2, 1000000, 600000, 10, OFF, 0)

'when output 0 turn to ON, hardware timer trigger

START to do timing, arrive 500ms, then turn to OFF.

OP(0, ON)

DELAY(2500) 'mode 1 takes effect after 2.5s, modify timing time,

the time can’t be too long, if the comparison in

mode 2 completed, mode 1 can’t take effect

HW_TIMER(1, 1000000, 200000, 5, OFF, 0) 'modify dynamically

Mode 1 can modify the former timing time (the former can be set as mode 1

or mode 2), if this is changed into mode 2, there is no action for OP when

mode 2 is scanned next time.

Example 3: mode 3, following OPs also can trigger when output stops

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

OP(0, OFF)

TRIGGER

HW_TIMER(2, 1000000, 400000, 10, OFF, 0)

'when output 0 turn to ON, hardware timer trigger

525

START to do timing, arrive 400ms, then turn to OFF.

OP(0, ON)

DELAY(3000) 'close output after delay 3s

HW_TIMER(3, 1000000, 400000, 10, OFF, 0)

OP turns on, mode 2 outputs pulses normally, mode 3 take effects after 3s.

stop output, turn on OP trigger HW again, then it can continue to output 10

times (the arrow is the moment when the OP triggers again)

If mode 0 is used this time, open OP after stop, HW can’t be triggered, it

needs to rescan HW command.

Example 4:

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

OP(0, OFF)

TRIGGER

HW_TIMER(2, 2000000, 200000, 10, OFF, 0)

'when output 0 turn to ON, hardware timer trigger

START to do timing, set period as 2s, arrive 200ms,

then turn to OFF.

OP(0, ON)

HW_TIMER(4, 6, 3, 300000, OFF, 0)

'mode 4 is used to control width of some pulses

HW_TIMER(4, 0, 0, 0, OFF, 0) 'comparison completed, close mode 4

See below image: 10 pulses are generated under mode 2, and mode 4 takes

effect after the reciprocal sixth pulse (because the first one does not change,

then the reciprocal sixth has no change, the reciprocal fifth starts to act), it

continuously controls 3 pulse widths, and each pulse accumulates 300ms as

526

sequence, then fix width output.

Instructions HW_PSWITCH2

HW_PSWITCH2 -- Bus Hardware Position Comparison

OUT

Type Axis Instructions

Description Fieldbus position comparison output by hardware, it also supports

pulse axis, but it must use assigned outputs.

There are 4 comparison outputs for ZMC4XX series, choose different

outputs as per requirements. Usually, OUT 0/1/2/3 outputs.

If the comparison master axis is attached with encoder input, encoder

position will be as comparison position automatically, and accurate output

time can be adjusted through MOVEOP_DELAY.

Different fieldbus drives have different performance, also it can use

MOVEOP_DELAY to adjust.

HW_PSWITCH2 and MOVE_OP are based on same hardware resources, it

is not recommended to call them together in one channel, it can be used in

different channels.

One comparison can only be done in every system period, see system period

by SERVO_PERIOD.

Don’t change position data in TABLE before comparison is totally finished.

Both pulse axis and fieldbus axis support this instruction.

For pulse type motor, when ATYPE=4, it is the MPOS. Default ATYPE=1/7,

it’s DPOS.

Grammar Command Grammar: HW_PSWITCH2(mode, [...])

Function Grammar: Buff =HW_PSWITCH2([axisnum])

Mode=1:single axis comparison

HW_PSWITCH2(1,opnum,opstate,tablestart,tableend[,Direction])

mode: 1-start comparer

 opnum: relevant outputs

opstate: output status of the first comparson position

tablestart: TABLE number that saves the first absolute comparison

coordinate

tablesend: TABLE number that saves the last absolute comparison

527

coordinate

direction: the first coordinate to judge direction, 0-Negative, 1-

Positive,-1-no direction

Description: comparison point is written into TABLE, and it will reverse

once when reach one comparison position OP.

Mode=2:clear comparison position

HW_PSWITCH2(2)

mode: 2 means stop and delete all comparison positions that are

not finished.

Description: if HW_PSWITCH2 doesn’t compare all positions, mode must

be set as 2, and stop and delete those uncompleted positions through

HW_PSWITCH2(2), otherwise, this output channel will work abnormally

later.

In vector compare mode, comparison is between VECTOR_MOVED and

set positon, it is recommended to set an initial value of VECTOR_MOVED.

Mode=3:vector compare mode

HW_PSWITCH2(3,opnum,opstate,tablestart,tableend)

mode: 3-start comparer

 opnum: relevant outputs

opstate: output status of the first comparson position

tablestart: TABLE number that saves the first absolute comparison

coordinate

tablesend: TABLE number that saves the last absolute comparison

coordinate

Description: compare coordinate is filled in TABLE, OP will reverse once

when reach one compare vector position.

528

Mode=4:vector compare mode, single comparison position.

HW_PSWITCH2(4,opnum,opstate,vectstart)

mode: 4-start comparer

 opnum: relevant outputs

opstate: output status of the first comparson position

vectstart: absolute coordinate of comparison position

Description: achieve one compare vector position set by sommand, OP

reverse, compare ends.

Mode=5: Vector compare mode, cycle pulse mode.

HW_PSWITCH2(5,opnum,opstate,vectstart,repes,cycledis,ondis)

mode: 5-start comparer

 opnum: relevant outputs

opstate: output status of the first comparson position.

vectstart: compare point VECTOR_MOVED current motion

distance

repes: repeat period, two times of comparison will be done in a

period, output valid status first, then output invalid status.

cycledis: period distance, output opstate every time after cycledis,

output recovers to invalid status after ondis.

529

ondis: distance that output valid status, (cycledis-ondis) is distance

of invalid status.

Description: this mode doesn’t need TABLE, and coordinates refer to vector

coordinates, start to compare from vectstart, and compare once for each

cycledis span, period is compared repeatedly is called repes, and after

comparison signal is triggered each time, keep ondis distance, then close the

signal to wait for next period.

Mode=6 :vector compare mode, cycle mode, it is used together with

HW_TIMER

HW_PSWITCH2(6,opnum,opstate,vectstart,repes,cycledis)

mode: 6-start comparer

 opnum: relevant outputs

opstate: output status of the first comparson position

vectstart: compare point VECTOR_MOVED current motion

distance

repes: repeat period, two times of comparison will be done in a

period, output valid status first, then output invalid status.

cycledis: period distance, output opstate every time after cycledis,

output recovers to invalid status after ondis.

Description: this mode doesn’t need TABLE, and coordinates refer to vector

coordinates, start to compare from vectstart, and compare once for each

cycledis span, period is compared repeatedly is called repes, and after

comparison signal is triggered each time, pulse width of hold signal is set

through HW_TIMER, and HW_TIMER can reverse OP several times when

reach one trigger point, after HW_TIMER period moved, wait for next

period.

530

Mode=7 : it is used together with HW_TIMER

HW_PSWITCH2(7, opnum, opstate, tablestart, tableend [, optimeus,

optimes, cyctimeus])

Mode: 7-start comparer, opstate not overturn, used togther with

HW_TIMER.

Opnum: relevant ouputs

Opstate: output status of first comparison position

Tablestart: TABLE NO. that saves first comparison point

VECTOR_MOVED coordinate

Tableend: TABLE NO. that saves last comparison point

VECTOR_MOVED coordinate

[when used togther with hwtimer, it can adjust hwtimer parameters

dynamically]

Optimeus: adjust HW_TIMER valid time dynamically.

Optimes: adjust HW_TIMER pulse amount dynamically, 0-not ouput

Cyctimeus: adjust HW_TIMER pulse period time dynamically

Description: compare point is entered into TABLE, and coordinates refer to

vector coordinates, OP will be triggered when reach one TABEL compare

vector position each time, now, pulse width of OP and compare times

triggered each time are controlled by HW_TIMER. Next TABLE position is

reached, OP will be triggered again.

531

2D, 3D compare mode as follow:

ZMC4XX series with firmware version 170706 or above support, and it

must move in sequence to pass the point “fifo”.

2D compare: 25, 26, save one point in every two table

3D compare: 35, 36, save one point in every three table

Compare multi-point, output overturn status every time.

HW_PSWITCH2(25, opnum, opstate, maxerr, num, tablepos)

HW_PSWITCH2(26, opnum, opstate, maxerr, num, tablepos, [ophwtimeus,

ophwtimes, hwcyctimeus])

HW_PSWITCH2(35, opnum, opstate, maxerr, num, tablepos)

HW_PSWITCH2(36, opnum, opstate, maxerr, num, tablepos, [ophwtimeus,

ophwtimes, hwcyctimeus])

Parameters：

mode: 25,26,35,36 multi-dimension compare mode

opnum: relevant outputs

opstate: output status of first comparison position

maxerr: compare the pulse deviation of each axis left and right

position, when in the deviation range, start comparison.

num: comparison position numbers saved in the table

tablepos: TABLE NO. that saves first absolute comparison coordinate

 [when used together with hwtimer, can adjust hwtimer parameters

dynamically.]

ophwtimeus: pulse time

ophwtimes: pulse numbers

hwcyctimeus: pulse period

Note: under this mode, deviation paremeter maxerr can’t be written 0.

Mode = 8: single-axis comparison, same as mode 1, but it will not invert

the signal

532

HW_PSWITCH2 mode 1 and mode 8 can be used together with

HW_TIMER command, but for mode 8, it is mainly used in single-axis fly

photoing (each position is triggered by one certain time).

Command Specifc Usage Range :

HW_PSWITCH2 – Mode 1 & HW_TIMER: span one position, trigger

once.

HW_PSWITCH2 – Mode 8 & HW_TIMER: every position, trigger once.

Pulse axis, bus axis, and virtual axis are OK.

Mode = 25: 2D comparison

HW_PSWITCH2(25, opnum, opstate, maxerr, num, tablepos)

Description: comparison point is written into TABLE, two consecutive

TABLE datas compose of one 2D coordinate, and OP reverse once time

when reached one comparison position.

Below is the example, blue segment means OP is ON, all kinds of

common used interpolation motions support comparison, please pay

attention the coordinate of compare point must be accurate, otherwise,

following comparison positions will be affected.

Mode = 26: 2D compare, reused together with HW_TIMER.

HW_PSWITCH2(26, opnum, opstate, maxerr, num, tablepos, [ophwtimeus,

ophwtimes, hwcyctimeus])

Description: comparison point is written into TABLE, two consecutive

TABLE datas compose of one 2D coordinate, OP will be triggered once

when reached one comparison position, and the OP reverse times of each

compare point and reverse period are set through HW_TIMER. When

reached next TABLE, OP will be triggered again. It is simliar with mode 7

and mode 36.

533

Mode = 35: 3D compare

HW_PSWITCH2(35, opnum, opstate, maxerr, num, tablepos)

Description: comparison point is written into TABLE, three consecutive

TABLE datas compose of one 3D coordinate, and OP reverse once time

when reached one comparison position.

Below is the example, blue segment means OP is ON, all kinds of

common used interpolation motions support comparison, please pay

attention the coordinate of compare point must be accurate, otherwise,

following comparison positions will be affected.

Mode = 36, 3D compare, reused together with HW_TIMER.

HW_PSWITCH2(36, opnum, opstate, maxerr, num, tablepos, [ophwtimeus,

ophwtimes, hwcyctimeus])

Description: comparison point is written into TABLE, three consecutive

TABLE datas compose of one 3D coordinate, OP will be triggered once

when reached one comparison position, and the OP reverse times of each

compare point and reverse period are set through HW_TIMER. When

reached next TABLE, OP will be triggered again. It is simliar with mode 7

534

and mode 26.

Controller Some ZMC3XX, above ZMC4XX Series and ZMC4XX series with

firmware version above 20170704 supports.

Example Testing: ZMC432, firmware: 20170709(simulator can’t run this instruction.)

Example One: single axis comparison, mode = 1

Fieldbus enable process is omitted here, see sample: Fieldbus Initialization.

BASE(0)

DPOS=0

MPOS=0

OP(0,OFF)

TABLE(0,50,100,150,200) 'comparison coordinate

HW_PSWITCH2(2) 'stop and delete comparison that not finished.

HW_PSWITCH2(1, 0, 0, 0, 3,1) 'compare 4 positions, operate output 0.

TRIGGER 'trigger oscilloscope

MOVE(500)

Comparison output graph:

When moves to 50, open OUT0; when moves to 100, close OUT0; when

moves to 150, open OUT0, when moves to 200, close OUT0.

MPOS(0)=200(vertical scale)

OP(0)=2(vertical scale)

535

Example Two: vector compare mode, single axis comparison, mode = 3.

Fieldbus enable process is omitted here, see sample: Fieldbus Initialization.

BASE(0)

DPOS=0

MPOS=0

OP(0,OFF)

TABLE(0,50,100,150,200) 'comparison coordinate

VECTOR_MOVED=100 'set vector start position, it will affect compare

point

HW_PSWITCH2(2) 'stop and delete comparison that not finished.

HW_PSWITCH2(3,0,1,0,3,) 'compare 4 positions, operate output 0.

TRIGGER 'trigger oscilloscope

MOVE(300)

Comparison Output Graph:

MPOS(0)=200(vertical scale)

OP(0)=2(vertical scale)

It can be seen signal is operated starting from position 12 of example 1, it

only compared later 2 points. This mode compares MPOS (current position)

and VECTOR_MOVED (former distance) and set position to compare.

Example Three: mode = 3, vector multi-axis comparison mode, PSO

application of XY processed mode.

RAPIDSTOP(2)

536

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

ATYPE=1,1

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

SRAMP=100,100

DPOS=0,0

MPOS=0,0

OP(0,OFF)

TABLE(0,50,100,150,200) 'compare point coordinate configuration

VECTOR_MOVED=0 'set vector start position

HW_PSWITCH(2) 'stop and delete comparison that is not finished

HW_PSWITCH(3,0,1,0,3) 'compare 4 points, operate OUT0

TRIGGER 'trigger oscilloscope

MOVE(300,400)

END

Compare output: compare according to vector position resultantly

interpolated by axis X and axis Y.

VECTOR_MOVED(0) = 200 vertical scale

OP(0) = 2 vertical scale

Example Four: mode = 4, single point vector comparison

BASE(0)

DPOS=0

MPOS=0

OP(0,OFF)

VECTOR_MOVED(0) = 0 'set the current vector position

HW_PSWITCH(2) 'stop and delete comparison that is not finished

HW_PSWITCH2(4,0,1,100) 'open compare output, mode 4, output 0, the

first compare point outputs ON, start to

compare from vector position 100, and it

only compared once time.

537

TRIGGER 'trigger oscilloscope to sample

MOVEABS(200)

Compare output:

MPOS(0) = 100 (vertical scale)

OP(0) = 2(vertical scale)

Example Five: cycle compare mode, recover after distance.

Fieldbus enable process is omitted here, see sample: Fieldbus Initialization.

BASE(0)

DPOS=0

MPOS=0

OP(0,OFF)

VECTOR_MOVED=0 'set start position of vector as 0 for observing

HW_PSWITCH2(2) 'stop and delete comparison that not finished.

HW_PSWITCH2(5,0,1,100,3,150,50) 'start to compare at 100, all 3 times

cycle distance is 150, output valid

distance is 50

TRIGGER 'trigger oscilloscope

MOVE(500)

Comparison Output Graph:

Comparison starts at position 100, compare 3 times, first distance 50 output

is valid in one period, and followed distance 100 output is invalid.

MPOS(0)=200(vertical scale)

OP(0)=2(vertical scale)

538

Example Six: mode = 6, single axis cycle compare mode, time reset.

Fieldbus enable process is omitted here, see sample: Fieldbus Initialization.

BASE(0)

DPOS=0

MPOS=0

OP(0,OFF)

VECTOR_MOVED=0 'set start position of vector as 0 for observing

HW_PSWITCH2(2) 'stop and delete comparison that not finished.

HW_PSWITCH2(6,0,1,100,4,100) 'start to compare at 100, compare 4

times cycle distance of 100, output

valid time is determined by

HW_TIMER.

HW_TIMER(2,100000,50000,1,off,0) 'output is on, and after 50ms, it is off.

TRIGGER

MOVE(500)

Comparison Output Graph:

Comparison starts at position 100, compare 4 times. Turn to OFF 500ms

later after output is ON.

MPOS(0)=100(vertical scale)

OP(0)=2(vertical scale)

Example 7: mode = 6, multi-axis cycle comparison mode, time recover.

BASE(0,1)

DPOS=0,0

MPOS=0,0

OP(0,OFF)

TABLE(0,50,100,150,200) 'compare point coordinate configuration

VECTOR_MOVED=0 'set start position of vector as 0 for observing

HW_PSWITCH2(2) 'stop and delete comparison that not finished.

HW_PSWITCH2(6,0,1,100,4,100) 'start to compare at 100, compare 4

times cycle distance of 100, output

valid time is determined by

HW_TIMER.

539

HW_TIMER(2,100000,50000,1,off,0) 'output is on, and after 50ms, it is off.

TRIGGER

MOVE(300,400)

Comparison Output Graph:

Coordinates are resultant vector position of two axes, comparison starts at

position 100, compare 4 times. Turn to OFF 500ms later after output is ON.

VECTOR_MOVED(0) = 200 (vertical scale)

OP(0)=2(vertical scale)

MPOS(0)=200(vertical scale)

MPOS(1)=200(vertical scale)

Example 8: mode = 25, 2 dimensions hardware position comparison

output

BASE(0,1) 'select axis X and axis Y

UNITS=1000,1000

MPOS=100,100

SPEED=100,100

ACCEL=10000,10000

DECEL=10000,10000

'set the current position as point 0

MPOS=0,0

MPOS=0,0

'write XY coordinates of position comparison points to table 10~49 in

advance

TABLE(10, 10,0,12,0, 20,0,22,0, 30,0,32,0, 50,0,52,0, 52,10,52,12,

52,20,52,22, 52,30,52,32, 52,40,52,42, 52,50,52,52)

GLOBAL pointNum 'comparison numbers

pointNum = 20

GLOBAL startX, startY 'start point

startX=0

540

startY=0

GLOBAL midX, midY 'middle point

midX=52

midY=0

GLOBAL endX, endY 'end point

endX=52

endY=52

WHILE 1

 IF TABLE(0) = 1 THEN 'compare pulse position, not precision output

 WAIT IDLE

 ?“compare pulse position, not precision output”

 'set parameters

 SYSTEM_ZEST=1

 AXIS_ZEST=1,1

ELSEIF TABLE(0)=2 THEN 'compare pulse position, precision output

 WAIT IDLE

 ?“compare pulse position, precision output”

 'set parameters

 SYSTEM_ZEST=3

 AXIS_ZEST=3,3

ELSEIF TABLE(0)=3 THEN 'compare encoder position, not precision

output

 WAIT IDLE

 ?“compare encoder position, not precision output”

 'set parameters

 SYSTEM_ZEST=17

 AXIS_ZEST=17,17

ELSEIF TABLE(0)=4 THEN 'compare encoder position, precision

output

 WAIT IDLE

 ?“compare encoder position, precision output”

 'set parameters

 SYSTEM_ZEST=19

 AXIS_ZEST=19,19

 ENDIF

 IF TABLE(0)<>0 AND IDLE(0) = -1 THEN

 TABLE(0)=0

 ?“open”

 HW_PSWITCH2(2) 'clear all comparisons

 HW_PSIWTCH2(25,0,1,10,pointNum,10) 'write to compare,

541

operate OUT0

 WA 10

 TRIGGER 'open oscilloscope

 MOVEABS(startX, startY) 'start to move

MOVEABS(midX, midY)

MOVEABS(endX, endY)

 ENDIF

WEND

END

Compare output:

DPOS(0) = 50 (vertical scale)

DPOS(1) = 50 (vertical scale)

DPOS(0) = 5 (vertical scale)

For example 9: mode = 35, 3D hardware position comparison output

BASE(0,1,2)

DPOS=0,0,0 'set the current position as 0

MPOS=0,0,0

OP(0,OFF)

TABLE(0, 20,20,20, 40,40,40, 70,70,70, 100,100,100, 140,140,140,

180,180,180)

HW_PSWITCH2(2) 'stop and delete comparison points that are not finished

HW_PSWITCH2(35,0,1,10,6,0) 'start to compare and output, mode 35,

OUT0, the first compare point outputs

ON, pulse deviation 10, table address 0-

18, 6 coordinates.

TRIGGER 'trigger oscilloscope to sample

542

MOVEABS(200,200,200) 'move straight

Compare output:

MPOS(0) = 200 (vertical scale)

MPOS(1) = 200 (vertical scale)

MPOS(2) = 200 (vertical scale)

OP(0) = 2 (vertical scale)

Instructions MOVE_HWPSIWTCH2, PSWITCH, HW_PSWITCH,

MOVEOP_DELAY, REG_INPUTS

HW_MINTIME – HW Min Time Space

Type System Parameters

Description Set minimal time space of HW precison output (unit is millisecond)

HW_MINTIME should be bigger than pulse width of HW_TIMER,

and smaller than the minimal space.

543

Grammar HW_MINTIME(opnum)=expression

 opnum: output (OUT / OP) No., the port must support hardware

comparison output.

Controller Valid in special firmware.

Example HW_MINTIME (1) = 1 ‘1ms at least between former one HW output and

behind one HW output for OP 1

Instructions HW_PSWITCH2, HW_TIMER

HW_PS2AXISNUM—Set PS2 Axis Number

Type Axis Instructions

Description Set HW_PSWITCH2 axis NO. to be actually operated, the default value -1

means not modify.

Used to reuse HW_PSWITCH2 buffer of axis that is not operated,

indicating current motion main axis, and it can do multi-comparison for

current main axis.

Grammar HW_PS2AXISNUM(axisnum1)=axisnum2

axisnum1：buffer axis NO.

axisnum2：axis NO. to be actually operated

544

Controller Valid in 4 series with firmware version above 170705.

Example Testing: ZMC432, firmware: 20170709(simulator can’t run this instruction.)

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

ATYPE=1,1

UNITS=100,100

SPEED=100,100

ACCEL=500,500

DPOS=0,0

TRIGGER

OP(0, OFF)

OP(1, OFF)

HW_PS2AXISNUM(1)=0 'use axis 1 buffer, compare axis 0 position

VECTOR_MOVED =0

TABLE(0,50,100,150,200) 'set the first comparison coordinate

TABLE(10,30,80,150,220) 'set the first comparison coordinate

HW_PSWITCH2(1, 0, 1, 0, 3,1) 'the first comparison

HW_PSWITCH2(1, 1, 1, 10, 13,1) AXIS(1) 'the second comparison, use

axis 1 comparison buffer,

but compare axis 0 position

actually.

MOVE(300)

WAITIDLE(0)

HW_PS2AXISNUM(1)=-1 'cancel

END

Instructions HW_PSWITCH2

545

HW_PS2COUNTS—PS Comparison Numbers

Type Axis status

Description HW_PSWITCH2 instruction means the number of compared points actually,

when it is HW_PSWITCH2(2), clear as 0.

Grammar VAL = HW_PS2COUNTS (axisnum)

 axisnum: axis No.

Controller ZMC4XX series controller with firmware version above 170706 supports.

Example Testing: ZMC432 Firmware: 20170711(simulator can’t run this instruction)

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

MPOS=0

OP(0,OFF)

TABLE(0,50,100,150,200) 'set comparison coordinate

HW_PSWITCH2(2) 'stop and delete comparison that not finished

HW_PSWITCH2(1, 0, 1, 0, 3,1) 'compare 4 points, operate output0

TRIGGER 'trigger oscilloscope

MOVE(300)

?HW_PS2COUNTS 'print 0, not arrive comparison point

WAIT IDLE(0)

?HW_PS2COUNTS 'print 4, compared 4 points

END

Instruction HW_PSWITCH2

546

12.4 PWM Control Instructions

PWM_FREQ--PWM Frequency

Type PWM control functions

Description PWM frequency setting or reading.

When set duty cycle as 0, PWM can be closed, PWM frequency as 0, it still

opens. Don’t set frequency as 0, PWM frequency must be modified before

PWM switch.

Grammar PWM_FREQ (index, freq) or PWM_FREQ (index)=freq

index PWM output NO., start from 0

 freq frequency, hardware PWM is 1M, software PWM is 2k

Controller Controllers that support PWM

Example PWM_FREQ (0)=1000 ‘frequency is 1K

?PWM_FREQ (0)

Instructions PWM_DUTY, MOVE_PWM

PWM_DUTY--Duty Cycle of PWM

Type PWM control functions

Description PWM duty cycle setting or reading.

When set duty cycle as 0, PWM can be closed, PWM frequency as 0, it still

opens. Don’t set frequency as 0, PWM frequency must be modified before

PWM switch.

Duty cycle means the ratio of valid electric level to whole period.

In one period, output valid electric level first, then output invalid electric

level.

PWM actual output is controlled by outputs, so should open outputs, then

PWM can output successfully, or will be shielded. Realize first pulse

restrain function of laser power supply, first to open PWM function, then

open outputs.

Grammar PWM_DUTY(index, duty) or PWM_DUTY(index)=duty

index: PWM output NO., starts from 0

 duty: duty cycle value: 0-1, when it is set as 0, then PWM closes.

Controller Controllers that support PWM

Example PWM_DUTY(0)=0.5

547

?PWM_DUTY(0)

Print result: 0.5

Instructions PWM_FREQ, MOVE_PWM

12.5 Buzzer Control Commands

SPEAKOUT – Buzzer Control

Type PWM control functions

Description Control the buzzer to speak out.

Grammar SPEAKOUT (timems, [freq], [duty])

timems: how long the buzzer sound lasts, the unit is ms.

freq: frequency

duty: duty cycle

frequency and duty cycle are usually set as invalid.

Controller General

Example SPEAKOUT (5000) ‘the buzzer sounds 5s.

548

Chapter XIII Instructions Related to

Communication

13.1 Serial Communication Instructions

SETCOM -- Serial Port Configuration

Type System Instructions

Description Serial port configuration

When controller restart after powered off, parameters of SETCOM will

restore as default value, please add SETCOM setting at beginning of

procedure.

ZMC00X series don’t suport MODBUS communication as master.

Generally, to switch RS485 station No., please add one delay.

Grammar SETCOM(baudrate,databits,stopbits,parity,port[,mode][,variable][,timeout])

baudrate: baudrate: 9600 19200 4800 115200 38400(default) 57600

databits: data bit: 8

stopbits: stop bit: 0/1/2

parity: verify or not：

Value Description

0 (default) No verification

1 Verified while odd

2 Verified while even

port: serial PORT number: 0-1. see PORT as reference, it differs

from controller modes

mode: protocol：

value Description

0 RAW data mode, no protocol, at this time, use

GET, PRITNT # to transfer data.

4 (default) MODBUS Slave (16 bits integer）

14 MODBUS Master（16 bits integer)

15 Direct command mode, it can input character

string directly through serial port (use line feed to

make an end)

variable: choose registor type, 0-VR, 1-TABLE, 2-MODBUS

register in system.

value Description

0 VR, one VR is mapped to one MODBUS_REG in

this situation.

VR is 32 bits float type, REG is 16 bits integer

549

type, when VR type value was transmitted to REG

type, the decimal part will get lost. if the VR data

exceeds positive or minus 15 bits, then the REG

data will change.

No loss will happen if REG was transmitted to VR.

1 TABLE, one table is mapped to MODBUS_REG.

(it is not recommended).

Table is 32 bits float type, REG is 16 bits integer

type, when TAVLE type value was transmitted to

REG type, the decimal part will get lost. If the VR

data exceeds positive or minus 15 bits, then the

REG data will change.

No loss will happen if REG was transmitted to

TABLE.

2 (default) MODBUS in system, VR and MODBUS both

belong to two independent registor areas in this

situation.

3 VR_INT mode, one VR_INT is mapped to two

MODBUS_REG in this situation.

timeout: this parameter takes effect when MODBUS slave station.

Timeout means frame the longest delay time (millsecond

ms), for old firmware, the dafault value is 800ms. When

the delay time is set too small for some touch screens, it

will cause error and it can’t be recovered. Therefore, set

this value according to different touch screens. This is

added in ZMC4XX series controllers firmware version

20190203. Check and view through ?*SETCOM. If this

parameter is shown, which means it supports.

 variable parameter is a kind of global configuration, all ports share one.

 When registor is set as VR or TABLE, general outputs will be mapped

to MODBUS_BIT(0), and general inputs will be mapped to

MODBUS_BIT(1000), it is not recommended to use MODBUS_BIT as

HMI button in this situation.

 When register is set as VR or TABLE, outputs and inputs that are not

used will connect together.

Controller General

Example Example one: mode0, RAW mode

DIM char1 'define the variable

SETCOM(38400,8,1,0,0,0) 'configured as RAM mode.

WHILE 1

GET #0, char1 'save the character sent to channal 0 in char1

 PRINT char1 'print the character received from channal 0 in

ASCII code.

550

 PUTCHAR #0, char1 'send the received character back.

WEND

See related samples in ChapterⅩⅢ for reference of encoder read and write

of Panasonic A6

Example two: MODBUS communication configuration

SETCOM(38400,8,1,0,0,4,2) 'set serial port 0 as MODBUS slave,

baudrate is 38400.

SETCOM(38400,8,1,0,1,14,2,1000) 'set serial port 1 as MODBUS master,

baudrate is 38400.

See sample procedure of MODBUSM_DES as reference.

Example three: direct character command mode.

setcom(38400,8,1,0,0,15) 'set serial port 0 as direct character

command mode

At this time, directly send related commands to operate the controller in

serial port debugging help or other devices.

Before sending:

UNITS=10000

After sending:

UNITS=100

Example four: register mode0

VR(0)=0 'initialize VR(0) and REG(0) as 0

MODBUS_REG(0)=0

SETCOM(38400,8,1,0,0,4,0) 'map VR to MODBUS_REG

VR(0)=100.345 'set VR(0) as100.345

?MODBUS_REG(0) 'print result is 100, since VR is already

mapped to REG, reg is integer type, so

the fractional part is missed

MODBUS_REG(0)=200 'set REG(0) as 200

?VR(0) 'print result is 200, VR also will change as

per the REG

Example five: register mode 2

VR(0)=0 'initialize VR(0) and REG(0) as 0

MODBUS_REG(0)=0

SETCOM(38400, 8,1,0,0,4,2) 'set VR and MODBUS_REG as

independent.

VR(0)=100.345 'set VR(0) as100.345

?MODBUS_REG(0) 'print result is 0, no relation between VR

and REG

551

MODBUS_REG(0)=200 'set REG(0) as 200

?VR(0) 'print result is 100.345, no relation between

VR and REG

Instructions ADDRESS, PROTOCOL, MODBUSM_DES, PORT

ADDRESS--Controller Station NO.

Type System Parameters

Description MODBUS Protocol based station NO. of all controller serial ports is :1-

255. Default value is 1.

Grammar ADDRESS = value

Controller General

Example Print ADDRESS 'print protocol station NO.

Result: 1

Instructions SETCOM, PORT, PROTOCOL

COM_UNUSED—Assign Serial Port

Type System parameters

Description Whether assigned serial ports as per bit are used or not by ZBASIC.

Bit0: serial port 1, value as 1 means not use ZBASIC

Bit1: serial port 2, value as 1 means not use ZBASIC

Grammar COM_UNUSED = value

Controller Above ZMC5XX series controllers

Example COM_UNUSED=1 'ZBASIC doesn’t use RS232 serial port

Instruction SETCOM, PORT, PROTOCOL

13.2 CAN Communication Instruction

CAN -- CAN Communication

Type System Instruction

Description Directly receive and send data through CAN.

Multi Controllers communication can be achieved through CAN, but there

is only one master station in one same CAN network

(CANIO_ADDRESS=32).

Please note only newer firmware versions support this function. If it is

invalid, please contact manufacturer.

Wiring as follow:

552

CANL-CANL

CANH-CANH

A 120-ohm resistance is connected at both ends of CANL and CANH for

resist matching. When link with module expansion that has dial switch, dial

the 8th as ON, which means the 120-ohm resistance is connected, no need to

connect resistance externally.

Grammar CAN(channel, function, tablenum)

channel: CAN channel, 0-first channel, -1-default channel.

function: function No.

Value Description

6 receive data, when there is no data,

identifier<0

7 send data

16

(please upgrade firmware)

receive extended data, when there is no

data, identifier<0

17

(please upgrade firmware)

send extended data, use 7 to send

ordinate data

tablenum: TABLE position where saves data.

When function is 6 or 7, data will be saved in order:

identifier: CAN communication object(cob-id), this value consists of

11 bits, the former 4 bits are function codes, the last 7 bits are

node ID. ZCAN uses high-bit data reserved, 0-511 is

recommended. When value is less than 0, it indicates there is

no data received. Bit11 means whether it is a remote frame.

bytes: number of bytes in the data area, maximum is 8 bytes.

data: data area, byte (0-FF)

When function is 16 or 17:

identifier: CAN communication object(cob-id), this value consists of

11 bits, the former 4 bits are function codes, the last 7 bits are

node ID. ZCAN uses high-bit data reserved, 0-511 is

recommended. when value is less than 0, it indicates there is

no data received. Bit11 means whether it is a remote frame.

identifier extend: extend id, 11 high bits and 18 low bits, that is, there

are 29 CAN bits, fill in -1 when no ID exists.

bytes: the number of bytes in the data area, maximum is 8 bytes.

553

data: data area, byte(0-FF)

The 29-bit extended frame ID is divided into low-order 18 bits and high-

order 11 bits starting from the last digit on the right. If the high-bits are less

than 11 bits, 0 will be automatically added. The example is as follows:

Extended frame ID is:1753001

The relevant binary is: 1 0111 0101 0011 0000 0000 0001

Binary of 29-bit: 0 0001 0111 0101 0011 0000 0000 0001

High 11-bit: 0 0001 0111 01 (corresponding decimal part is 93)

Low 18-bit: 01 0011 0000 0000 0001 (corresponding decimal part is 77825)

Then:

When CAN17 mode is used, identifier = 93, identifier extend = 77825

Controller General

Example Example one:

'send

TABLE(0,1,8,1,2,3,4,5,6,7,8) 'send cobid=1, 8 bytes: 1-8.

CAN(0,7,0) 'send data

'receive

CANIO_ADDRESS=1 'set as salve, it only sets once.

CAN(0,6,0) 'receive data

?TABLE(0)

Example two:

'send

TABLE(0,1,10,8,1,2,3,4,5,6,7,8) 'send cobid=1, extend id10, 8 bytes, 1-8

CAN(0,17,0) 'send data

'receive

CANIO_ADDRESS=1 'set as salve, it only sets once.

CAN(0,16,0) 'receive data

?TABLE(0)

Example three: CAN mode 17 (avoid blocking), independent task ON

When no device is connected, CAN17 will jump automatically, it will not

appear blocking and waiting.

CANIO_ADDRESS = 32 'master station

GLOBAL FLAG_SEND_NUM 'sending times

FLAG_SEND_NUM = 1000

WHILE 1

?FLAG_SEND_NUM

554

IF FLAG_SEND_NUM > 0 THEN

TABLE(0,32,8,8,1,2,3,4,5,6,7,8)

STOPTASK 2

RUNTASK 2,CAN_SEND

WA 10 'add a bit delay, make sure following sending won't

interrupt former sending

ENDIF

IF FLAG_SEND_NUM <= 0 THEN

?"Sending Over"

EXIT WHILE

ENDIF

WEND

END

GLOBAL SUB CAN_SEND()

FLAG_SEND_NUM = FLAG_SEND_NUM - 1

CAN(0,17,0)

?"Sending Succeed"

END SUB

Instructions CANIO_ADDRESS，CANIO_STATUS，CANIO_ENABLE

CANIO_ADDRESS--CAN Communication Setting

Type System Parameters

Description CANID and CAN SPPEED (baud rate) setting of CAN communication

on controller.

Can speed of IO expansion should be set through dial-up switches attached,

setting value will be saved into FLASH, valid after restarting.

There is 16 bits to indicate the setting of CANID and CANSPEED.

Lower 8 bits (bit:0-7) indicate CANIO setting, value is 0-32, default value is

32, which means master controller.

Upper 8 bits (bit:8-15) indicate CANSPEED, sample values as follow :

Value in upper 8 bits CAN baud rate

0 500KBPS(default value)

1 250KBPS

2 125KBPS

3 1MBPS

Note:

1. Don’t configure multi master controllers in one communication net.

2. Setting of CANID and CANSEED will be effective only after restarting.

Grammar CANIO_ADDRESS = value

Controller General

Example CANIO_ADDRESS=32 'set as master,CAN baud rate is 500KBPS

CANIO_ADDRESS=32+256 'set as master,CAN baud rate is 250KBPS

555

CANIO_ADDRESS=32+512 'set as master,CAN baud rate is 125KBPS

CANIO_ADDRESS=32+768 'set as master,CAN baud rate is 1MBPS

CANIO_ADDRESS=1 'set CANID=1 as slave, 500KBPS, can’t

connect IO expansion.

CANIO_ADDRESS=1+256 'set CANID=1 as slave, 250KBPS, used to

ZCAN slave station

CANIO_ADDRESS=1+512 'set CANID=1 as slave, 125KBPS, used to

ZCAN slave station

CANIO_ADDRESS=1+768 'set CANID=1 as slave, 1MBPS, used to

ZCAN slave station

CANIO_ADDRESS=3 'set CANID=3 as slave, 500KBPS, used to

ZCAN slave station

CANIO_ADDRESS=8+256 'set CANID=8 as slave, 250KBPS, used to

ZCAN slave station

CANIO_ADDRESS=16+512 'set CANID=16 as slave, 125KBPS, used to

ZCAN slave station

CANIO_ADDRESS=31+768 'set CANID=31 as slave, 1MBPS, used to

ZCAN slave station

See CAN communication example.

Instructions CANIO_ENABLE，CAN，CANIO_STATUS

CANIO_ENABLE--CAN Enable

Type System Parameters

Description Enable or disable internal CAN master function.

When CANIO_ADDRESS is set as 32, default value of CAN_ENABLE is

enable.

Grammar CANIO_ENABLE = ON/OFF

Controller General

Example CANIO_ADDRESS = 32 'set master, CAN baudrate is 500KBPS

CANIO_ENABLE = ON 'Open CAN master function.

CANIO_ENABLE = OFF 'Close CAN master function.

Instructions CANIO_ADDRESS

CANIO_STATUS--ZIO Expansion Status

Type System Status

Description Get present IO expansion status, the returned value is ON or OFF (1 or

0).

Valid in controllers with firmware above 20140325.

556

Grammar CANIO_STATUS(cardnum)

cardnum: IO expansion NO. (got from the dial-up switches setting)

Controller General

Example Example one:

?*CANIO_STATUS 'print status of all IO expansion modules.

Example two:

If CANIO_STATUS(1) =0 THEN

'Judge the connection status of IO module

PRINT "IO Expansion 1 is not connected well"

ENDIF

Instructions CAN，CANIO_ENABLE，CANIO_ADDRESS

CANIO_INFO—CAN Expansion Information

Type System status

Description Read current IO expansion information, then return parameter value.

ZMC4XX series controller with firmware version above 170715.

Grammar CANIO_INFO(canid, isel [, moduleid])

canid: expansion module dial code ID

isel: parameters that are read

0 Zmotion

1 DEVICE, device No.

2

3

4

 IO numbers Description

10 the number of IN (all)

11 The number of OP (outputs)

12 The number of AIN (analog inputs)

13 The number of AOUT (analog outputs)

Add

16 the number of modules

17 Type No. of sub module, and it must be with moduleid.

Reserve

20 Submodule input

21 Submodule output

22 Submodule AIN

23 Submodule AOUT

For example: coupler connects to the first one expansion submodule,

the address is 0, the second expansion submodule, the

address is 1, and so on.

[how to modify analog AD/DA of ZMIO300-CAN/ZMOIO310-CAN

557

expansion submodule]

CANIO_INFO (canid, 17, moduleid) = range type

 canid: dial code ID of expansion module

moduleid: ZMIO submodule information, extended submodules are

numbered by coupler connection sequence starting from 0.

For some isel, it needs to fill in this parameter.

Range Type

Type No. Module Type Type No. Module Type Range

2

AD Module

(Input Module)

10

AD Module

(Input Module)

0-10V

3 11 -10-10V

4 12 4-20mA

5 13 0-20mA

6 14 0-5V

7 15 -5-5V

Controller General

Example Example 1:

?CANIO_INFO (1,1) ‘print device No. whose expansion module ID is 1

Example 2:

Modify & Check ranges of the first and the second extended submodules’

AD / DA.

CANIO_INFO(0,17,0)=3 ‘modify the AD range as -10-10V

?CANIO_INFO(0,17,0) ‘check the range

CANIO_INFO(0,17,1)=11 ‘modify the DA range as -10-10V

?CANIO_INFO(0,17,1) ‘check the range

Instruction CAN，CANIO_ENABLE，CANIO_STATUS_CANIO_ADDRESS -- CAN

通讯设置

13.3 Self-defined Communication Instructions

GET#--Read String

Type System Instruction

Description Get one byte from the channel when the communication mode is RAM

mode or self-defined Ethernet mode, and save value into variable.

Grammar Grammar1：GET #PORT, VARIABLE

Grammar2：GET #PORT, ARRAY[(startindex)] [,maxchares]

Grammar3：charesget = GET #PORT, VARIABLE

Grammar4：charesget = GET #PORT, ARRAY[(startindex)] [,maxchares]

558

 PORT: channel NO.

VARIABLE: saved variable name

Startindex: start address of array

Maxchares: maximum bytes to save in array

Grammar1/2: if no data was got, channel will jam, usually used in multi-

task occasion.

Grammar3/4: it will return bytes number that is read.

Below version 20150522 only support grammar 1.

UDP receive must use grammar 4, use array to receive, the array length

should not be smaller than the UDP packet length at one time.

UDP reads the entire packet at a time, and if the array length is insufficient,

the excess will be discarded.

In the UDP_SERVER mode, receive one packet, PORT_TARGET will be

the sender automatically, so it can receive multi-salve data.

Controller General

Example Example one：

DIM VAR1

SETCOM(38400,8,1,0,0,0) 'open RAM mode.

GET #0, VAR1 'get data from channel 0.

PRINT VAR1 'print data

Example two：

DIM ARRAY1(101)

SETCOM(38400,8,1,0,0,0) 'Open RAM mode.

CHARES = GET #0, ARRAY1, 100 'get 100 bytes from channel 0.

If CHARES > 0 THEN

ARRAY1(CHARES) = 0 'set the last number as 0

PRINT ARRAY1 'print string

ENDIF

Instructions PORT, PRINT #

OPEN # -- Open Custom Ethernet Communication

Type System Instruction

Description Open Self-defined Ethernet Communication.

Valid in latest firmware version.

Grammar OPEN #PORT, "mode",portnum[,ipaddress]

port: communication channel, see PORT description, select defined net

channel (ECUSTOM)

mode: master or slave station, TCP_CLIENT -- slave station of TCP

mode, TCP_SERVER – master station of TCP mode,

UDP_CLIENT – slave station of UDP mode, UDP_SERVER –

559

master station of UDP mode, TCP_EXCUTE – use TCP

control directly.

portnum: TCP port No. or UDP port No., master station is local port

No., slave is the other side port No.

ipaddress: the other side IP addrerss, character string, it should be filled

when as slave

TCP_EXCUTE means TCP control, that is, TCP sends BASIC commands,

and it must be with \n end character.

OPEN#, “TCP_EXECUTE”, portnum is to set “watch” for server side. And

this remote port No. can’t set as 502. For other port numbers, it only makes

two sides be consistent.

UDP_SERVER must receive the other side data first, then send back data.

(except use PORT_TARGET to define the other forcibly)

The local port No. of UDP_CLIENT is random, it must send to the other

side firstly, in this way, the other side could know the port No., and not

assigned package will be discarded under this mode.

UDP self-defined communication is valid in ZMC4XX series controller

with firmware version above 20170628 and valid in XPLC series controller

with firmware version above 20170702.

“?*open” can print all OPEN port No. information.

Controller General

Example Exapmle 1

OPEN #11, "TCP_SERVER", 10 'set as master

OPEN #10, "TCP_CLIENT", 10,"192.168.1.112" 'set as slave

Example 2

OPEN #10, "UDP_SERVER", 1000 'UDP master

OPEN #11, "UDP_CLIENT", 60000, "192.168.0.120" 'UDP salve

Example 3

OPEN #3, "UDP_EXECUTE", 500 'direct TCP control

See “self-defined Ethernet Communication” for details.

Instructions PORT，PORT_TARGET，SETCOM，PRINT #

CLOSE # -- Close Self-defined Ethernet Communication

Type System Instruction

Description Close Self-defined Ethernet Communication.

Valid in latest firmware version.

Grammar CLOSE # ecustomnum

ecustomnum: customized net port channel No.

560

Controller General

Example CLOSE # 10 ‘close channel 10

Instructions OPEN, PORT, PORT_TARGET, SETCOM, PRINT #

PRINT #--Output Character String

Type System Instruction

Description Output character string in RAM or self-defined Ethernet

communication mode, it will stop when meets 0.

One UDP package is sent when evert time it is called.

PRINT # will send character string directly (“” will be deleted itself), no

need to do ASCII code switch, only one data can be sent in one time, as

follow:

When use PRINT # to send array as ASCII code, it will stop when meets 0,

as follow:

561

Grammar PRINT #PORT, "character string"

port: Channel NO.

Controller General

Example DIM VAR(10) 'define array

VAR = "AAAA" 'assign value to array

SETCOM(38400,8,1,0,0,0) 'open RAM mode

PRINT #0,VAR 'output array through channel 0.

Instructions PUTCHAR #，GET #，PORT，SETCOM

PUTCHAR#--Output Character

Type System Instruction

Description Output character in RAM or self-defined Ethernet communication

mode, it will stop when meets 0.

One UDP package is sent when evert time it is called.

Date sent by PUTCHAR # is ASCII code, multi data should be divided by‘,’

it can not send character string directly, as follow:

Array sent by PUTCHAR # is ASCII code, if meets 0 in array, then will

output blank space, total array position will be sent, do ensure the array

value is correct, as follow:

562

Grammar PUTCHAR #PORT,Character

port: channel number

PUTCHAR #PORT, ARRAY(INDEX, NUMES)

port: channel number

index: output start position.

numes: output byte number, binary type.

Controller General

Example DIM VAR1, ARRAY1(10) 'define array

VAR1 = $FE 'assign value to VAR1

ARRAY1 = "ABCDEFGHIJ" 'assign value to ARRAY1

SETCOM(38400,8,1,0,0,0) 'open RAW mode.

PUTCHAR #0, VAR1 'output data of array1 through Channel 0.

PUTCHAR #0, ARRAY1 'output data of array2 through Channel 0.

Instructions PORT，SETCOM，GET #

PORT_TARGET—IP and Port NO. configuration

Type Character string instruction

Description Configurate IP address and port NO. of the other side.

ZMC4XX series controller with firmware version above 20170628, XPLC

series controller version above 20170702.

Grammar Command grammar:

PORT_TARGET(port))="ipaddress:portnum or

PORT_TARGET(port))="ipaddress"

port：channel NO.

ipaddress：the other IP address

portnum：port NO

Return grammar：VAR=PORT_TARGET(port))

 return IP address character string.

Controller General

Example PORT_TARGET="192.168.0.12:502"

PORT_TARGET(port))="192.168.0.12"

?PORT_TARGET(port)

DIM IPSTRING(100)

IPSTRING = PORT_TARGET(port)

?IPSTRING

Instruction OPEN #_CANIO_ADDRESS -- CAN 通讯设置

563

13.4 Print and Output Instructions

PRINT--Print Information

Type Print Output Function

Description Print information in output window of ZDEVELOP.

Additional Name:?

Print parameters value through format: *parameters name;

Print special character string through format: * character string.

Grammar PRINT expression, "string" or ? expression, "string"

Expression: valid expression sentences

 *SET: print all parameters value

*TASK: print task information.

If task is normal, only output task status.

It will output error task NO. and error line NO. when task

appear errors.

*MAX: print all specification parameters

*FILE: print procedure file information

*SETCOM: print present serial ports configuration information

*BASE: print present BASE list (version above 140123 supports)

*array name: print all elements of array, array should not be too long.

*parameters name: print one parameter of all axes.

?*ETHERCAT: print EtherCAT bus connection status.

?*RTEX: print Rtex bus connection status

 ?*FRAME: print robotic parameters, firmware should be above 161022

 ?*SLOT: print slot information(EtherCAT or Rtex)

 ?*PORT: print all communication ports

Controller General

Example Example one:

Input online instructions

>>PRINT 1+2

Output:3

Example two:

Input online instructions

>>PRINT *task 'print all tasks status.

Task:0 Running. file:"hmi.bas" line:280:

Task:1 Stopped.

Task:2 Stopped.

Task:3 Stopped.

Task:4 Stopped.

Task:5 Stopped.

564

Task:6 Stopped.

Example three:

Input online instructions

>> ?*mpos

Output:21872.400 0 0 0 0 0 0 0 0 0 0 0

Instructions TRACE

ERRSWITCH--Information Output Setting

Type System Parameters

Description Debugging output switch, control output of TRACE, WARN and ERROR,

judge whether debug output commands are actually output information.

Grammar ERRSWITCH=switch

switch; debugging output switch

0-all outputs instructions don’t output.

1-only enable ERROR

2-enable WARN and ERROR

3-enable TRACE, WARN and ERROR

4-enable TRACE, WARN and ERROR, and all related motion

monitoring instructions.

Controller General

Example Example one:

ERRSWITCH = 3 'enable TRACE, WARN and ERROR

Example two:

ERRSWITCH = 0 'disable all outputs instructions

TRACE DPOS(0) 'can not use trace output dpos of axis 0

?DPOS(0) 'print is valid, print result is 0

Example three:

ERRSWITCH = 4 'output all information

>>MOVE(111)

MOVE(111)AXIS(0)TASK(23) 'print present axes and tasks.

Instructions TRACE，WARN，ERROR

TRACE--Print Information 2

Type Print Output Function

Description Print information in output window of ZDEVELOP.

Controlled by ERRSWITCH setting.

Grammar Same as PRINT

Controller General

565

Example ERRSWITCH = 3 'all trace functions are enable

DPOS(0) =0

TRACE "DPOS(0) =" DPOS(0)

Print result 0

Instructions ERRSWITCH ，PRINT，WARN，ERROR

WARN--Alarm Information

Type Print Output Function

Description Print alarm information in output window of ZDEVELOP

automatically.

Manual print is also available.

Controlled by ERRSWITCH setting.

Grammar print automatically when there is procedure alarm

the same as instruction: Print when by Manual

Controller General

Example See example of TRACE as reference

Instructions ERRSWITCH ，PRINT，WARN，ERROR

ERROR--Error Information

Type Print Output Function

Description Print error information in output window of Zdevelop automatically.

Manual print is also available.

Controlled by ERRSWITCH setting.

Grammar print automatically when there is procedure alarm

the same as instruction: Print when by Manual

Controller General

Example See example of TRACE as reference

Instructions ERRSWITCH ，PRINT，WARN，ERROR

13.5 Channel Parameter Instruction

PORT--Channel NO.

Type Channel Correction Subsidiary Instruction

Description When accesses channel parameters, it can select needed port NO.

Choose port NO. when some instructions need to enter related channel.

Grammar PORT (portnum)

566

portnum: channel NO.

Different controllers support different channel numbers, check it through

instruction “?*port”. See example one.

ZMC00x series

Channel NO. protocol

0 Serial port A

1 Serial port B

ZMC1-2xx series, support MODBUS-TCP when link with HMI.

Channel NO. protocol

0 RS232 serial port

1 RS485 serial port

2 Ethernet, link 1. port NO.:502

3 Ethernet, link 2. port NO.:502

10 Self-defined net communication channel 1

11 Self-defined net communication channel 2

ZMC3xx series, with 3 serial ports.

Channel NO. protocol

0 RS232 serial port

1 RS485 serial port

2 RS422 serial port

3 Ethernet, link 1.

4 Ethernet, link 2.

10 Self-defined net communication channel 1

11 Self-defined net communication channel 2

ZMC4xx series, with 2 serial ports.

Channel NO. protocol

0 RS232 serial port

1 RS485 serial port

2 Ethernet, link 1.

3 Ethernet, link 2.

10 Self-defined net communication channel 1

11 Self-defined net communication channel 2

20 Channel for link between controllers, don’t

support PORT_STATUS

ECI series, only 1 serial port.

Channel NO. protocol

0 RS232 serial port

1 Ethernet, link 1.

2 Ethernet, link 2.

567

Controller General

Route See controller channels

>>?*port

Port:0-COM.

Port:1-COM.

Port:2-ETH.

Port:3-ETH.

Port:4-ETH.

Port:5-ETH.

Port:6-ETH.

Port:7-ETH.

Port:10-ECUSTOM.

Port:11-ECUSTOM.

Port:12-ECUSTOM.

Port:13-ECUSTOM.

Port:14-ECUSTOM.

Port:15-ECUSTOM.

Port:20-CONNECT.

Notes:

COM: Serial port,

ETH: Ethernet port,

ECUSTOM: self-defined Ethernet communication port,

CONNNECT: channels for controller connection.

Instructions FILE_PORT，PORT_STATUS，PROTOCOL

PORT_STATUS--Channel Status

Type Channel Parameters, only for read.

Description Return present channel status, serial port will always return 1.

When MODBUS_TCP connection is built, PORT_STATUS will become 1.

If relevant link already be as slave, controller will search valid ports as

MODBUS_TCP master link, procedure can not confirm the actual port that

be called.

This function is valid in controller with new firmware.

Grammar VAR1 = PORT_STATUS(port)

port: channel NO.

Value Meaning

0 No connection

1 Connected

Controller General

Example ?PORT_STATUS(0) 'return channel status of serial 232, result is1

568

Instructions PORT，SETCOM，ADDRESS

PORT_MODE--Channel Mode

Type Channel Parameters

Description PORT Mode Configuration, it can add PORT type dynamically.

Grammar Command grammar: PORT_MODE(portnum, mode [,"comname"])

portnum: PORT No.

mode: the mode to be set must be a free PORT

(ZPORT_MODE_NOTUSED). And it is recommended to set it at the front

of the program. The supported setting types:

ZPORT_MODE_COMUSB = 2 //serial port expanded by USB

ZPORT_MODE_ETH = 10 //standard ethernet connection

ZPORT_MODE_ETHCUSTOM = 11 //ethernet custom

communication

“The current mode setting can be checked by ?*PORT or PORT_MODE

function”.

comname: for serial ports, it means the name of the serial port. Under

Linux, it is generally "/dev/ttySn" or "/dev/ttyUSBn". And the list of serial

ports can be checked through the linux command ls /dev, and the name

under windows is "COMn".

Function grammar: mode= PORT_MODE(portnum)

portnum: PORT No.

return value:

ZPORT_MODE_NOTEXIST = -1, // exceeds the maximum PORT number

ZPORT_MODE_NOTUSED = 0, // not used, can be used to set

ZPORT_MODE_COM = 1, // hardware fixed serial port

ZPORT_MODE_COMUSB = 2, // USB extended serial port

ZPORT_MODE_LOCAL = 9, // LOCAL direct channel

ZPORT_MODE_ETH = 10, // standard network connection

ZPORT_MODE_ETHCUSTOM = 11, // network custom communication

ZPORT_MODE_ETHICONNET = 12, // interconnection channel

Controller Valid in ZMC5XX series controllers with firmware version above

20200302.

Example Set custom net port:

PORT_mode (22,11)

Set standard net port:

PORT_mode (22,10)

Set USB net port:

PORT_mode (22,2,”/dev/ttyUSB0”)

Instructions PORT

569

FILE_PORT--Present Channel File NO.

Type Channel Parameters

Description Return or set default file NO. of present channel.

Access to module variables or array of relevant file after setting.

This parameter will be called in Zdevelop automatically, no need to modify

it in Zdevelop.

Grammar VAR1 = FILE_PORT, FILE_PORT = filenum

Controller General

Example >>FILE_PORT = 0 ' FILE_PORT parameters of present channel

Instructions PORT

PROTOCOL--Channel Communication Protocol

Type Channel parameter, only for read

Description Return communication protocol in present channel.

Grammar VAR1 = PROTOCOL(port)

port: channel NO.

Returned Value

value protocol

0 RAW data format, no protocol.

3 MODBUS protocol, controller as slave. (default)

14 MODBUS protocol, controller as master.

15 Direct command mode.

Controller General

Instructions PORT，SETCOM，ADDRESS

ETH_MODE—Net Port Mode Settings

Type Channel parameter.

Description Net port mode configuration, array type, and each net port is set

independently.

Grammar ETH_MODE(isel) = imode

isel: 0-the first net port, 1-the second net port (EtherCAT)

imode: 0- non eth mode, traditional mode, good compatibility, anti-

interference is a little bad.

1- eth mode, extremely good anti-interference, when there are

multiple links, anti-drops DLL on PC should be used

together, and only one standard DLL only can be connected

(less touch screens or EtherCAT drives can’t support this

570

mode).

2- Auto mode (new firmware default value), if net is not

connected, it will switch between mode 0 to mode 1

automatically.

Controller General

Instructions PORT

SEND_AUTOUP—Active Report

Type Channel parameter.

Description Set the content that is reported actively by net port.

Grammar SEND_AUTOUP (port, typecode, string)

port: PORT number that supports active reporting. -1 means

automatically select the Ethernet link that supports active reporting. After

ZMC_SetAutoUpCallBack is called on the PC, the corresponding link

automatically supports active reporting

typecode: type code

string: character string, valid character strings expressions are OK.

Controller General

Example SEND_AUTOUP(-1,100,"111211")

Instructions PORT

SEND_AUTOUP2—Active Report 2

Type Channel parameter.

Description Set the content that is reported actively by net port, send TABLE

content.

Grammar SEND_AUTOUP2 (port, typecode, tableindex, length)

port: PORT number that supports active reporting. -1 means

automatically select the Ethernet link that supports active reporting. After

ZMC_SetAutoUpCallBack is called on the PC, the corresponding link

automatically supports active reporting

typecode: type code

tableindex: starting number of table position

length: the number of sent bytes in binary system, one table element gets

one byte.

Controller General

Example TABLE = “1234”

SEND_AUTOUP2(-1,200,0,4)

Instructions PORT

571

IFAUTOUP_PORT—Check Active Reporting Port

Type Channel parameter.

Description Check PORT that supports active reporting.

Check PORT ports that are printed by “?*port” and belong to eth type, 0 –

unsupported, 1 – support.

Grammar VALUE = IFAUTOUP_PORT

Controller General

Example Check all net ports channels.

?*IFAUTOUP_PORT

Instructions PORT

13.6 MODBUS Communication Instruction

MODBUS_BIT--Bit Register

Type MODBUS bit register

Description Modify or read BIT register, Boolean type, which is called 0x register in

HMI.

Note: through some particular Modbus_0x registers on HMI, IO status can

be read and set directly, in this situation, HMI read the original status of IO,

no influence from INVERT_IN.

Register (zero based) Meaning

10000- Input IN, each input takes 1 register.

20000- Output OP, each output takes 1 register.

30000- S register of PLC, each takes 1 register.

Grammar MODBUS_BIT(first,[last]) = value

first bit register NO.,start from 0.

 last bit register NO., start from 0.

Controller General

Example DIM VAR

MODBUS_BIT(100) =1 'assign bit100 as 1.

VAR = MODBUS_BIT(100) 'assign bit100 to variable VAR.

MODBUS_IEEE--Word Register-32bits float

Type MODBUS Word Register

572

Description Modify or read word register, 32 bits float, which is called 4x register in

HMI.

Zmotion motion controller contains particular MODBUS word register,

which will take possession of 2 register addresses.

Controller will call Modbus word register as default selection, if need to

modify it, do set the seventh parameter of SETCOM.

Note: through particular Modbus_4x registers, some controller status can be

read directly from HMI.

Register

(zero based)

Type Meaning

10000- IEEE read DPOS, each axis takes 2 registers.

11000- IEEE read MPOS, each axis takes 2 registers.

12000- IEEE read VP_SPEED, each axis takes 2 registers.

Grammar MODBUS_IEEE (regnum) = value

regnum register NO., start from 0.

Controller General

Example DIM VAR

MODBUS_IEEE(100) = 100.10 'assign ieee100 as 100.10

VAR = MODEBUS_IEEE(100) 'assign ieee100 to VAR

Instructions MODBUS_REG，MODBUS_LONG，MODBUS_STRING

MODBUS_LONG--Word Register-32 bits integer

Type MODBUS Word Register

Description Modify or read word register, 32 bits integer, which is called 4x register

in HMI.

Zmotion motion controller contains particular MODBUS word register,

which will take possession of 2 register addresses.

Controller will call Modbus word register as default selection, if need to

modify it, do set the seventh parameter of SETCOM.

Grammar MODBUS_LONG(regnum) = value

regnum: register NO., starts from 0.

Controller General

Example DIM VAR

MODBUS_LONG (100) = 100 'assign long100 as 100

VAR = MODEBUS_LONG(100) 'assign long100 to VAR.

Instructions MODBUS_REG，MODBUS_IEEE，MODBUS_STRING

MODBUS_REG--Word Register-16 bits integer

Type MODBUS Word Register

573

Description Modify or read word register, 16 bits integer, which is called 4x register

in HMI.

Zmotion motion controller contains particular MODBUS word register.

Register number will differ as per controller type.

Controller will call Modbus word register as default selection, if need to

modify it, do set the seventh parameter of SETCOM.

Note: through particular Modbus_4x registers, some controller status can be

read directly from HMI.

Register (zero based) Type Meaning

13000- 16 Read DA

14000- 16 Read AD

Grammar MODBUS_REG(regnum) = value

 regnum register NO., starts from 0

Controller General

Example DIM VAR

MODBUS_REG(100) = 100 'assign reg100 as 100.

VAR = MODBUS_REG(100) 'assign reg100 to VAR.

Instructions MODBUS_IEEE，MODBUS_LONG，MODBUS_STRING

MODBUS_STRING--Word Register-Byte

Type MODBUS Word Register, character string function

Description Read character string in MODBUS register according bytes. It is called

4x register in HMI.

Grammar MODBUS_STRING(index, chares)

index: MODBUS register start NO., starts from 0, register number will

differ as per controller type.

 chares: total character string number to read.

Controller General

Example DIM ARR(8)

MODBUS_STRING (0,8) = "abc" 'save bytes from string 0, all 8 bytes.

print MODBUS_STRING(0,8) 'print character string, result is abc

ARR = MODBUS_STRING(0,8) 'assign character string to array.

Instructions MODBUS_REG，MODBUS_LONG，MODBUS_IEEE

MODBUSM_DES--Modbus Communication Connection

Type Communication Instructions

Description Set or read the Modbus value of slave station from master station.

When there is communication waiting, it will only block the present task, no

influence on other tasks.

574

When use 485 serial port to do communication with multi-device, it can add

wait or delay, wait until the former device succeeded in communicating,

then connect to next device to avoid communication failure.

Note: don’t write and read multiple MODBUS slave stations at the same

moment, especially when there is multi-task, please operate independently.

Grammar MODBUSM_DES(address[,port], [,time], [,resendset]

ADDRESS1 = MODBUSM_DES([port])

address: modbus protocol NO. of slave station

port: port NO. of present master station.

 timer: message timeout setting, default value is 1000ms

 resendset: timeout message resend setting, 0-not to resend, 1-resend

SEND instruction, 2-resend SEND and MODBUSM

instructions.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice.

Resend SEND message, there is no influence on controllers.

Significant symbolic variable can be modified through SEND.

Controller General

Example Example one: multi-master to multi-slave.

SETCOM(38400,8,1,0,0,14,2,1000) 'set serial port 0 as modbus master,

communication waiting time is 1

second.

SETCOM(38400,8,1,0,1,14,2,1000) 'set serial port 1 as modbus master,

communication waiting time is 1

second.

WHILE 1

IF IN(0)=1 THEN 'use serial port 0 when IN0 high electric level

IF IN(1)=1 THEN

MODBUSM_DES(1,0) 'communicate with slave station port No.1,

when IN1 high electric level

MODBUSM_REGSET(0,10,0) 'copy local register to slave station.

MODBUSM_REGGET(20,10,20)

'copy register value of salve station into local station.

WAIT UNTIL MODBUSM_STATE <> 1 'wait until message ends.

ELSE

MODBUSM_DES(2,0) 'communicate with slave station port No.2

when IN1 low electric level

MODBUSM_REGSET(30,10,30)

'copy local register to slave station.

MODBUSM_REGGET(40,10,40)

'copy register value of salve station into local station.

WAIT UNTIL MODBUSM_STATE <> 1 'wait until message ends.

575

 ENDIF

?"channel 0 status=", MODBUSM_STATE 'print communication status

ELSE 'use serial port 1 when in(0) is low electric level

IF IN(1)=1 THEN

MODBUSM_DES(1,1) 'communicate with slave station, port No.1

when IN1 high electric level

MODBUSM_REGSET(50,10,0)

'copy local register to slave station.

MODBUSM_REGGET(60,10,60)

'copy register value of salve station into local station.

WAIT UNTIL MODBUSM_STATE <> 1 'wait until message ends.

ELSE

MODBUSM_DES(2,1) 'communicate with slave station, port No.2,

when IN1 low electric level

MODBUSM_REGSET(70,10,70)

'copy local register to slave station.

MODBUSM_REGGET(80,10,80)

'copy register value of salve station into local station.

WAIT UNTIL MODBUSM_STATE <> 1 'wait until message ends.

ENDIF

?"channel1 status=", MODBUSM_STATE 'print communication status.

 ENDIF

WEND

Instructions SETCOM，PROTOCOL，PORT，MODBUSM_DES2

MODBUSM_DES2--Ethernet Communication

Type Communication Instructions

Description Ethernet communication between controllers, it also can be as

MODBUS_TCP master communication.

?*PORT 'print present available communication channels.

576

As MODBUS_TCP maser:

Choose one ETH type port as MODBUS_TCP communication channel (the

first and last ETH ports are not recommended).

If the chosen port is in possess of slave station, then controller will choose a

valid ETH port as MODBUS_TCP master automatically.

As Communication between controllers:

Choose CONNECT type port as communication channel between

controllers.

Note: don’t write and read multiple MODBUS slave stations at the same

moment, especially when there is multi-task, please operate independently.

Grammar MODBUSM_DES2 (id, port, "desipaddress", [timer], [resendset],

[destport502])

id: ID of salve station, default value is 1.

port: support two modes, ?*PORT to confirm channel No. and mode.

 For ETH, as MODBUS_TCP master channel

 For CONNECT, as connection channel between controllers

desipaddress: IP address of salve station, it is character string.

timer: message delay time setting, default value is 1000ms.

resendset: timeout message resend setting, 0-not to resend, 1-resend

SEND instruction, 2-resend SEND and MODBUSM

instructions.

destport502: port No., default is 502.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice.

Resend SEND message, there is no influence on controllers.

Significant symbolic variable can be modified through SEND.

Controller ZMC4xx series with firmware version above 20170117.

Example Example one: build MODBUS master communication

No need to consider message loss in MODBUS_TCP master

communication mode.

577

MODBUSM_des2(1,4,"192.168.0.12")

'communicate with slave station according to station No. and IP, use

controller channel 4, confirm port channel through “?*port”

WHILE 1

LASTTICK = TICKS

FOR i =0 TO 9999

MODBUS_REG(0)=i

MODBUSM_REGEST(0,10,0) 'set slave register

MODBUSM_REGEST(0) = 99

MODBUSM_REGEST(0,10,0) 'read slave register.

IF MODBUS_REG(0) <> I THEN

?"REG(0)=" MODBUS_REG(0),"state=" MODBUSM_STATE

'print error appeared in which communication

 ENDIF

NEXT

 ?LASTTICK-TICK 'print communication time

WEND

END

Example two: build communication between controllers.

When Ethernet environment is not good, there is a small probability to lose

message in interconnection communication.

MODBUSM_des2($fe,20,"192.168.0.25" ,10)

'controller slave station port is fe, controller master port is 20, confirm

timeout time is set as 10ms through “?*port”.

MODBUSM_REGSET(0,10,0) 'copy local register value to slave station.

WAIT UNTIL MODBUSM_STATE <> 1 'wait until message ends.

IF MODBUSM_STATE<>0 TEHN

MODBUSM_REGSET(0,10,0) 'resend if there is error.

MODBUSM_REGGET(20,10,20) 'copy salve register value into

local station.

ENDIF

WAIT UNTIL MODBUSM_STATE <> 1 'wait until message ends.

IF MODBUSM_STATE<>0 then MODBUSM_REGGET(20,10,20)

'resend if there is error.

ENDIF

END

Instructions ADDRESS，PORT

MODBUSM_STATE--modbus Communication Status

Type Communication Status

578

Description MODBUS communication status of master station.

Value Description

0 Normal

1 Waiting for response

2 Waiting time out

3 Response error

Grammar VAR1 = MODBUSM_STATE

Present modbus communication status of master station.

Controller General

Example SETCOM(38400,8,2,0,1,14,2,1000)

'485serial port as modbus master station, message time out is 1second.

MODBUSM_DES(1,1) 'communicate with slave station, port is 1.

MODBUSM_REGGET(0,10,0) 'get register value of slave station.

WAIT UNTIL MODBUSM_STATE <> 1

'wait until message ends, maximum 1

second as message time out period,

become relevant value after time out or

getting message.

?MODBUSM_STATE 'print communication result.

IF MODBUSM_STATE=0 THEN

?" Normal "

ELSEIF MODBUSM_STATE=2 THEN

?" Waiting time out "

ELSEIF MODBUSM_STATE=3 THEN

?" Response error "

ENDIF

Instructions PROTOCOL，PORT, SETCOM

MODBUSM_REGSET—Set Save Modbus Value

Type Communication Instructions

Description Assign local save Modbus value to slave station.

Relevant standard protocol function code is 06 or 16: write save

register.

Grammar MODBUSM_REGSET (startreg, num, local_reg)

startreg modbus start NO. of slave station, starting from 0.

num the number of register.

local_reg local MODBUS start NO. to get value, starting from 0.

Controller General

Example See example one in MODBUSM_REGGET

Instructions ADDRESS，PROTOCOL，PORT， SETCOM

579

MODBUSM_REGGET--Read Save Modbus Value

Type Communication Instructions

Description Assign save Modbus value of slave station to local station.

Relevant standard protocol function code is 03, read save register.

Grammar MODBUSM_REGGET (startreg, num, local_reg)

startreg modbus start NO. of slave station, starts from 0.

num the number of register.

local_reg local MODBUS start NO. to get value

Controller General

Example Read absolute encoder of delta

GLOBAL DIM flag_abs 'encoder reads correct symbols

flag_abs = 0

GLOBAL DIM total_pul 'read the number of total pulses

SETCOM(38400,8,2,0,1,14) 'set serial 485 as MODBUS master station,

baud rate is 38400

MODBUSM_DES(1,1) 'set serial 485 as salve station, port is 1.p3-00

MODBUS_LONG(300) = 2 'transfer data with 300,301

MODBUSM_REGEST(98,2,300) 'set P0-49 = 2, update parameters.

MODBUS_REGGET(98,2,300)

TICKS = 1000

WHILE (MODBUS_LONG(300) AND TICKS > 0)

'wait until P0-49 become 0 or time out after 1

second, which means update succeeded or failed

MODBUS_REGGET(98,2,300)

WEND

IF TICKS < 0 THEN

PRINT "servo upgrade failed"

flag_abs = 1

RETURN

ENDIF

MODBUSM_REGGET(100,6,310)

IF MODBUS_LONG(310) = 0 THEN 'encoder status is normal

flag_abs = 0

total_pul = modbus_long(314)

ELSE

PRINT "encoder error"

flag_abs = 2

ENDIF

IF flag_abs = 0 TEHN 'correct

dpos(0) = -total_pul / units(0) 'measured pulse amount is negative, here

580

convert it into positive.

ENDIF

END

Instructions ADDRESS，PROTOCOL，PORT,，SETCOM

MODBUSM_3XGET--Read Input Register

Type Communication Instructions

Description Assign input Modbus value of slave station to local station.

Relevant standard protocol function code is 04, read input register.

Grammar MODBUSM_3XGET (startreg, num, local_reg)

startreg modbus start NO. of slave station, starts from 0.

num the number of register.

local_reg local MODBUS start NO. to get value

Controller General

Example MODBUSM_3XGET(0,9,0) 'copy value of slave register 0-9 to local

register 0-9.

Instructions ADDRESS，PROTOCOL，PORT，SETCOM

MODBUSM_BITSET--Write Coil

Type Communication Instructions

Description Assign local MODBUS bit register value to slave station.

Relevant standard protocol function code is 05 or 15, write coil..

Grammar MODBUSM_BITSET (startreg, num, local_reg)

startreg modbus start NO. of slave station, starts from 0.

num the number of register.

local_reg local MODBUS start NO. to get value

Controller General

Example MODBUSM_BITSET (0,10,0) 'copy value of local register 0-9 to slave

register 0-9.

Instructions ADDRESS，PROTOCOL，PORT，SETCOM

MODBUSM_BITGET--Read Coil

Type Communication Instructions

Description Assign MODBUS bit register value of slave station to local station.

Relevant standard protocol function code is 01: read coil.

Grammar MODBUSM_BITGET (startreg, num, local_reg)

startreg modbus start NO. of slave station, starts from 0.

num the number of register.

local_reg local MODBUS start NO. to get value

581

Controller General

Example MODBUSM_BITGET (0,10,0) ' copy slave modbus-bit value of register

0-9 to local register:0-9

Instructions ADDRESS，PROTOCOL，PORT，SETCOM

MODBUSM_1XGET--Read Isolated Inputs

Type Communication Instructions

Description Assign MODBUS bit register value of slave station to local station.

Relevant standard protocol function code is 02: read isolated inputs0.

Grammar MODBUSM_1XGET (startreg, num, local_reg)

startreg modbus start NO. of slave station, starts from 0.

num the number of register.

local_reg local MODBUS start NO. to get value

Controller General

Example MODBUSM_1XGET (0,10,0) ' copy slave modbus-bit value of register

0-9 to local register:0-9

Instructions ADDRESS，PROTOCOL，PORT，SETCOM

13.7 Direct Command Instructions between Controllers

SEND_RESULT—Read send Result

Type Communication instruction

Description Read send instruction result.

Return value: 0-succeed, others: errors, including error code returned from

controller.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar VAL=SEND_RESULT

Controller Valid in ZMC4XX series controller, version 20170618 support.

Instruction SEND_CMD

SEND_CMD—send Command

Type Communication instruction

Description Master controller sends ZMC_DIRECTCOMMAND instruction to

slave controller, check result in SEND_RESULT.

582

Send BASIC content: cmdstring(parameter list)

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_CMD(cmdstring, selectable parameter list)

cmdstring: command character string

selectable parameter list: numbers can change, no need to add bracket

without parameter

Controller Valid in ZMC4XX series controller, version 20170618 support

Example SEND_CMD("MOVE",DIS1,DIS2,DIS3)

SEND_CMD("MOVEABS",DIS1)

Instruction SEND_RESULT

SEND_CMDAXIS—send Command

Type Communication instruction

Description Master controller sends ZMC_DIRECTCOMMAND instruction to

slave controller, check result in SEND_RESULT.

Send BASIC content: cmdstring(parameter list), AXIS(iaxis)

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_CMDAXIS (cmdstring,iaxis, selectable parameter list)

cmdstring: command character string

iaxis: the axis numebr

selectable parameter list: numbers can change, no need to add bracket

without parameter

Controller Valid in ZMC4XX series controller, version 20170618 support.

Example SEND_CMDAXIS("MOVE",IAXIS,DIS1)

instruction SEND_RESULT，SEND_CMD

SEND_ASSIGN—send Command

Type Communication instruction

Description Master controller sends ZMC_DIRECTCOMMAND instruction to

slave controller, check result in SEND_RESULT.

Send BASIC content: cmdstring(parameter list)=value

Resend message of MODBUSM, slave controller may receive message

583

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_ASSIGN (cmdstring,value, selectable parameter list 可选参数列表)

cmdstring: command character string

value: assigned content

selectable parameter list: numbers can change, no need to add bracket

without parameter

Controller Valid in ZMC4XX series controller, version 20170618 support

Example SEND_ASSIGN("DPOS",0,0) 'generate DPOS(0)=0

SEND_ASSIGN("DPOS(1)",0) 'generate DPOS(1)=0

instruction SEND_RESULT

SEND_QUERY—send Command

Type Communication instruction

Description Master controller sends ZMC_DIRECTCOMMAND instruction to

slave controller, check result in SEND_RESULT.

Send BASIC content: cmdstring(parameter list)

There is no need to add bracket when without parameters.

Received content is filled in TABLE according to SEND_QUERYSET

configuration.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_QUERY (cmdstring, selectable parameter list)

cmdstring: command character string

selectable parameter list: numbers can change, no need to add bracket

without parameter

Controller Valid in ZMC4XX controller, version 20170618 support

Example SEND_QUERYSET(0,1)

SEND_QUERY("?dpos",0) 'table(0) save DPOS(0) content

SEND_QUERY("?REMAIN_BUFFER(1)AXIS(0)",0)

'send character string content

 (“?REMAIN_BUFFER(1) AXIS(0)”)

SEND_QUERYSET(0,2)

SEND_QUERY("?dpos(0),dpos(1)") 'return two data from controller

Instruction SEND_RESULT，SEND_QUERYSET

584

SEND_QUERTSET—send Command

Type Communication instruction

Description Master controller sends ZMC_DIRECTCOMMAND instruction to

slave controller, check result in SEND_RESULT.

Send BASIC content: cmdstring(parameter list)

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_QUERYSET (dtindex, dtnumes)

dtindex: TABLE NO. to save received content.

dtnumes: maximum TABLE numbers for save received content.

Controller Valid in ZMC4XX series controller, version 20170618 support

Example SEND_QUERYSET (0,1)

SEND_QUERYSET (0,1)

Instruction SEND_RESULT，SEND_QUERY

13.8 Send Instructions bewteen File Connection of

Controllers

SEND_ZAR—USB Drive operation

Type Communication instruction

Description Update slave controller procedure through master controller USB

Drive, check the result from MODBUSM_STATE.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_ZAR("ufilename")

ufilename: filename of USB Drive, it supports array of character and

other character string types.

Controller Valid in ZMC4XX series controller, version 20170618 support.

Example SEND_ZAR("1.ZAR")

Instruction MODBUSM_STATE，SEND_PERCENT

585

SEND_FALSH—Data copy

Type Communication instruction

Description Master controller USB Drive and slave controller FLASH copy each

other, ckeck result from MODBUSM_STATE.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_FLASH (dir,uid,flashid)

dir: 1-copy USB Drive to controller FLASH, 0-copy controller FLASH

to USB Drive

uid: file NO. of USB Drive, same rule as U_WRITE

flashid: FLASH NO. of controller

Controller Valid in ZMC4XX series controller, version 20170618 support

Example SEND_FLASH (1,1,1)

Instruction MODBUSM_STATE，SEND_PERCENT

SEND_FILE—Copy USB Drive data

Type Communication instruction

Description Master controller disk and slave controller FLASH copy each other,

which only supports BIN file and Z3P file, there will return to fail if

controller doesn’t support file function.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_FLASH (dir,ufile,controlfile)

dir: 1-copy USB Drive to controller FLASH, 0-copy controller FLASH

to USB Drive

ufile: file name of USB Drive

contrfile: file name of controller

Controller Valid in ZMC4XX series controller, version 20170618 support

Example SEND_FILE(1,"1.bin","1.bin")

Instruction MODBUSM_STATE，SEND_PERCENT

SEND_IFLASH—Copy flash Data

Type Communication instruction

586

Description Master controller disk and slave controller FLASH copy each other, the

result is checked through MODBUS_STATE.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar SEND_IFLASH (dir,id,flashid)

dir: 1-copy USB Drive to controller FLASH, 0-copy controller FLASH

to USB Drive

id: FLASH number of main controller

flashid: FLASH number of controller

Controller Valid in ZMC4XX series controller, version 20170618 support

Example SEND_FLASH (1,1,1)

Instruction MODBUSM_STATE，SEND_PERCENT

SEND_PERCENT—Check Instruction Process

Type Communication insrtuction

Description Return percent of instructions that need long time to finish, like SEND,

this can be used to show process, 0-100.

Resend message of MODBUSM, slave controller may receive message

twice, and scan register twice. Resend SEND message, there is no influence

on controllers. Significant symbolic variable can be modified through

SEND.

Grammar percent = SEND_PERCENT ()

Controller Valid in ZMC4XX series controller, version 20170618 support.

Instruction SEND_ZAR，SEND_FLASH，SEND_FILE

SEND_CONTROL—Check Controller Type

Type USB Drive function

Description Check relevant controller type to ZAR procedure file of master

controller USB Drive, set it in the Zdevelop, avoid mixing master

controller and slave controller.

Grammar id = ZAR_CONTROL ("ufilename")

ufilename: file name of USB Drive, ZAR file

Controller Valid in ZMC4XX series controller, version 20170618 support.

Example id = ZAR_CONTROL("1.ZAR")

IF(id/3000=3) Then 'ZHD series

PRINT "zhd program"

587

ENDIF

Instruction SEND_ZAR，CONTROL

588

Chapter XIV Instructions Related to

System

All date, time parameters or instructions can’t be modified after LOCK.

14.1 Controller Encryption Instructions

APP_PASS-- Password

Type System Instruction

Description Controller APP password.

This password can be used to verify ZAR file to be downloaded, if

password doesn’t match, then ZAR can not be loaded into controller.

APP_PASS can not be modified after LOCK.

APP_PASS is encrypted through irreversible algorithm, once forgotten, it

can not recover any more.

Grammar APP_PASS(pass)

pass: alphabet or number or special sign such as ”_”, total number can

not exceed 16 characters. And it can not set as variable or expression,

otherwise, variable or expression name will be regarded as password.

Controller General

Example APP_PASS(Zmotion)

Instructions LOCK

LOCK--Lock Controller

Type System Instruction

Description Lock controller, no operation is allowed to controller after lock.

ZPJ project can be modified on PC, but it can not be loaded to controller,

but generated zar file still can be loaded into controller.

Enumeration operation will be forbidden in controller, such as, print all

array data, but specific value can be printed.

APP_PASS is encrypted through Irreversible algorithm, once forgotten, it

can not recover any more. And pass can not set as variable or expression,

otherwise, variable or expression name will be regarded as password.

Grammar LOCK (pass)

pass: alphabet or number or special sign such as ”_”, total number can

not exceed 16 characters

Controller General

589

Example LOCK(passwd) 'lock controller, password is passwd

Instructions UNLOCK

UNLOCK--Unlock Controller

Type System Instruction

Description Unlock Controller.

LOCK password is encrypted through Irreversible algorithm, once

forgotten, it can not recover any more.

Grammar UNLOCK (pass)

pass password when used LOCK to lock controller.

Controller General

Instructions LOCK

14.2 System Time Instructions

DATE--System Date

Type System Parameters

Description Set system date, it supports power-failure saving, or return number of

days since 1/1/2000.

Date can not be modified in simulator.

Grammar DATE=DD:MM:YYYY or DD:MM:YY

Controller General

Example DATE=27:2:13

Online command input

>>PRINT DATE

Output:4806

It is 2013:2:27 – 2000:1:1 = 4806

Instructions DATE$, RTC_DATE

DATE$--System Date 2

Type String Functions

Description String function, return date set by DATE in format: DD:MM:YYYY.

Grammar DATE$

Controller General

Example DATE=27:2:13

Online command input

>>PRINT DATE$

590

Output: 27:02:2013

Instructions DATE, RTC_DATE

DAY--System Week

Type System Parameters

Description Set week time of system clock, 0-6, 0 indicates Sunday, it supports

power-failure saving

Date can not be modified in simulator.

DAY will not change as per DATE or RTC_DATE, they are independent to

each other.

Grammar VAR=DAY, DAY=expression

Controller General

Example Example 1：

DAY = 3

Example 2:

Online command input

>>PRINT DAY

Output: 3

Instructions DAY$

DAY$--System Week 2

Type String Functions

Description String Functions, return week set by DAY.

DAY$ will not change as per DATE or RTC_DATE, they are independent

to each other.

Grammar DAY$

Controller General

Example Online command input

>>PRINT DAY$

Output: Wednesday

Instructions DAY

RTC_DATE--System Date

Type System Parameters

Description Set or get system date, it supports power-failure saving, time starts

from 1/1/2000.

The format is not the same as instruction DATE. Return value is integer.

Date can not be modified in simulator.

591

Grammar RTC_DATE = YYYYMMDD or YYMMDD

VAR = RTC_DATE[(days)]

Gets the days before and after the specified number of days, such as leap

year. Valid in firmware version 20170524 or above.

Controller General

Example RTC_DATE = 20130227

Online command input

>>PRINT RTC_DATE

Output: 20130227

DIM gRTC_Date,CurDate,curYear,curMonth,curDay

?RTC_DATE

gRTC_Date = RTC_DATE

CurDate=gRTC_Date mod 20000000

?CurDate

curYear=int(CurDate/10000)

?curYear

curMonth=int((CurDate-curYear*10000)/100)

?curMonth

curDay=CurDate-curYear*10000-curMonth*100

?curDay

Instructions DATE, DATE$

TIME--System Time

Type System Parameters

Description Set system clock time, return total seconds amount after 0 o'clock.

Date can not be modified in system.

Grammar TIME=hh:mm:ss

Controller General

Example Example One:

TIME=11:14:40

Example two:

Online command input

>>PRINT TIME

Output: 40541

Instructions TIME$, RTC_TIME

TIME$--System Time 2

Type String Functions

Description String Functions, return present time in format of 24-hour, hh:mm:ss

592

Grammar TIME$

Controller General

Example Online command input

>>PRINT TIME$

Output:11:29:46

Instructions TIME, RTC_TIME

RTC_TIME--System Time 3

Type System Parameters

Description Set or get system time.

Expression mode is different from TIME.

Grammar RTC_TIME = hhmmss

Controller General

Example Online command input

>>RTC_TIME=113706

>>PRINT RTC_TIME

Output: 113706

Instructions TIME, TIME$

14.3 Axis System Parameter Instructions

WDOG--Total Axes Enable

Type System Parameters

Description Enable all axes.

Use EtherCAT fieldbus, WDOG=1.

Grammar WDOG=0/1

Controller General

Example WDOG=1 'enable all axes.

Instructions AXIS_ENABLE

DISABLE_GROUP--Axes Group

Type System Instruction

Description Set multi axes as one group. Enable of all axes in group will be closed if

alarm of any axis in group comes, this is only for EtherCAT axes, no

meaning in pulse axes.

Usually used in multi work stations.

Grammar DISABLE_GROUP(AXIS1, AXIS2, …)

593

Controller General

Example DISABLE_GROUP(-1) 'cancel all group setting, alarm will comes:

WDOG is closed.

DISABLE_GROUP(0,5,1) 'axis 0,5,1 as group one.

DISABLE_GROUP(4,2) 'axis 4,2 as group two.

In this situation, alarm of any axis in group one comes, all axes in group one

will be disabled, but group two is normal, the same rule as group two.

Instructions WDOG, AXIS_ENABLE

ERROR_AXIS--Error Axis

Type System Status

Description First axis in which error happens, if return -1, then no error axes.

Grammar Var=ERROR_AXIS

Controller General

Example ?ERROR_AXIS 'print the first error axis, result:-1, no error axis at present.

Instructions MOTION_ERROR

MOTION_ERROR--Error Axes List

Type System Status

Description List of error axes.

Each bit means one axis, bit0-n indicates axis0-n.

Grammar Var=MOTION_ERROR

Controller General

Example Print MOTION_ERROR 'print result, 0-no error

Instructions ERROR_AXIS

ERROR_SET--Error Output

Type System Instruction

Description Output will open automatically when there is error in BASIC

procedure. And it will write error information into relevant MODBUS

register, BASIC procedure will recover to run when output status

recovers.

Register length is 32 bytes at least.

Grammar ERROR_SET (outputs,Modbus register address[,errorname])

errorname: set one SUB process for temporary management, this

function will be called when there is pause due to Grammar

594

errors. Don’t use instructions that may cause block, such as

WAIT, it should be simple. If Grammar errors happen in

SUB process itself, then it will not be processed any more.

Controller General

Example ERROR_SET(1,200)

Mov(30 'there is spell error, now run wrongly, then output 1 opens,

and record error information in register.

 Modbus_string(200,32) ="sample_move.bas,6,e2043"

END

SUB error_deal() 'call function when there is error

?''enter error to deal sub'' 'print

'function process needs to be written

END SUB

input command: ?MODBUS_STRING(200,32) to check error information.

MODBUS_STRING(200,32) ="sample_move.bas,6,e2043"

sample_move.bas: file name

6: line number where error happens

e2043: error code

RADIUS_ERRSET—Circular Interpolation Check

Type System Instruction

Description Check the configuration of circular interpolation from center of circle

to radius.

Grammar RADIUS_ERRSET = mode

mode: 0- default value, no need to check

1- the radius of start point and end point are different (over 2

pulses), it will correct automatically.

2- It is inconsistent, return 1006 error.

Valid after 2022.01.11.

Controller General

Example RADIUS_ERRSET = 2 'wrong circular command coordinate, report

1006, then command is not executed.

MOVECIRC(200,0,98,0,1) 'draw circular arc

RADIUS_ERRSET = 1 'it will correct automatically if circular

command coordinate is wrong, and it will hint

Center error, radius:98.000000

radiuend:102.000000 diff.

?RADIUS_ERRSET 'set to check

Instructions MOVECIRC

595

14.4 IP Parameter Instructions

IP_ADDRESS--IP Address

Type System Parameters, which are saved into FLASH automatically

Description Controller IP address.

Only valid in controllers with Ethernet port, return 32 bits integer when

reading, see example one.

Modification will take effect immediately, connection will break when use

Ethernet, it needs to connect again.

When try to connect with controller through single network card, then

ensure network card is in the same network segment.

If there are multi network cards, then different network cards should use

different network segments, set controller network segment same as network

card to be connected.

When multiple cards, it needs to restart after modifying IP address.

Grammar IP_ADDRESS = dot.dot.dot.dot

Controller General

Example Online command input

>>IP_ADDRESS=192.168.0.26

>>PRINT IP_ADDRESS

Output :436250816

Conversion process details as follow：

Convert four segments to binary type.

192--1100 0000

168--1010 1000

0--0000 0000

26--0001 1010

Reassociation of binary data

 26 0 168 192

 0001 1010 0000 0000 1010 1000 1100 0000

Convert to decimal data

436250816

Instructions IP_GATEWAY, IP_NETMASK

596

IP_ADDRESS2—IP Address 2

Type System Parameters, which are saved into FLASH automatically

Description The second IP address of ZMC5XX series controller.

Valid in ZMC5XX series controller, default IP address is 192.168.1.11,

return 32 bits integer when reading.

Modification will take effect immediately, connection will break when use

Ethernet, it needs to connect again.

When try to connect with controller through single network card, then

ensure network card is in the same network segment.

if there are multi network cards, then different network cards should use

different network segments, set controller network segment same as network

card to be connected.

When multiple cards, it needs to restart after modifying IP address.

Grammar IP_ADDRESS2 = dot.dot.dot.dot

Controller Valid in ZMC5XX series controller

Example Remote command input:

>>IP_ADDRESS=192.168.1.26

Instruction IP_ADDRESS

IP_GATEWAY--IP Gateway

Type System Parameters, which are saved into FLASH automatically

Description Controller IP gateway.

Only valid in controller with Ethernet port, return 32 bits integer when to

read.

Grammar IP_GATEWAY = dot.dot.dot.dot

Controller General

Example Online command input

>>IP_GATEWAY =192.168.0.1

>>PRINT IP_GATEWAY

Output:16820416

Conversion process see IP_ADDRESS for reference.

Instructions IP_NETMASK, IP_ADDRESS

IP_NETMASK -- IP Mask

Type System Parameters, which are saved into FLASH automatically

Description Controller IP network mask.

Only valid in controller with Ethernet port, return 32 bits integer when to

read.

597

Grammar IP_NETMASK=dot.dot.dot.dot

Controller General

Example Online command input

>>IP_NETMASK =255.255.252.0

>>PRINT IP_NETMASK

Output :16580607

Conversion process see IP_ADDRESS for reference.

Instructions IP_GATEWAY, IP_ADDRESS

IP_IFDHCP—Get IP Address Automatically

Type System parameters

Description Whether use DHCP set, no use by default.

Get IP address automatically. This is set, fixed IP of ZDEVELOP is useless,

it can only be gained automatically. And it needs restart after parameter

modification.

Grammar IP_IFDHCP=1-0 1-get IP automatically 0-use fixed IP

Controller General

Example Online command input

>>IP_IFDHCP =1

Instruction IP_ADDRESS

IP_IFDHCP2—Get IP Address Automatically 2

Type System parameters

Description Whether the second port of ZMC5XX series controller use DHCP set,

no use by default.

Get IP address automatically. This is set, fixed IP of ZDEVELOP is useless,

it can only be gained automatically. And it needs restart after parameter

modification.

Grammar IP_IFDHCP2=1/0 1-get IP automatically 0-use fixed IP

Controller Valid in ZMC5XX series controller

Example Online command input

>>IP_IFDHCP2 =1

Instruction IP_ADDRESS

14.5 Controller Information Instructions

VERSION_FPGA--System FPGA Version

Type System Status

598

Description System FPGA version No.

Grammar VAR1=VERSION_FPGA

Controller General

Example ?*VERSION_FPGA 'print FPGA version

Result: 240104

“State the controller” – SoftVersion”

VERSION_BUILD--System Firmware Creating Date

Type System Status

Description The date that creates the system firmware.

Grammar VAR1=VERSION_BUILD

Controller General

Example ?*VERSION_BUILD 'print firmware creating date

Result: 20240111

“State the controller” – SoftVersion”

VERSION_DATE--System Firmware Version

Type System Status

Description System firmware version.

Grammar VAR1=VERSION_DATE

Controller General

Example ?*VERSION_DATE 'print firmware version, result is 20180511

“State the controller” – SoftVersion”

VERSION--System Software Version

Type System Status

Description System software version NO..

Grammar VAR1=VERSION

Controller General

Example ?*VERSION 'print software version

599

“State the controller” – SoftVersion”

ID_HARDWARE--Controller Hardware Type

Type Parameters to read

Description Return controller hardware type.

Grammar Val=ID_HARDWARE

Controller General

Example Online command input

>>PRINT ID_HARDWARE 'print controller hardware type.

Output: 464

“State the controller” – SoftVersion”

Instructions CONTROL

CONTROL--Controller Software Model

Type Parameters to read

Description Return controller software model.

Grammar Val=CONTROL

Controller General

Example Online command input

>>PRINT CONTROL 'print controller model name.

Output: 464

600

“State the controller” – SoftType”

Instructions ID_HARDWARE

SYSTEM_ZSET--Controller Setting

Type System Parameters

Description Controller Setting

Set parameters:

bit0: 1-VPSPEED uses interpolation speed by default, 0-VPSPEED uses

single axis speed.

bit1: 1-use precision output mode of MOVE_OP, 0-use normal mode of

MOVE_OP

bit4: 1-in terms of axis with encoder, use MOVE_OP precision mode of

encoder position.

bit7: 1-bus field clock optimization, 0-pulse clock optimization

Once SYSTEM_ZEST opens, all outputs with precision output will change

as precision mode. For some controllers, they only can operate one precision

output in a controller period. It is not recommended for new versions,

instead of using AXIS_ZEST directly to open precision output mode for

main axis.

Valid in firmware version above 20170505.

MPOS should follow DPOS before using, since encoder precision function

is related to drive response, the smoother speed is, the better precision

output will be.

Bus clock optimization is opened after bus opened. Check whether it is used

through ?*ETHERCAT.

>>?*ethercat

Slot:0 contain 1 nodes.

dc:ecat-sensitive.Lostcount:0-0

Grammar To read: value=SYSTEM_ZSET

To write: SYSTEM_ZSET=value

601

Controller General

Example SYSTEM_ZSET = 1 ‘set bit0 as 1

Instructions MOVE_OP, AXIS_ZSET

LEDOUT--Controller Indicator Light

Type System Instruction

Description Operate controller indicator light.

Power indicator light can’t be operated.

Grammar LEDOUT (num,state)

num indicator light number,1-RUN,2-ALM

 state status, 0-close, 1-open

Controller General

Example LEDOUT(1,0) 'close RUN indicator

LEDOUT (2,0) 'close ALM indicator

SERIAL_NUMBER--Unique ID of Controller

Type System Parameters to Read

Description Return unique ID of controller.

It is a unique serial number, generated ZAR file also can be bound with this

ID, then this ZAR can only be used in this controller.

Grammar Var=SERIAL_NUMBER

Controller General

Example Example 1

PRINT SERIAL_NUMBER 'print controller ID

Print result：

191201941

Example 2: 9 bits ID of controller is stored in VR, due to ZMC below 4xx

series VR is single-precision float type, which means it only has 8 valid

value, it can use 2 VR for store.

?SERIAL_NUMBER

GLOBAL giA,giB

giA = SERIAL_NUMBER MOD 100000 'get remainder

VR(0)=giA

giB = SERIAL_NUMBER \ 100000 'exact division

VR(1)=giB

PRINT giA,VR(0)

PRINT giB,VR(1)

Print result:

191201941

602

1941 1941

1912 1912

SERVO_PERIOD--Fieldbus Communication Period

Type System Parameters

Description Fieldbus servo communication period.

Default value:1000 ms, modification function can be achieved through

updating firmware.

ZMC 4XX series controller with standard firmware version 20170713,

ZMC4XX series controller with “fast” firmware version 20190106, ZMC

5XX series controller with firmware version 20180307 add period-

modification function supported for users, but it must be in the range, restart

after modification can be taken effect.

When use Rtex drive, set as follow:

When controller period is 500us, set drive P7.20 as 3, set drive P7.21 as 1.

When controller period is 1000us, set drive P7.20 as 6, set drive P7.21 as 1.

See examples to check Rtex drive motor setting.

Grammar value=SERVO_PERIOD

Controller General

Example Online commands print controller communication period and Rtex drive

motor setting.

>>PRINT SERVO_PERIOD 'print servo update period, result is 1000

>>DRIVE_READ(7*256+20)AXIS(0) 'print Rtex axis 0 drive period ratio

setting

>>DRIVE_READ(7*256+21)AXIS(0) 'print Rtex axis 0 drive period ratio

value setting

Some firmware modification period:

SERVO_PERIOD=500

SERVO_PERIOD=1000

Instructions SERVO

SYS_ZFEATURE—System Specification

Type System parameters

Description Get system maximum specification.

Valid in ECI controller with firmware version above 150830 and ZMC4xx

series controller with firmware version above 170530.

Grammar num = SYS_ZFEATURE (code)

num: return value

code: get data type

603

0- maximum virtual axis amounts

 1- the number that supports motor

 2- IN (the number of itself inputs)

 3- OUT (the number of itself outputs)

 4- AIN (the number of itself analog inputs)

 5- AOUT (the number of itself analog outputs)

 6- the number of PWM

 7- the number of BASIC tasks, no interrupt tasks.

 8- the number of bus slot

 9- the number of FILE 3

 10- the number of serial-port connection

 11- the number of ethernet connection

12- the number of custom network connection, 0 – unsupported

13- the number of master stations in network interconnection, 0 –

unsupported (for slave station, always support).

 14- the number of FLASH blocks

 15- the size of FLASH block

 16- the number of VR

 17- the number of MODBUS_BIT

 18- the number of MODBUS_REG

 19- the number of timers

 20- array space

21- maximum virtual inputs, which corresponds to the number of

PLC X registers.

22- maximum virtual outputs, which corresponds to the number

of PLC Y registers.

 23- maximum virtual analog inputs AIN

 24- maximum virtual analog outputs AOUT

 25- PLC counter

 26- PLC S register

 27- PLC V register

 28- PLC Z register

 29- PLC L register

 30- the number of HMI, (net HMI and ontology HMI)

 31- the number of HMI itself

 32- the largest video memories

 33- whether ZINDEX function is supported

 34- the number of biggest RTLOG

 35- the number of supported sub-card (for former version, they

don’t support, for 7XX series, max is 16)

 36- the number of current sub-cards (include virtual sub-card)

 37- the number of current sub-cards (no virtual sub-card)

 39- max specification of PORT (there are adds in 230814)

 40- ZV max latches

604

 41- ZV max tasks recommended

 42- max byte space for ZV latching

 50- whether supports NC function

 51- whether supports CANOPEN

 52- whether supports robotic arm

 53- the number of ECAT bus slots

 54- the number of RTEX bus slots

 55- the number of XY2 bus slots

 56- whether supports MODBUSM function

57- whether supports SEND command from MODBUSM

58- whether supports U disk

59- the number of network encoders (teaching box handwheel)

60- fastest period

61- lowest period

62- ZAR program space (kbyts)

63- Nandflash space (kbyts)

64- Nandflash remaining space (kybts)

101- whether integrates as ZMIO

102- max ZMIO inputs

103- max ZMIO outputs

104- max ZMIO ADs

105- max ZMIO DAs

Controller General

Example ?SYS_ZFEATURE (0) 'print maximum axis

?SYS_ZFEATURE (17) 'print the number of MODBUS_BIT

Instruction /

SYS_IOSET—Special IO Switch

Type System parameters

Description Special IO switch between commonly turn on and commonly turn off .

Grammar SYS_IOSET = value

0: default mode, it selects special inputs automatically before compatibility

according to controller types, such as, origin position limit, etc.

1: ZMC mode, origin and other special inputs are commonly closed by

default.

2: ECI mode, origin and other special inputs are commonly opened by

default.

Controller General

Example SYS_IOSET = 1

605

LASER_SET -- Energy Parallel Port Output Switch

Type System parameters

Description Set whether energy parallel port uses AOUT instruction or OP

instruction to output.

Grammar LASER_SET(isel, value)

 isel: 1 – set whether energy parallel port uses AOUT command to output.

 value: 1 – enable AOUT output

Controller Valid in 504SCAN.

Example LASER_SET(1,1) ‘use AOUT to set laser energy, now, relative

original OP instruction is invalid.

ZML_DEFSHIFT – ZML Device “shift” Time

Type System parameters

Description Default shift time of all ZML devices, the unit is ns. After modification,

will be saved into FLASH, and please restart.

This function is added after version_build 20240719.

Grammar value = ZML_DEFSHIFT

Controller General

Example Online command print

>>PRINT ZML_DEFSHIFT

14.6 Log Instructions

Real time error log function – save common error messages through real-time FIFO, but for some

errors that are generated usually or cyclically, it will not write the error log.

This is valid in controllers above ZMC4XX series with firmware above 220907, because there is

no enough storage for former controllers.

RTLOG_COUNT – The Number of Current Logs

Type Log Instructions

Description Read the number of logs that are recorded currently, and the max

number can be checked through SYS_ZFEATURE(34).

Grammar VAL = RTLOG_COUNT()

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example ?RTLOG_COUNT

606

Instructions RTLOG_CLEAR

RTLOG_CLEAR – Clear Current Logs

Type Log Instructions

Description Clear current recorded logs.

Grammar RTLOG_CLEAR ([number])

 number: the number of logs to be cleared, which starts to clear from the

first recorded log, namely, clear all logs. The default is -1.

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_CLEAR (10) ‘clear the former 10 logs

RTLOG_CLEAR (-10) ‘clear all logs

Instructions RTLOG_COUNT

RTLOG_ADD – Add Error Message of Log

Type Log Instructions

Description For application level, system logs can be used to record error messages.

Grammar RTLOG_ADD (code, “string”)

 code: error No.

 string: character string, error message

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_ADD (1, “error”)

Instructions RTLOG_CLEAR

RTLOG_CODE – Get Error No. of Log

Type Log Instructions

Description Get error No. of log.

Grammar VAL = RTLOG_CODE ([index])

 index: log selection, default (0) means recent logs, when index is -1,

which means the most former logs.

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_CLEAR (-1) 'clear

FOR i = 1 TO 20

RTLOG_ADD(i,"123") 'write into log

WA(10)

NEXT

?RTLOG_CODE(0) 'get log No.

607

Print result: 20

Instructions RTLOG_CLEAR

RTLOG_TIME$ – Get Error Time of Log

Type Log Instructions

Description Get error time of log.

Grammar String = RTLOG_TIME$ ([index])

 index: log selection, default (0) means recent logs, when index is -1,

which means the most former logs.

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_CLEAR (-1)

FOR i = 1 TO 20

RTLOG_ADD(i,"123")

WA(10)

NEXT

?RTLOG_TIME$(0) 'get recent log time

Print result: 2022/10/09 16:53:11

Instructions RTLOG_CODE

RTLOG_INFO – Get Error Message of Log

Type Character String Functions

Description Get error information of logs.

Grammar String = RTLOG_INFO ([index])

 index: log selection, default (0) means recent logs, when index is -1,

which means the most former logs.

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_CLEAR (-1)

FOR i = 1 TO 20

RTLOG_ADD(i,"123")

WA(10)

NEXT

?RTLOG_INFO(0) 'get recent log information

Print result: 123

Instructions RTLOG_INFO2

RTLOG_INFO2 – Get Error Message of Log (2)

Type Character String Functions

608

Description Get error information of logs, including error No. and error time.

Grammar String = RTLOG_INFO ([index])

 index: log selection, default (0) means recent logs, when index is -1,

which means the most former logs.

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_CLEAR (-1)

FOR i = 1 TO 20

RTLOG_ADD(i,"123")

WA(10)

NEXT

?RTLOG_INFO(0) 'get recent log information

Print result: err20, 2022/10/09 16:53:11,123

Instructions RTLOG_INFO

?* RTLOG – Clear Current Recorded Logs

Type Log Instructions

Description Rapidly print recent 10 logs.

Grammar ?*RTLOG

Controller Valid in controllers above ZMC4XX series and with firmware above

220907.

Example RTLOG_CLEAR (-1)

FOR i = 1 TO 20

RTLOG_ADD(i,"123")

WA(10)

NEXT

?*RTLOG

Print result:

RTLOG_COUNT: 20

err20,2022/10/09 17:02:48,123

err19,2022/10/09 17:02:48,123

err18,2022/10/09 17:02:48,123

err17,2022/10/09 17:02:48,123

err16,2022/10/09 17:02:48,123

err15,2022/10/09 17:02:48,123

err14,2022/10/09 17:02:48,123

err13,2022/10/09 17:02:48,123

err12,2022/10/09 17:02:48,123

err11,2022/10/09 17:02:48,123

Instructions RTLOG_CODE

609

14.7 TABLE Array Instructions

TABLE--System Default Array

Type System Array

Description Default global array in system, all procedure can access.

Buffer area for data record, cam data list, screw compensation list,

robotic arm parameters, all are saved in TABLE.

Grammar TABLE(index) = value,VAR1 = TABLE(index), TABLE(index [, value1..])

Controller General

Example TABLE(0)=10 'assign 10 to table(0)

TABLE(10,100,200,300) 'table(10) is assigned as 100, table(11) is assigned

as 200, table(12) is assigned as 300.

Instructions TSIZE

TSIZE – Table Size

Type System Parameters

Description The number of all elements in TABLE, the size can be modified.

Do modify the table size at first of procedure, that is, before other array

definitions (the best is the first line code).

Don’t exceed TABLE maximum space.

Grammar Var=TSIZE TSIZE=Value

Controller General

Example Read:

PRINT TSIZE 'print table size of controller

Set:

TSIZE=10000 'set table size, don’t exceed max size of controller table.

Instructions TABLE

TABLESTRING—Print table in String format

Type Character string function

Description Print data in table according to string format.

Data-converse automatically, printed data is ASCII Code.

Grammar TABLESTRING(index, length)

index: initial address of print data

length: data length to print

Controller General

Example Example 1

610

TABLESTRI NG(0,5)= "abc" 'save string, starts from tablestring(0)

PRINT TABLESTRING(0,5) 'print saved string

'print result: abc

Example 2

TABLE(100,68,58,92)

PRINT TABLESTRING(100,3) 'print data in string format, converse into

ASCII Code

'print result：D:\

In ZDevelop, “view-register”, can check every position’s data in TABLE

register.

14.8 Instructions Related to Oscilloscope

TRIGGER – Trigger Oscilloscope

Type System Instruction

Description Start to execute data sampling through oscilloscope.

Valid in firmware version above 150723, the function can be used together

with ZDevelop – Scope.

When oscilloscope opens continuous acquisition, don’t call TRIGGER

instruction in Basic, it is recommended to trigger manually.

Grammar TRIGGER

Controller General

Example TRIGGER ‘oscilloscope starts to sample the speed of each motion,

then save them in TABLE (scope – functrion

coniguration).

MOVE(10000)

611

Instructions SCOPE

SCOPE – Data Acquisition

Type System Instruction

Description Data acquisition, then save into TABLE, 8 types data can be sampled at

the same time.

Use TRIGGER to open automatic sampling, sampling time = sampled

period * sampled numbers

Grammar SCOPE(enable[, period])

SCOPE(enable, period, table_start, table_stop, p0 [,p1 [,p2 [,p3 [,p4 [,p5

[,p6 [,p7]]]]]]])

enable: enable or not

period: system period, it is generally 1ms, which can be viewed by

SERVO_PERIOD

table_start: TABLE starting position that saves sampling time.

table_stop: TABLE end position, minus the starting position is the

number of samples

p0~p7: sampling data type, equally divided and stored in the TABLE

Controller General

Example BASE(0)

ATYPE=1

UNITS=100

DPOS=0

SPEED=100

ACCEL=1000

SCOPE(ON,10,0,1000,DPOS(0),MSPEED(0))

'sample dpos and mspeed every 10ms and store them

in TABLE 0~1000, 0~499 for dpos, 500~1000 for

mspeed, total sampling 1000/2*10=5s

TRIGGER 'start sampling

MOVE(10000)

Instructions TRIGGER, SCOPE_POS

SCOPE_POS – Point Numbers Acquisition

Type System Instruction

Description It is only read, return the number of points sampled by SCOPE

currently.

Grammar VAR = SCOPE_POS

Controller General

Example BASE(0)

ATYPE=1

612

UNITS=100

DPOS=0

SPEED=100

ACCEL-1000

SCOPE(ON,10,0,1000,DPOS(0),MSPEED(0)) ‘sample configuration

TRIGGER ‘start to sample

MOVE(10000)

WHILE 1

?*SCOPE_POS ‘return to current saved sampled points

WEND

Instructions SCOPE

14.9 Instructions Related to VR

CLEAR--Clear VR

Type System Instruction

Description Clear all data in VR.

Grammar CLEAR()

Controller General

Example CLEAR() 'clear all data in VR

Instructions VR

VR—Power Failure Storage

Type System Instruction

Description Power failure saving type register, 32 bits float.

Register numbers differ in different controller models

Used to saved float type data, use same space with VR_INT and

VR_STRIN.

Grammar VR(index) = value , VAR1 = VR(index)

Controller General

Example VR(0) = 10

aaa = VR(0)

?aaa

Print result: 10.5800

Instructions VR_INT, VRSTRING

VR_INT--Integer Stored when Power Failure

Type System Instruction

613

Description Power failure saving type register, 32 bits integer.

Register numbers differ in different controller models

Used to saved integer type data, use same space with VR and VR_STRIN.

Grammar VR_INT(index) = value, VAR1 = VR_INT(index)

Controller General

Example VR(0) = 10.58

aaa = VR_INT(0)

?aaa

Print result: 10, only keep integer part.

Instructions VR, VRSTRING

VRSTRING--String Stored when Power Failure

Type String Functions

Description Power failure saving type register, used to save string.

String data will be saved as ASCII, use same space with VR_INT and V.one

character consumes one VR space.

Grammar VRSTRING (index[, chares])

index start VR NO., starts from 0.

 chares total character numbers to be read

Controller General

Example Online command input

>> VRSTRING (0, 8) = "abc" 'save string.

>>PRINT VRSTRING (0, 8)

Output: abc

Instructions VR, VR_INT

14.10 Instructions Related to 7XX Series

CARD_INFO – Read & Write Control Card Information

Type Read and write control card information.

Description Read information grammar:

var = CARD_INFO (cardnum, sel)

 cardnum: sub card No., 0-N-1 (N: control card numbers; when there is

no sub card, N is -1)

 sel: information No.

Value Description

0 The total number of returned sub cards, now fill 0 for cardnum.

1 DEVICE, device No., hardid.

2 VERSION, version

3 Sub card DIP, only valid for PCI card

4 Reserved

614

5 Sub card unique No., unique No. of the last PCI card is used as

the unique No. of RT.

6 Reserved special No.

7 Reserved

8 IO offset, 8 aligns, it will make the order automatically when

powered on.

9 AIO offset

10 the number of INs

11 the number of OPs

12 the number of AINs

13 the number of AOUTs

14 Reserved

15 the number of OP of HW

16 the number of pulse axes

17 the number of encoder axes

18 the number of Ecat bus

19 the number of scan

20 the number of 3D galvanometers

21 Power failure storage, the number of VR, it is without VR

generally for XPCI.

22 Offset of VR, numbering automatically

23 the number of PWM

24 PWM starting No. on sub card.

Write information grammar:

CARD_INFO (cardnum, sel) = value

 cardnum: sub card No., 0 - default

 sel: information No.

Value Description

8 IO offset, 8 aligns, it will make the order automatically when

powered on.

Note: value must be multiple of 8.

9 AIO offset, it will make the order automatically when powered

on.

Grammar GLOBAL value

value=CARD_INFO(0 --1 -1 , 1) read control card device No.

?value

END

?*CARD – Print Control Card Information

Type Control Card Instruction

Description Print sub card information (in ZDevelop – send ?*CARD in “output”)

Grammar ?*CARD

HardId: hardware version

Pul: pulses

In: inputs

Op: outputs

Ad: analog inputs

Da: analog outputs

615

Pwm: PWM numbers

flash: flash size

size: ROM size

serial: card No.

license: parameters configuration

Example ?*CARD

Print result:

REG_CARD – Control Card Latch

Type Control Card Instruction

Description Select latch. When multiple sub cards support latch, switch is valid.

It is used together with REGINPUTS and REGIST, when REGIST is called,

it supports switch immediately.

Latch position: REG_POSE, REG_POSF, REG_POSG, REG_POSH.

Latch channel: MARKE, MARKF, MARKG,MARKH (it can extend 8

channels at most).

Grammar REG_CARD = value

Use specific latch of axis, set REG_CARD = -1, then set its remainder value

as the card No. of IO that operates latch.

Example /

616

Chapter XV Instructions Related to Storage

Zmotion motion controller has internal FLASH memorizer, some models have external

memorizer interfaces, such as USB Drive, SD card, see hardware manual for reference.

USB drive or SD card should be converted to FAT format.

15.1 U Disk Instructions

FILE--Operate Files in USB Drive

Type Files Instructions

Description Upload and search files in controller or in USB drive.

Choose functions as per relevant string.

fat 32 and fat 16 can be read by U disk, it is invalid in ntfs.

It is recommended to use USB2.0 for controllers below 4xx series, and

USB3.0 is used for 4xx controllers or above.

VPLC 5 series are Linux systems, read filename is case-sensitive, name

must be capital.

Grammar value = FILE "function" ,…

"LOAD_ZAR" FILE"LOAD_ZAR", "filename"

Load the upgrade ZAR file in USB drive.

filename: procedure file name

If upgrade fails, it will return 0 and output reasons

through WARN.

If it succeeds, ZAR file will start automatically, which

means return value of TRUE is useless.

interruption marks in debugging mode will be

cleared after upgrade is finished.

617

"LOAD_TCF" FILE"LOAD_TCF", "filename", tableindex, maxsize

Read unique TCP file.

filenam: file name.

tableindex: start TABLE NO. to save data.

maxsize: total TABLE index to save data.

TABLE0 Mark Point

TABLE1 Total Points

TABLE2 Glue Head No.

TABLE100 Type of Point First Point

TABLE101 X coordinate

TABLE102 Y coordinate

TABLE103 Z coordinate

TABLE104 Reserved

TABLE105 Type of Point Second Point

TABLE106 X coordinate

TABLE107 Y coordinate

TABLE108 Z coordinate

TABLE109 Reserved

"LOAD_BYTE" FILE"LOAD_BYTE", "filename", tableIndex, maxsize,

offset

Load files by bytes.

filename: File Name, when reading csv file, data needs

to be put in the first column.

tableindex: Start TABLE index to save data.

maxsize: Total TABLE index to save data.

offset: file bytes offset where starts to read.

TABLE0 Total Bytes

TABLE1 Byte is read firstly.

TABLE2 Second byte

TABLEn The Nth byte

"FIND_FIRST" FILE "FIND_FIRST", type, vr [,dir]

Search files in USB drive. Add selectable parameters,

dir, character string parameter.

type:1-file/2-folder/".extend" file suffix name.

vr: found result will be saved in vrstring(vr), if data

exceeds VR space, then will be saved in

MODBUS_STRING.

dir: assign the path to search, in character string

expression format. When not assign, it will search from

root directory of U disk by fault.

"FIND_NEXT" FILE "FIND_NEXT", vr

Search the next file in USB drive.

vr: result will be saved in vrstring(vr), if data exceeds

VR space, then will be saved in MODBUS_STRING.

618

function: function selection

"FLASH_FIRST" FILE "FLASH _FIRST", type, vr

Search FLASH file, only support BIN and Z3P format.

Type:1-file/2-folder/".extend" file suffix name.

vr: result will be saved in vrstring(vr), if data exceeds

VR space, then will be saved in MODBUS_STRING.

"FLASH_NEXT" FILE "FLASH _NEXT", vr

Search the next flash file.

vr: result will be saved in vrstring(vr), if data exceeds

VR space, then will be saved in MODBUS_STRING.

"FLASH_DEL" FILE "FLASH_DEL", “fileorddir”

Delete selected file.

file: full name of file, and with extension name.

Support delete folder, can be with symbol drive A, C

Drive C means FLASH catalogue, without drive

symbol is FLASH catalogue by default.

Drive A means USB drive.

"DELETE" FILE "DELETE", "filename"

Delete selected file in USB drive. For controllers below

ZMC4XX, they only support Z3P and BIN type files.

For controllers below ZMC4XX, the firmware version is

after 20240719, controllers’ NAND flash type add CSV

type.

Filename: full name of file, with extension name.

"COPY_FROM" FILE "COPY_FROM", "FLASH file name"[, "file name

in USB drive"]

Copy flash file to USB drive, support BIN and Z3P file.

Rule of FLASH file name: SD block number. BIN

Like: SD0.BIN is flash block 0,

SD1.BIN is flash block 1

"COPY_TO" FILE "COPY_TO", "file name in USB drive"[, "FLASH

file name"]

Copy file in USB drive to flash, support BIN and Z3P.

"FLASH_COPY" FILE "FLASH_COPY" "src","des"

Support copy for folder, can be with symbol drive A,C.

C Drive means FLASH catalogue

A Drive means USB Drive.

"MAKE_DIR" FILE "MAKE_DIR" "path"

"PATHD" FILE "PATHD" "dir"

Valid in VPLC5XX and VPLC7XX whose firmware

version is 230909 and above.

D disk character is added, you can manually adjust the

mapping path, then special path can be achieved.

Controller General, controllers with USB interface support U Disk function.

619

Example Example 1: download zar update procedure

DIM result 'define variable

IF U_STATE=TRUE THEN 'check if USB drive was inserted.

Result = FILE "find_first",".zar",10 'scan first zar file, save it in VR

IF result=TRUE THEN 'check if scan succeeded

 FILE"load_zar",VRSTRING(10,20) 'download scanned zar file that

matches name in VR

ENDIF

ENDIF

END

Example 2: find zar update procedure

FILE "find_next",10 'find next zar file result to save in vrstring(10)

FILE "find_prev",20 'find former zar file result to save in vrstring(20)

Example 3: FLASH and USB drive data copy each other

DIM a,aa(8)

a=10

FOR i=0 TO 7

aa(i)=i

NEXT

WHILE 1

IF SCAN_EVENT(IN(0))> 0 THEN

FLASH_WRITE 1,a aa

FILE"copy_from","sd1.bin" 'copy flash 1 data to USB Drive sd1

PRINT "copy flash data to USB Drive"

ELSEIF SCAN_EVENT(IN(1))> 0 THEN

FILE"copy_to","sd1.bin" 'read sd1 data, then write into flash 1

PRINT "write USD drive data into flash"

FLASH_READ 1,a,aa

PRINT *aa

ENDIF

WEND

END

Example 4: read/delete USB drive file

FILE "LOAD_BYTE","00.txt",200,10,0

'read USB Drive 00.txt file data to save in the tenth address of

start table(200), offset is 0, read starts from the first character.

FILE "DELETE" , "sd0.bin" 'delete sd0.bin file in USD drive

00.txt file content：ZMOTION

Read result: the first position saves the number of characters, followings

save character data in sequence.

620

U_STATE--USB Drive Status

Type System Status Functions

Description Check if USB Drive was inserted.

Ture - inserted, False - not inserted.

Only valid in controllers with external interface.

When U drive is inserted, if there is no program running in controller,

AUTORUN.ZAR will load automatically. But it takes effect only when no

any program is downloaded into controller, which means it is still factory

status (4XX series controllers with 20170423 firmware version or above). If

the program is running, it won’t load automatically, at this time, please load

in the program manually.

Don’t put too many files in USB Drive.

fat 32 and fat 16 can be read by U disk, it is invalid in ntfs.

It is recommended to use USB2.0 for controllers below 4xx series, and

USB3.0 is used for 4xx controllers or above.

Grammar Val=U_STATE

Controller Controllers with USB interface

Example ?U_STATE 'print USB status

If U_STATE = TRUE TEHN 'USB Drive was inserted.

U_READ 1, VAR, ARRAY1, ARRAY2(1) 'read data in USB Drive.

ENDIF

Instructions U_READ, U_WRITE

U_READ--Read USB Drive

Type Storage Instructions

Description Read data from external memorizer (USB DIRVE) to variable or array.

This instruction is only valid in controllers with external interface.

File is saved as 32 bits ieee float type in sequence, one variable or one array

element consumes one float. use PC to make file ready first, then use

621

U_READ to read.

fat 32 and fat 16 can be read by U disk, it is invalid in ntfs.

It is recommended to use USB2.0 for controllers below 4xx series, and

USB3.0 is used for 4xx controllers or above.

Grammar U_READ

sect_num,[,varname][,arrayname][,arrayname(a)][,arrayname(a,length)]

sect_num: file number, related to SD【filenum】.BIN.

varname: variable name

arrayname: array name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Controllers with USB interface

Example If U_STATE = TRUE THEN 'USB drive was already inserted.

U_READ 1, VAR, table(0), ARRAY2(1)

 'read data in file SD1 from USB Drive.

ENDIF

Instructions U_WRITE, U_READ2, U_STATE

U_READDBL-- Read from USB – double

Type Storage Instructions

Description Read data from external memorizer to variable or array.

Same as U_READ, but U_READ reads float type with 32-bit,

U_READDBL reads double type with 64-bit.

This instruction is only valid in controllers with external memorizer

interfaces.

File is saved as 32 bits ieee float type in sequence, one variable or one array

element consumes one float. use PC to make file ready first, then use

U_READ to read.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar U_READDBL sect_num, [,varname] [,arrayname] [,arrayname(a)]

[,arrayname(a,length)]

sect_num: file number, related to SD【filenum】.BIN.

varname: variable name

arrayname: array name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Controllers with USB interface and version above 4xx series, valid in

firmware above 20190128.

Example If U_STATE = TRUE THEN 'USB drive was already inserted.

U_READDBL 1, VAR, TABLE(0), ARRAY2(1)

622

'read USB Drive data in file SD1

ENDIF

Instructions U_READ, U_WRITE, U_STATE

U_READ2-- Read USB Drive 2

Type Storage Instructions

Description Read data from external memorizer (USB DIRVE) to variable or array,

and it supports set the start position of file reading.

This instruction is only valid in controllers with external memorizer

interfaces.

File is saved as 32 bits ieee float type in sequence, one variable or one array

element consumes one float. use PC to make file ready first, then use

U_READ to read.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar U_READ sect_num, star_num [,varname] [,arrayname] [,arrayname(a)]

[,arrayname(a,length)]

sect_num: file number, related to SD【filenum】.BIN.

start_num: starting position of reading file

varname: variable name

arrayname: array name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Controllers with USB interface

Example If U_STATE = TRUE THEN 'USB drive was already inserted.

U_READ2 1, 10, VAR, table(0), ARRAY2(1)

'read USB Drive data in file SD1

ENDIF

Instructions U_READ, U_WRITE, U_STATE

U_READ2DBL-- Read from USB 2 – double

Type Storage Instructions

Description Read data from external memorizer to variable or array, start position

to read can be set.

Same as U_READ2, but U_READ2 reads float type with 32-bit,

U_READ2DBL reads double type with 64-bit.

This instruction is only valid in controllers with external memorizer

interfaces.

File is saved as 32 bits ieee float type in sequence, one variable or one array

623

element consumes one float. use PC to make file ready first, then use

U_READ to read.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar U_READ2DBL sect_num, star_num [,varname] [,arrayname]

[,arrayname(a)] [,arrayname(a,length)]

sect_num: file number, related to SD【filenum】.BIN.

star_num : start position of reading in files

varname: variable name

arrayname: array name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Controllers with USB interface and version above 4xx series, valid in

firmware above 20190128.

Example If U_STATE = TRUE THEN 'USB drive was already inserted.

U_READ2DBL 1, 10, VAR, TABLE(0), ARRAY2(1)

'read USB Drive data in file SD1,

starts from 10

ENDIF

Instructions U_READ, U_WRITE, U_STATE

U_READDSB--Read DSB File

Type Storage Instructions

Description Read DSB file.

Only valid in controllers with external interface.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar U_READDSB "filename", tableindex, maxsize [, flag]

filename file name

 TableIndex start TABLE index to save

 Maxsize total TABLE index numer to save

flag reserved.

Number Contents

0 Mark bit: the number of variables

in one line. (reserved)

1 Stitch Count

2--29 File name, 28 characters

30 times of colors change

31 +X:

32 -X:

33 +Y:

624

34 -Y:

35 AX: +

36 AY: -

37 MX: +

38 MY: +

39 PD:

40 L_limt coordinate of left limit

41 R_limt coordinate of right limit

42 U_limt coordinate of up limit

43 D_limt coordinate of lower limit

99 Total lines have been read

100 Line Type First point

101 parameters1: X relative distance

102 parameters2: Y relative distance

103
parameters3: X coordinate

relates to point stitch starts

103
parameters4: Y coordinate

relates to point stitch starts

105 Line Type Second point

106 parameters1: X relative distance

107 parameters2: Y relative distance

Controller Controllers with USB interface

Instructions U_READ, U_WRITE, U_STATE

U_WRITE—Output to USB Drive

Type Storage Instructions

Description Store variables or arrays, single element or some elements of array are

saved into external memorizer.

This instruction is only valid in controllers with external interface.

File is saved as 32 bits ieee float type in sequence, one variable or one array

element consumes one float. use PC to make file ready first, then use

U_READ to read.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar U_WRITE

sect_num,[,varname][,arrayname][,arrayname(a)][,arrayname(a,length)]

sect_num: file number, related to SD【filenum】.BIN.

varname: variable name

arrayname: array name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

625

Controller Controllers with USB interface

Example If U_STATE = TRUE THEN 'USB drive was already inserted.

U_WRITE 0, TABLE(0, 10) 'write TBALE 0-10 into USB drive SD0

ENDIF

Instructions U_READ, U_STATE

U_WRITEDBL—Output to USB – double

Type Storage Instructions

Description Store variables or arrays, single element or some elements of array are

saved into external memorizer.

Same as U_WRITE, but U_READ outputs float type with 32-bit,

U_WIRTEDBL outputs double type with 64-bit.

This instruction is only valid in controllers with external memorizer

interfaces.

File is saved as 32 bits ieee float type in sequence, one variable or one array

element consumes one float. use PC to make file ready first, then use

U_READDBL to read.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar U_WRITEDBL sect_num, [,varname] [,arrayname] [,arrayname(a)]

[,arrayname(a,length)]

sect_num: file number, related to SD【filenum】.BIN.

varname: variable name

arrayname: array name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Controllers with USB interface and version above 4xx series, valid in

firmware above 20190128.

Example If U_STATE = TRUE THEN 'USB drive was already inserted.

U_WRITEDBL 1, VAR, TABLE(0), ARRAY2(1)

'write data of TABLE 0-10 in file

SD0

ENDIF

Instructions U_READ, U_WRITE, U_STATE

STICK_READ—Read USB Drive to Table

Type Storage Instructions

Description Copy data of external memorizer to TABLE.

When value=TRUE, which means it is successful, or means failure.

626

Recommended to use U_READ instead.

This instruction is only valid in controllers with external interface.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar value = STICK_READ (filenum, table_start [,format])

filenum file name, relates to SD【filenum】

table_start TABLE NO. where operation starts.

format file format that will get from external memorizer.

Value Description

0(default) Float format, .BIN

1 Text format, .CSV

Controller Controllers with USB interface

Example STICK_READ (0,10,0) 'copy bin file named SD0 in external memorizer

to TABLE, starts to save from TABLE(10).

Instructions U_READ, STICK_READVR

STICK_WRITE--Table to USB Drive

Type Storage Instructions

Description Copy data in table to external memorizer (USB DRIVE).

When value=TRUE, which means success,or means failure.

Recommended to use U_WRITE instead.

This instruction is only valid in controllers with external interface.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar value = STICK_WRITE(filenum, table_start [,length [,format]])

filenum file name, relates to SD【filenum】, max is 9999

table_start TABLE NO. where operation starts.

length TABLE data number to operate,default value is 128.

format file format that will be written into memorizer.

Value Description

0(default) Float format, .BIN

1 Text format, .CSV

Controller Controllers with USB interface

Example STICK_WRITE(0,0,128,0) 'copy front 128 elements of table and save

them into external memorizer in float format,

then generate SD0.BIN file.

Instructions U_WRITE, STICK_WRITEVR

627

STICK_READVR--USB Drive to VR

Type Storage Instructions

Description Copy data in external memorizer to VR.

When value=TRUE, which means success,or means failure.

Recommended to use U_READ instead.

This instruction is only valid in controllers with external interface.

fat 32 and fat 16 can be read by U disk, but ntfs is invalid.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar value = STICK_READVR (filenum,vr_start [,format])

filenum file name, relates to SD【filenum】

table_start VR NO. where operation starts.

format file format that will get from external memorizer.

Value Description

0(default) Float format, .BIN

1 Text format, .CSV

Controller Controllers with USB interface

Example STICK_READVR (0,20,0) 'copy SD0 bin file of external memorizer to

VR, starts from VR(20).

Instructions U_READ, STICK_READ

STICK_WRITEVR--VR to USB Drive

Type Storage Instructions

Description Copy data in VR to external memorizer (USB DRIVE).

When value=TRUE, which means success,or means failure.

Recommended to use U_WRITE instead.

This instruction is only valid in controller with external interface.

It is recommended to use USB2.0 for controllres below 4xx series, and for

4xx series and above support USB3.0.

Grammar value = STICK_READVR (filenum, vr_start [,format])

filenum file name, relates to SD【filenum】

table_start VR NO. where operation starts.

length VR data number to operate,default value is 128.

format file format that will be written into external memorizer.

Value Description

0(default) Float format, .BIN

1 Text format, .CSV

Controller Controllers with USB interface

Example STICK_WRITEVR (0,0,128,0) 'copy front 128 elements of table and

628

save them into external memorizer in

float format, then generate SD0.BIN file.

Instructions U_WRITE, STICK_WRITE

15.2 FLASH Instructions

FLASH_WRITE--Write Flash

Type Storage Instructions

Description Store variables or arrays, single element or some elements in array are

saved into flash, support power failure storage.

Storage type in Flash is sequential, the read sequence should be same as

sequence to save.

Storage times are limited in Flash, don’t operate exceeding limit.

Don’t operate FLASH in motion process, or will influence on motion

execution.

Grammar FLASH_WRITE

sect_num [, varname] [, arrayname] [, arrayname(a)] [, arrayname(a,length)]

sect_num: FLASH block number, different types are differenet.

varname: variable’ name

arrayname: array’ name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller General

Example Example 1

FLASH_WRITE 1, VAR, ARRAY1, ARRAY2(1)

'write VAR,ARRAY1,ARRAY2(1) data to flash block 1 in sequence.

Example 2

TABLE(1)=123.456

FLASH_WRITE 1, TABLE(1)

TABLE(1)=200

FLASH_READ 1, TABLE(1)

?TABLE(1) 'print result: 123.45600

Example 3 : FLASH storage is float precision, for 32 bits integer data, it

should use 2 MODBUS_REG to store MODBUS_LONG.

MODBUS_LONG(1)=123456

'store in MODBUS_REG(1) and MODBUS_REG(2)

FLASH_WRITE 1, MODBUS_REG(1,2)

'select 2 elements from MODBUS_REG, write them

into FLASH block as FLASH_WRITE 1,

MODBUS_REG(1), MODBUS_REG(2)

MODBUS_LONG(1)=100

629

FLASH_READ 1, MODBUS_REG(1,2)

?MODBUS_REG(1) 'print result: -7616

?MODBUS_REG(2) 'print result: 1

?MODBUS_LONG(1) 'print result: 123456

Instructions FLASHVR, FLASH_READ

FLASH_WRITEDBL--Write Flash--double

Type Storage Instructions

Description Store variables or arrays, single element or some elements in array are

saved into flash, support power failure storage.

Same as FLASH_WRITE, but FLASH_WRITE saves float type with 32-bit,

FLASH_WRITEDBL saves double type with 64-bit.

Storage type in Flash is sequential, the read sequence should be same as

sequence to save.

Storage times are limited in Flash, don’t operate exceeding limit.

Don’t operate FLASH in motion process, or will influence on motion

execution.

Grammar FLASH_WRITEDBL

sect_num [, varname] [, arrayname] [, arrayname(a)] [, arrayname(a,length)]

sect_num: FLASH block number, different types are differenet.

varname: variable’s name

arrayname: array’ name, TABLE, VR and MODBUS are also

regarded as array

a: index to operate in array

length: array elements number to operate

Controller Valid in ZMC4XX series controllers with firmware 20190128 or above.

Example FLASH_WRITEDBL 1, table(0,4)

'write 5 elements (table(0)~table(4)) into FLASH 1.

Instructions FLASHVR, FLASH_READ

FLASH_READ--Read Flash

Type Storage Instructions

Description Read data from internal Flash to variable or array.

Storage type in Flash is sequential, sequence to read should be same as

sequence to write.

When read flash block that hasn’t been written before, it will show message:

Warn file: “BASIC1.BAS” line:5 task:0, File:C\SD10.BIN open error,

not load., but this will not influence on use.

Don’t operate FLASH in motion process, or will influence on motion

execution.

630

Grammar FLASH_READ

sect_num [, varname] [, arrayname] [, arrayname(a)] [, arrayname(a,length)]

sect_num: FLASH block number, different types are differenet.

varname: variable’s name

arrayname: array’ name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller General

Example FLASH_READ 1, VAR, ARRAY1, ARRAY2(1)

 'read data in flash block 1, and then save into

VAR, ARRAY1, ARRAY2(1).

Instructions FLASHVR, FLASH_WRITE, FLASH_READDBL

FLASH_READDBL--Read Flash--double

Type Storage Instructions

Description Read data from internal Flash to variable or array.

Same as FLASH_READ, but FLASH_READ saves float type with 32-bit,

FLASH_READDBL saves double type with 64-bit.

Storage type in Flash is sequential, the read sequence should be same as

sequence to save.

Storage times are limited in Flash, don’t operate exceeding limit.

Don’t operate FLASH in motion process, or will influence on motion

execution.

Grammar FLASH_READDBL

sect_num [, varname] [, arrayname] [, arrayname(a)] [, arrayname(a,length)]

sect_num: FLASH block number, different types are differenet.

varname: variable’s name

arrayname: array’ name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Valid in ZMC4XX series controllers with firmware 20190128 or above.

Example FLASH_READDBL 1, table(6,5)

'read data in FLASH 1, starts from 6, read 5 elements,

then put them in table(6) ~ table (10)

Instructions FLASHVR, FLASH_READ, FLASH_WRITE

LASH_READ2--Read Flash (2) -- double

Type Storage Instructions

Description Read data from internal Flash to variable or array.

Storage type in Flash is sequential, sequence to read should be same as

631

sequence to write.

When read flash block that hasn’t been written before, it will show message:

Warn file: “BASIC1.BAS” line:5 task:0, File:C\SD10.BIN open error,

not load., but this will not influence on use.

Don’t operate FLASH in motion process, or will influence on motion

execution.

Grammar FLASH_READ2

sect_num start_num [, varname] [, arrayname] [, arrayname(a)] [,

arrayname(a,length)]

sect_num: FLASH block number, different types are differenet.

start_num: start position of file inside reading.

varname: variable’s name

arrayname: array’s name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller General

Example FOR i = 0 TO 10

 TABLE (i) = 120 + i

NEXT

FLASH_WRITE 1, TABLE (0,10) 'write data in flash

FOR i = 0 TO 11

 TABLE (i) = 0

NEXT

FLASH_READ2 1,2 TABLE(4,5) 'read data starting from table(2) in

sequence, and all 5 data are put into table(4) – table (8)

FOR i = 0 TO 11

 ? “TABLE“, i,TABLE(i)

NEXT

END

Instructions FLASH_READ, FLASH_WRITE

FLASH_READ2DBL--Read Flash (2)--double

Type Storage Instructions

Description Read data from assigned position of internal Flash to variable or array.

Same as FLASH_READ, but FLASH_READ saves float type with 32-bit,

FLASH_READ2DBL saves double type with 64-bit.

Storage type in Flash is sequential, sequence to read should be same as

sequence to write.

When read flash block that hasn’t been written before, it will show message:

632

Warn file: “BASIC1.BAS” line:5 task:0, File:C\SD10.BIN open error,

not load., but this will not influence on use.

Don’t operate FLASH in motion process, or it will influence on motion

execution.

Grammar FLASH_READ2DBL

sect_num start_num [, varname] [, arrayname] [, arrayname(a)] [,

arrayname(a,length)]

sect_num: FLASH block number, different types are differenet.

start_num: in file, starting position of reading.

varname: variable’s name

arrayname: array’s name, TABLE and VR are also regarded as array

a: index to operate in array

length: array elements number to operate

Controller Valid in ZMC4XX series controllers with firmware 20190128 or above.

Example FOR i = 0 TO 10

 TABLE (i) = 120 + i

NEXT

FLASH_WRITE 1, TABLE (0,10) 'write data in flash

FOR i = 0 TO 11

 TABLE (i) = 0

NEXT

FLASH_READ2DBL 1,2 TABLE(4,5)

'read data starting from table(2) in sequence, and all 5

data are put into table(4) – table (8)

FOR i = 0 TO 11

 ? “TABLE“, i,TABLE(i)

NEXT

END

Instructions FLASH_READ2, FLASH_WRITE, FLASH_READDBL

FLASHVR--Copy RAM Data

Type Storage Instructions

Description Copy data from RAM to FLASH.

TABLE data are saved in the last FLASH block of ZMC00x series (except

ZMC005), and ECI series controller, since FLASH_WRITE and

FLASH_READ can also operate this block, do arrange logic well to avoid

conflict.

TABLE data are saved in an independent area in other controller series,

which can’t operate.

633

Don’t operate FLASH in motion process, or will influence on motion

execution.

Grammar FLASHVR (function)

function select function

-1 Save all TABLE in FLASH. and recover data to

TABLE automatically when power on.

-2 Cancel function: recover data to TABLE

automatically when power on.

Controller General

Example FLASHVR (-1) 'save data from table into FLASH, recover flash

data to table when power on.

Instructions FLASH_WRITE

FLASH_SECTSIZE--Variable Numbers in Flash

Type System Status Functions

Description Read the number of varibles that can be saved in flash block.

Different controllers have different numbers.

Grammar value = FLASH_SECTSIZE

Controller General

Example ? FLASH_SECTSIZE

print result

20480 'ZMC1xx series

1024 'ZMC00x series

...

Instructions FLASH_SECTES

FLASH_SECTES--Flash Block Number

Type System Status Functions

Description Read the total numbers of FLASH inside the controller.

Different controllers have different numbers.

In terms of ZMC00X series, FLASHVR will use last block to avoid conflict.

Grammar value = FLASH_SECTES

Controller General

Example ?FLASH_SECTES 'print flash block numbers

print result

128 'ZMC005

Instructions FLASH_SECTSIZE

634

15.3 File Storage Related Instructions

FILE_ZOPEN – Open File

Type Storage Instructions

Description According to the mode assigned by “mode” parameter, open one file,

then return file handle.

Grammar Function Grammar: handle = FILE_ZOPEN (path, mode)

 path: file path, character string, the flash drive is defined as c and U

drive is defined as a, such as, c:\filename.txt means the file “filename.txt” of

flash. The default is file in flash. (for VPLC5XX and VPLC7XX, you can

custom disk character by “FILE “PATHD” “dir”” command.)

 mode: the mode of open, character string “w” means open through

writing method (delete all, then write), “r” means open through reading

method, “rw” means it can be opened through writing or reading.

Note: “w” mode will delete the data that was written before.

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example Example 1:

FILE "copy_to","test.z3p","test1.z3p"

'files in U drive are copied into FLASH

f1 = FILE_ZOPEN("c:\test1.z3p","r") 'open test1.z3p file of FLASH

IF f1 >= 0 THEN

?"open FLASH existing file through “r” mode"

ELSE

 ?”error, open fails”

ENDIF

FILE_ZOPEN(f1)

Example 2:

f1 = FILE_ZOPEN("c:\test.z3p","rw")

num = FILE_ZWRITES(f1,"0123456789")

FILE_ZSEEK(f1,0,0)

FILE_ZREAD(f1,30,10)

IF num = 10 AND TABLE(31) = 49 AND TABLE(39) = 57 THEN

?"write and read FLASH file Success"

ELSE

?"error, fail to write and read FLASH file"

END IF

FILE_ZCLOSE(f1)

Instructions FILE_ZCLOSE

635

FILE_ZCLOSE – Close File

Type Storage Instructions

Description Close file handle “handle” indicated file, if the handle is invalid, warn

will output.

Grammar Command Grammar: FILE_ZCLOSE (handle)

 handle: returned file handle of function “FILE_ZOPEN”.

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example FILE "copy_to","test.z3p","test1.z3p"

'files in U drive are copied into FLASH

f1 = FILE_ZOPEN("c:\test1.z3p","r") 'open test1.z3p file of FLASH

IF f1 >= 0 THEN

?"open FLASH existing file through “r” mode"

ELSE

 ?”error, open fails”

ENDIF

FILE_ZCLOSE(f1)

Instructions FILE_ZOPEN

FILE_ZWRITES – Write File into Character String

Type Storage Instructions

Description Write character string “string” into file handle “handle” assigned file,

and the function returns the number of wrote characters.

Grammar Command Grammar: FILE_ZWRITES (handle, string)

Function Grammar: num = FILE_ZWRITES (handle, string)

 handle: returned file handle of function “FILE_ZOPEN”.

 string: normal character string to be written

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example FILE “copy_to”, “test.z3p”, “test.z3p”

FOR i = 0 TO 9

 TABLE (30 + i)

NEXT

f1 = FILE_ZOPEN("c:\test.z3p","rw")

num = FILE_ZWRITES(f1,"0123456789")

FILE_ZSEEK(f1,0,0)

FILE_ZREAD(f1,30,10)

IF num = 10 AND TABLE(31) = 49 AND TABLE(39) = 57 THEN

?"write and read FLASH file Success"

ELSE

?"error, fail to write and read FLASH file"

636

END IF

FILE_ZCLOSE(f1)

Instructions FILE_ZOPEN, FILE_ZCLOSE, FILE_ZSEEK, FILE_ZREAD.

FILE_ZWRITE – Write File into Character

Type Storage Instructions

Description Write “count” character into the file assigned by file handle “handle”,

the character locates in the starting position of index “tableindex” in

table, and the function returns to the number of actually writing in. In

addition, there is the limit for character writing number, if it exceeds,

write the max number into.

Grammar Command Grammar: FILE_ZWRITE (handle, tableindex, count)

Function Grammar: num = FILE_ZWRITE (handle, tableindex, count)

 handle: returned file handle of function “FILE_ZOPEN”.

 tableindex: the index of table, and put the character to be written to

starting table of tableindex, each character is saved into each position of

table.

 count: the number of characters to be written into.

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example FILE "copy_to","test.z3p","test.z3p"

FILE "copy_from","test.z3p","test1.z3p"

f1 = FILE_ZOPEN("a:\test1.z3p","rw")

FILE_ZWRITE(f1,100,512)

Instructions FILE_ZOPEN, FILE_ZCLOSE

FILE_ZREAD – Read Character from File

Type Storage Instructions

Description Read the character “maxchars” from the file assigned by “handle” of

file handle, the read character is saved into index “tableindex” starting

position of table.

If the file end character is read, stop in advance. The function returns the

number of reading characters, also, there is the limit for reading number, if

it exceeds, according to the max number.

Grammar Command Grammar: FILE_ZREAD (handle, tableindex, maxchars)

Function Grammar: num = FILE_ZREAD (handle, tableindex, maxchars)

 handle: returned file handle of function “FILE_ZOPEN”.

 tableindex: the index of table, and put the read character to starting

table of tableindex, each character is saved into each position of table.

 maxchars: the maximum number of characters scheduled to be read. If

the read encounters the end of the file, the number may be insufficient. You

can get the read number by returning the value

637

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example Refer to FILE_ZWRITES routine.

Instructions FILE_ZOPEN, FILE_ZCLOSE, FILE_ZSEEK, FILE_ZWRITES

FILE_ZREADLINE – File Line Reading

Type Storage Instructions

Description Read a line from the file indicated by the file handle “handle” to the

tableindex position of the table, and read maxchars characters at most.

The excess part will not be read, and the read position of the file will remain

at the first unread character. Reading starts from the current reading position

of the file, and the reading result does not contain the line break of the end,

but the file reading position will skip the line break, and the function returns

the number of characters read. The number of reads has a maximum limit,

and if it exceeds, it will be read according to the maximum limit.

Grammar Command Grammar: FILE_ZREAD LINE (handle, tableindex, maxchars)

Function Grammar: num = FILE_ZREAD LINE(handle, tableindex,

maxchars)

 handle: returned file handle of function “FILE_ZOPEN”.

 tableindex: the index of table, and put the read character to starting

table of tableindex, each character is saved into each position of table.

 maxchars: the maximum number of characters that can be saved into

table. If it exceeds maxchars, remain part will not be read, and the read

position of the file will remain at the first unread character.

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example DIM handle, num

handle = FILE_ZOPEN("test.txt", "r")

FILE_ZSEEKLINE(handle, 0, 2) 'the beginning of the last line

num = FILE_ZREADLINE(handle, 0, 1000)

'locate to the end of the line after reading,

the line number remains unchanged

num = FILE_ZREADLINE(handle, 0, 1000)

'has reached the end of the line, return 0

?num, table(0) '0 0

?FILE_ZTELLLINE(handle) 'the line number read above remains

FILE_ZSEEKLINE(handle, -1, 2) 'the beginning of the penultimate line

num = FILE_ZREADLINE(handle, 0, 1000)

'read the penultimate line, locate to the beginning of the penultimate line

FILE_ZSEEKLINE(handle, -1, 1) 'the beginning of the previous line, here

is the beginning of the penultimate line

FILE_ZSEEKLINE(handle, 17, 0) 'locate to line number 17 (starting from

0), which is the beginning of line 18

638

FILE_ZSEEKLINE(handle, 0, 1) 'move to the beginning of this line

num = FILE_ZREADLINE(handle, 0, 1000)

FILE_ZCLOSE(handle)

Instructions FILE_ZSEEKLINE, FILE_ZTELLLINE

FILE_ZSEEK – File Location

Type Storage Instructions

Description File positioning, move read and write position of file to assigned

position of pos and mode.

Grammar Command grammar: FILE_ZSEEK (handle, pos, mode)

handle: the file handle returned by the function FILE_ZOPEN

pos: the position or offset to be positioned, depending on the mode, it

can take a negative number

mode: the reference position when performing the positioning function,

which can be 0, 1, or 2.

Mode:

0: represents the file header as the reference, pos indicates the position

to be located, and the reading and writing position of the file will be located

at pos after execution. In this case, the negative value of pos will be treated

as 0, that is, it will be located at the beginning of the file.

1: represents the current position as the reference, pos indicates the

positioning offset, after execution, the file reading and writing position will

move pos relative to the current position, a positive value means moving to

the end of the file, and a negative value means moving to the beginning of

the file.

2: represents the end of the file as the reference, and pos indicates the

positioning offset. After execution, the reading and writing position of the

file will move relative to the end of the file to the head of the file -pos. In

this case, the effective value of pos must be less than or equal to 0, and a

positive value will be used as 0 processing, which means positioning to the

end of the file.

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example Refer to FILE_ZWRITES routine.

Instructions FILE_ZOPEN, FILE_ZCLOSE, FILE_ZREAD, FILE_ZWRITES

FILE_ZSEEKLINE – File Line Location

Type Storage Instructions

Description File line positioning, move the reading and writing position of the file to

the beginning of the line specified by line and mode. The number of

639

characters that can be processed at one time is limited. If the

positioning offset is too large or the number of long lines is large, the

positioning may not be completed. The current line position can be

obtained through FILE_ZTELLLINE, and it can be positioned through

multiple executions if necessary.

Grammar Command grammar: FILE_ZSEEKLINK (handle, line, mode)

handle: the file handle returned by the function FILE_ZOPEN

line: the line No. or offset to be positioned, depending on the mode, it

can take a negative number

mode: the reference position when performing the positioning function,

which can be 0, 1, or 2.

Mode:

0: represents the file header as the reference, line indicates the line No.

to be located, and file is positioned to the beginning of the “line” indication

line after execution, 0 means locating at the beginning of the file.

1: represents the current position as the reference, line indicates the

positioning offset, 0 means positioning to the beginning of the current line,

and a negative value means positioning to the direction of file head.

2: represents the end of the file as the reference, line indicates the

positioning offset, 0 means positioning to the beginning of the last line, and

a negative value means positioning to the direction of file head.

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example Refer to FILE_ZREADLINE routine.

Instructions FILE_ZREADLINE, FILE_ZTELLLINE

FILE_ZTELL – File Reading and Writing Position

Type Storage Instructions

Description Return the current reading and writing position of “handle” file, which

starts from 0.

Grammar Function grammar: pos = FILE_ZTELL (handle)

handle: the file handle returned by the function FILE_ZOPEN

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example handle = FILE_ZOPEN("test_w.txt", "r") 'use the generated file

FILE_ZSEEK(handle, -1, 2)

num = FILE_ZREAD(handle, 100, 5)

? num, TABLE(100), TABLE(101) '1 51 0

?FILE_ZTELL(handle) 'equal to the file size

FILE_ZCLOSE(handle)

Instructions FILE_ZOPEN, FILE_ZCLOSE

640

FILE_ZTELLLINE – File Line No.

Type Storage Instructions

Description Return the current line No. of handle file, the line No. starts from 0.

The line No. can only be obtained in the case of a line operation, and the

non-line operation will cause the line number to be invalid, and the

return value is -1.

Grammar Function grammar: pos = FILE_ZTELL (handle)

handle: the file handle returned by the function FILE_ZOPEN

Controller Valid in ZMC4XX Series controllers with firmware version above

20170601.

Example Refer to FILE_ZREADLINE routine.

Instructions FILE_ZREADLINE, FILE_ZSEEKLINE

641

Chapter XVI Instructions Related to

Interrupt

16.1 Three Interrupt Instructions

INT_ENABLE--Main Switch of Interrupt

Type System Parameters

Description Master switch of interrupt.

Interrupt switch is OFF by default to avoid entering interrupt before

procedure initialization is finished.

There is only one task to respond all interruption signals inside the

controller, and there is a fixed interrupt task NO., if deals with too much

function, especially with longer code, it will cause all interruption responses

become slower, even cause interruption blocking, then influence other

interruption execution.

Solutions:

(1)Decrease the amount of interrupt, because many applications can be

handled with scan round.

(2)For an extreme long function, call a single task to deal with the

complicated interruption task, avoid blocking other interruption responses.

Grammar INT_ENABLE=switch

Value Description

0 (Default) OFF

1 ON

Controller General

Example Incorrect demonstration, interrupt blocks.

As follow, timer interrupt 0 is ON, IN(0) is 0, interrupt blocks in the line 9,

there is no print result, so timer interrupt 1 can’t execute.

Correct demonstration:

When there needs to deal with a lot of codes, build a task in the interrupt, as

642

follow task 3, execute below procedures, print “the second interrupt”, timer

interrupt 0 blocks, this has no influence on timer interrupt 1.

Relevant codes as follow:

INT_ENABLE=1 'open interrupt

TIMER_START(0,1000) 'timer 0 opens, cycle time is 1000ms

TIMER_START(1,1100) 'timer 1 opens, cycle time is 1100ms

END

GLOBAL SUB ONTIMER0() 'interrupt handler function

'build a new task to handle with complicated task to avoid blocking respond

speed of other interrupt.

RUNTASK 3, MyIntHandler()

END SUB

GLOBAL SUB MyIntHandler()

DELAY 1000 'suppose a lot of blocking codes

WAIT UNTIL IN(0) <> 0

?"the first interrupt"

END SUB

GLOBAL SUB ONTIMER1() 'interrupt handler function

 ?"the second interrupt"

END SUB

Instructions ONPOWEROFF, ONTIMERn

ONPOWEROFF--Power-Failure Interrupt SUB

Type Interruption

Description Entrance of power-failure interrupt, it must be global SUB process.

Controller has only 1 power-failure interrupt.

Time to execute power-failure interruption is limited, only several sentences

can be written.

Grammar GLOBAL ONPOWEROFF()

643

 …

END SUB

Controller General

Example INT_ENABLE=1

dpos(0)=vr(0) 'read saved value when power-on, recover coordinate

dpos(2)=vr(2)

END

GLOBAL SUB ONPOWEROFF()

vr(0) = dpos(0) 'save coordinate

 vr(1) = dpos(1)

 vr(2) = dpos(2)

END SUB

Instructions INT_ENABLE

INT_ONn—External Input Interrupt SUB

Type Interrupt

Description Entrance of external input interrupt, rising edge trigger, it must be

global SUB process.

Only valid in controller with firmware that supports PLC.

Interrupt INPUTS: IN0-31.

Grammar GLOBAL SUB INT_ONn() n is input NO.

…

END SUB

Controller Controller with firmware that supports PLC

Example INT_ENABLE=1 'open interrupt

END

GLOBAL SUB INT_ON0() 'interrupt procedure

 print "triggered when meets rising edge of IN0"

END SUB

Instructions INT_OFFn, INT_ENABLE

INT_OFFn--External Input Interrupt SUB

Type Interrupt

Description Entrance of external input interrupt, falling edge trigger, it must be

global SUB process.

Only valid in controller with firmware that supports PLC.

Interrupt INPUTS: IN0-31.

Grammar GLOBAL SUB INT_OFFn() n is input NO.

…

END SUB

644

Controller Controller with firmware that supports PLC

Example INT_ENABLE=1 'open interruption

END

GLOBAL SUB INT_OFF0() 'interrupt procedure

 print "triggered when meets falling edge of IN0"

END SUB

Instructions INT_ONn, INT_ENABLE

ONTIMERn--Timer Interrupt SUB

Type Interrupt

Description Entrance of timer interruption, it must be global SUB process.

Timer number is based on controller model. Link controller through

ZDevelop software, remote command send “?*max” see max_timer.

Grammar GLOBAL SUB ONTIMERn() n is timer NO.

…

END SUB

Controller General

Example INT_ENABLE=1 'open interruption

TIMER_START(0,100) 'timer 0 open, cycle time is 100ms

END

GLOBAL SUB ONTIMER0() 'interrupt procedure

 print "ontimer0 enter"

 'TIMER_START(0,100) 'select execution in cycle from sub

END SUB

Instructions INT_ENABLE, TIMER_START

INT_CYCLE—Interrupt Period Execution

Type System parameters

Description Interrupt period execute BASIC functions, each SERVO_PERIOD

executes once.

Valid in ZMC4XX series controller and version above 20170630.

Grammar Command grammar: INT_CYCLE(function, taskid [, subname])

parameters:

645

function: 1-start, 2-stop

taskid: BASIC task NO., but BASIC itself is useless

subname: SUB name executed by period, the procedure must be

enough brief and refined

Function grammar: var = INT_CYCLE(function, taskid)

parameters:

function:

3 -return status, 1-enable, 0-stop

4 -return time, the former execute time us

5 -return time, the longest execution time us

6 -the longest limitation us of return time

7 -error code when return to error situation, if BASCI interrupt

function execute wrongly, errors will be set.

8 -return error line NO.

taskid: used BASIC task NO.

Controller General

Example DIM times

INT_CYCLE(1,1,intisr)

END

GLOBAL SUB intisr()

 times=times+1

 MOVE_PT(1,1) 'run in every period

END SUB

Instruction INT_ENABLE

16.2 Timer Instructions

TIMER_IFEND--Timer Status

Type System Functions

Description Return value to check if timer ends

Grammar value=TIMER_IFEND (timernum)

Returned value is 0: timer is in process, timer interrupt was not executed.

Returned value is 1: timer ends, timer interrupt starts to execute.

Print result of TIMER_IFEND is 0 before timer starts in controller with

firmware that supports PLC.

Print result of TIMER_IFEND is 1 before timer starts in controller with

firmware that doesn’t supports PLC.

Controller General

Example INT_ENABLE=1 'open interrupt

646

?TIMER_IFEND(0) 'timer didn’t start, print result is 0

 'print result is 1 if doesn’t support PLC.

TIMER_START(0,2000) 'timer 0 starts, cycle time is 2s

?TIMER_IFEND(0) 'print result is 0, timer is in process

DELAY(2000)

?TIMER_IFEND(0) 'timer ends, timer interrupt starts to execute.

Instructions ONTIMERn, TIMER_START

TIMER_START--Open Timer

Type System Instruction

Description Start system timer, only execute 1 time.

Grammar TIMER_START(timernum, time_ms)

timernum timer NO.:0-(timer number-1)

time_ms time of timer, unit is millisecond.

Time 100 and above are cumulative timers.

Controller General

Example See sample in TIMER_IFEND

Instructions ONTIMERn, TIMER_IFEND

TIMER_COUNT – Timer Accumulation Time

Type System Instruction

Description Read accumulation time of timer, and the data remains when power off,

which means it needs to clear manually.

Grammar value = TIMER_COUNT (timernum)

 timernum: timer No., 0 – the number of timers reduce 1

Controller General

Example INT_ENABLE=1 'enable interrupt

TIMER_COUNT(0)=0 'clear

TIMER_START(0,2000) 'timer 0 starts, timing 2s

DELAY (2000)

?TIMER_COUNT(0) 'print cumulative time: 2000

TIMER_STOP(0) 'stop timer 0

END

Instructions ONTIMERn, TIMER_START

TIMER_STOP--Stop Timer

Type System Instruction

647

Description Stop system timer compulsively.

Grammar TIMER_STOP (timernum)

timernum NO. 0-(timer number-1)

Controller General

Example INT_ENABLE=1 'open interruption

TIMER_START(0,2000) 'timer 0 starts, cycle time is 2s

?TIMER_IFEND(0) 'print result:0, no execution

DELAY(2000)

?TIMER_IFEND(0) 'print result:0, timer interrupt starts.

TIMER_STOP(0) 'stop timer 0

?TIMER_IFEND(0) 'print result:0, timer did not start

Instructions ONTIMERn, TIMER_IFEND

648

Chapter XVII Instructions Related to Bus

17.1 Number Description

Slot NO.

Slot NO. means the interface number on motion controller, default is 0. When there are multi field

bus slot ports, then use command ?*slot to check.

In instructions description, we will use SLOT to refer slot NO. for short.

When motion controller supports single bus, slot NO. is 0. When supports double bus, EtherCAT

bus slot NO. is 0, RTEX bus slot is 1.

Device NO.

Device No. means all device’s numbers connected on one slot position, it starts from 0 and

increases in order, the total number can be checked through instruction: NODE_COUNT(slot).

In instructions description, node represents the device number.

Drive NO.

Controller can distinguish the drive connected to slot, start from 0, increase as connection order.

Drive NO. is different from Device NO., suppose 3 devices are connected to controller, the first 2

are IO expansion modules, the last is drive, then now the device number of drive node=2, the

drive number is 0.

17.2 Basic Instructions

SLOT_SCAN-- Bus Scan

Type Field Bus Instructions

Description Scan Field Bus.

Use RETURN to check if scan is done successfully, if it succeeds, the

649

returned value is -1, or is 0.

In terms of Rtex, it will report error if is fails.

If the controller doesn’t support field bus, then the returned value is 0.

There is Returned Error if no connected devices in Rtex Controller, while no

error will return in the same situation in EtherCAT controller.

After scan, then use NODE to read information of connected devices, and

use DRIVE instructions to configure.

Grammar SLOT_SCAN (slot)

slot: Slot No. of EtherCAT or RTEX, 0-default

Controller Controllers with EtherCAT or Rtex.

Example aa: 'mark aa

SLOT_SCAN(0) 'bus scan.

? RETURN 'print returned value,-1:success, 0:failure.

IF RETURN THEN

?NODE_COUNT(0) 'return connected devices number.

ELSE

 ?"scan failed"

DELAY (1000) 'wait for 1 second.

GOTO aa 'go to aa:, scan again.

ENDIF

Instructions SLOT_START, SLOT_STOP

SLOT_START--Start Field Bus

Type Field Bus Instructions

Description Start Field Bus.

Use RETURN to check if Field Bus starts successfully, it will return -1

when ON, 0 means it fails.

Execute after a successful slot scan: SLOT_SCAN.

Set AXIS_ADDRESS, ATYPE, DRIVE_PROFILE well before execution.

Grammar SLOT_START (slot [,opstate])

slot slot No. of EtherCAT or RTEX, 0-default.

opstate EtherCAT status of beginning, 4-SAFEOP, 8-OP(default).

NODE_PDOBUFF can be modified after ON, it can open SAFEOP firstly,

then set initial PDO status, then open OP. This is valid in ZMC4XX series

with firmware version above 20170515.

Controller Controllers with EtherCAT or RTEX.

Example aa: 'mark aa

SLOT_SCAN(0) 'bus scan

IF RETURN THEN 'start axis configuration if scan successes

AXIS_ADDRESS(0)=1 'map the first drive to axis 0.

ATYPE(0)=65 'axis AType 65: Position Mode

DRIVE_PROFILE(0)=0 'cycle scan configuration of PDO.

SLOT_START(0) 'start field bus.

650

ELSE

 ?"Scan Failed"

DELAY (1000) 'wait for 1 second.

GOTO aa 'go to aa:, scan again.

ENDIF

Instructions SLOT_STOP, SLOT_SCAN, NODE_PDOBUFF

SLOT_STOP--Field Bus Stops

Type Field Bus Instructions

Description Field Bus stop.

Use RETURN to check if Field Bus Stops successfully, if it succeeds, the

returned value is -1, or is 0.

If field bus stops, axis enable will disappear.

Grammar SLOT_STOP (slot)

slot: slot NO. of EtherCAT or RTEX, 0-default.

Controller Controllers with EtherCAT or Rtex.

Example aa: 'markaa

SLOT_SCAN(0) 'scan slot 0.

IF RETURN THEN 'start axis configuration if scan succeeds

AXIS_ADDRESS(0)=1 'map the first dive to axis 0.

 ATYPE(0)=65 'axis AType 65:Position Mode

 DRIVE_PROFILE(0)=0 'cycle scan configuration of PDO.

 SLOT_START(0) 'start field bus.

WHILE 1

IF SCAN_EVENT(IN(0))>0 THEN

'trigger while rising edge of In(0).

SLOT_STOP(0) 'stop Field Bus

ENDIF

WEND

ELSE

?"Scan Failed"

DELAY (1000) 'wait for 1 second.

GOTO aa 'go to aa:, scan again.

ENDIF

Instructions SLOT_START, SLOT_SCAN

SLOT_INFO – Get Bus Information

Type EtherCAT Command

Description Read bus information

It reads after scanning the bus.

651

Grammar Only Read: var = SLOT_INFO (slot, sel)

slot: slot No., default is 0

sel: information No.

Value Description

0 slot type:

SLOT_TYPE_NULL = 0,// invalid

SLOT_TYPE_ECAT = 1,// ECAT

SLOT_TYPE_RTEX = 4, // RTEX

SLOT_TYPE_HLINK = 5,// Huawei HLINK

4 Read AL state:

1--Init—initialization state

2--pre-operational—pre-operation state

4--safe-operational—safe operation state

8--operational—running state (enable)

5 Read whether disconnect is detected, it is used for

redundancy mode, 0529 adds.

0—normal, 1--break

14 How many bytes of PDO sending

15 How many bytes of PDO receiving

16 How many devices in total, it must scan at first, then read

17 How many motors in total, it must scan at first, then read

Controller VERSION_BUILD: 240529 above version

?*SLOT--Print Field bus Ports

Type EtherCAT Subsidiary Instruction

Description Check Field Bus Port NO. and Type.

Grammar ?*SLOT

Controller Controllers With Field Bus Port.

Example ?*SLOT

Print Result as Follow:

Slot:0-ETHERCAT 'there is only one EherCAT port, Slot No. is 0.

?*ETHERCAT--Print EtherCAT Bus Status

Type EtherCAT Subsidiary Instruction

Description Use this instruction while debugging to get status of devices connected.

Only valid after a successful field bus scan.

Grammar ?*ETHERCAT

Controller Controllers with EtherCAT

652

Example ?*ETHERCAT

Result as follow:

Slot 0 contain 1 nodes: 1 device is connected on slot 0

Lostcount 0-0: the number of lost data package.

Node: Node No. connected to device.

Status: Node connection status, see NODE_STATUS for details

Mainid: Manufacturer ID

Productid: Device ID.

Axises: Total axes of device.

Alstate: OP Status of EtherCAT device.

Node_profile: Profile setting of device.

Bindaxis: Axes No. mapped to controller.

Drive_profile: Device PDO setting.

Controlword: Control Word.

Drive_status: Present device status, see DRIVE_STATUS for details.

Drive_mode: device control mode.

Target: motor position.

Encode: Encoder position.

Instructions PRINT

?*RTEX--Print Rtex Status.

Type Rtex Subsidiary Instruction

Description Use this instruction while debugging to get status of devices connected.

Only valid after a successful field bus scan.

Grammar ?*RTEX

Controller Controllers with Rtex interface.

653

Example ?*RTEX

Result as follow:

Slot 0 contain 1 nodes: 1 device is connected on slot 0

Lostcount 0-0: the number of lost data package.

Node: Node No. connected to device.

Status: Node connection status, see NODE_STATUS for details

Mainid: Manufacturer ID

Productid: Device ID.

Axises: Total axes of device.

Alstate: OP Status of EtherCAT device.

Node_profile: Profile setting of device.

Bindaxis: Axes No. mapped to controller.

Drive_profile: Device PDO setting.

Controlword: Control Word.

Drive_status: Present device status, see DRIVE_STATUS for details.

Drive_mode: device control mode.

Target: motor position.

Encode: Encoder position.

Instructions PRINT

ZTEST—Check EtherCAT Bus Information

Type EtherCAT subsidiary instruction

Description It can see much information while debugging.

Grammar Ztest(30,10,nodeid)

 nodeid = device No., n—(n-1)

Controller Controllers with EtherCAT interface.

Example Example 1: check present PDO and key data dictionary

ztest(30,10,nodeid)

nodeid = device No., 0--(n-1)

>>ztest(30,10,0)

TestDriver_ecat para1:10,para2:0!

reg:1c12:0 value:0x1

reg:1c12:1 value:0x1600

reg:1600:0 value:0x3

reg:1600:1 value:0x60400010

reg:1600:2 value:0x607a0020

reg:1600:3 value:0x60600008

reg:1c13:0 value:0x1

654

reg:1c13:1 value:0x1a00

reg:1a00:0 value:0x2

reg:1a00:1 value:0x60410010

reg:1a00:2 value:0x60640020

reg:6040:0 value:0xf

reg:6041:0 value:0x1237

reg:6060:0 value:0x8

reg:6061:0 value:0x8

reg:6064:0 value:0x10ac4

reg:607a:0 value:0x10ac4

reg:603f:0 value:0x0

Example 2: check device AL status, 1-init, 2-preop, 3-safeop, 8-op

Check all ECAT combined AL status.

>>ztest(30,1)

TestDriver_ecat para1:1,para2:0!

al:0x8 code:0x0.

alctrl:0x8

ztest(30,2,nodeid)

nodeid = device NO.，0---(n-1)

single AL status check.

>>ztest(30,2,0)

TestDriver_ecat para1:2,para2:0!

al:0x8 code:0x0.

alctrl:0x8

Example 3: message loss check

>>ztest(30,12)

TestDriver_ecat para1:12,para2:0!

Slot:0 contain 1 nodes.

Lostcount:0-0.

The first data: no response numbers

The second data: numbers of clock conflict

Example 4: check if support defined device

ztest (30,20,manufacuter ID, product ID, version No.)

>>ztest(30,20,$41b,0,11)

Id:0x41b ProductCode:0x0 version:0xb support.

>>ztest(30,20,$41b,145,11)

Id:0x41b ProductCode:0x91 version:0xb not support.

Instruction PRINT

655

?*ZML – Print ZML Information

Type EtherCAT Bus Instruction

Description Check ZML device list added in current project and the usage

situation.

ZML file is the compressed file of XML file, which is used to expand

functions for specific device from controllers.

Valid in ECAT controllers with firmware version above 20221021.

Grammar ?*ZML

Controller Controllers with EtherCAT interface.

Example >>?*zml

Print result:

Vender:41bh id:1ab0h ver:11h used:1.
Instruction PRINT, ZML_INFO

17.3 SDO Operational Instructions

SDO_WRITE--Write Data Dictionary

Type Field Bus Instructions are only for EtherCAT.

Description Write Data Dictionary through device No. and Slot No.

Use RETURN to check if data is written successfully, -1 means it succeeds,

0 means it fails.

Execute after successful devices connection and field bus scan.

Only for Data Dictionary that can be written.

Grammar SDO_WRITE (slot, node, index, subindex, type, value)

slot: Slot No., 0-default

node: Device No., starts from 0.

index: Data Dictionary NO., add “$” before the value to indicate

hexadecimal, such as $6060.

subindex: subsidiary NO.

type: Data Type

1 Boolean

2 Integer 8

3 Integer 16

4 Integer 32

5 Unsigned 8

6 Unsigned 16

7 Unsigned 32

value: Data Value.

Controller Controllers With EtherCAT interface.

656

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

SDO_WRITE(0,0,$6060,0,2,8)

'control mode of Device 0 is 8, Position Control Mode.

ENDIF

Instructions SDO_WRITE_AXIS, SDO_READ

SDO_WRITE_AXIS--Write Data Dictionary

Type Field bus instructions are only for EtherCAT.

Description Write through axis NO. SDO.

Use RETURN to check if data is written successfully, -1 means it succeeds,

0 means it fails.

Execute after successful devices connection and field bus scan.

Only for Data Dictionary that can be written.

Grammar SDO_WRITE (axis, index, subindex, type, value)

axis: axis NO.

index: Data Dictionary NO., add “$” before the value to indicate

hexadecimal, such as $6060.

subindex: subsidiary NO.

type: Data Type

1 Boolean

2 Integer 8

3 Integer 16

4 Integer 32

5 Unsigned 8

6 Unsigned 16

7 Unsigned 32

value: Data Value.

Controller Controllers with EtherCAT interface.

Example Please use the followed sample before a EtherCAT device is connected

successfully.

SLOT_SCAN(0) 'Scan Field Bus

IF NODE_COUNT(0)>0 THEN

AXIS_ADDRESS(0)=1 'map the first dive to axis 0.

ATYPE(0)=65 'axis AType 65: Position Mode

DRIVE_PROFILE(0)=0 'cycle scan configuration of PDO.

SDO_WRITE_AXIS(0,$6060,0,2,8)

'control mode of axis 0 is 8, Position Control Mode.

ENDIF

Instructions SDO_WRITE, SDO_READ_AXIS

657

SDO_READ--Read Data Dictionary

Type Field Bus Instruction is only for EtherCAT.

Description Read Data Dictionary through device No. and Slot No.

Use RETURN to check if data is written successfully, -1 means it succeeds,

0 means it fails.

Execute after successful devices connection and field bus scan.

It reads data dictionary that can be read.

Please don’t read and write SDO frequency.

Grammar SDO_READ (slot, node, index, subindex, type, tablenum)

slot: Slot No., 0-default

node: Device No., starts from 0.

index: Data Dictionary NO., add “$” before the value to indicate

hexadecimal, such as $6060.

subindex: subsidiary No.

type: Data Type

1 Boolean

2 Integer 8

3 Integer 16

4 Integer 32

5 Unsigned 8

6 Unsigned 16

7 Unsigned 32

8 float

9 string

tablenum: TABLE that saves read data

directly input this command in “online command”, when tablenum is -1,

won’t store, print directly.

Controller Controllers with EtherCAT interface.

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

SDO_READ (0,0,$6061,0,2,0) 'read control mode of device 0, save

data into table(0)

?table(0) 'print data

ENDIF

Instructions SDO_READ_AXIS, SDO_WRITE

SDO_READ_AXIS--Read Data Dictionary

Type Field Bus Instructions are only for EtherCAT.

Description Read Data Dictionary through Axis NO..

Use RETURN to check if data is written successfully, -1 means it succeeds,

658

0 means it fails.

Execute after successful devices connection and field bus scan.

Only for Data Dictionary that can be read.

Grammar SDO_READ (axis, index, subindex, type, value)

axis: axis NO.

index: Data Dictionary NO., add “$” before the value to indicate

hexadecimal, such as $6060.

subindex: subsidiary NO.

type: Data Type

1 Boolean

2 Integer 8

3 Integer 16

4 Integer 32

5 Unsigned 8

6 Unsigned 16

7 Unsigned 32

tablinum: read TABLE position that saves data.

Controller Controllers with EtherCAT interface.

Example Please use the followed sample before a EtherCAT device is connected

successfully.

SLOT_SCAN(0) 'Scan Field Bus

IF NODE_COUNT(0)>0 THEN

AXIS_ADDRESS(0)=1 'map the first dive to axis 0.

ATYPE(0)=65 'axis AType 65: Position Mode

DRIVE_PROFILE(0)=0 'cycle scan configuration of PDO.

SDO_WRITE_AXIS(0,$6060,0,2,8)

'control mode of axis 0 is 8, Position Control Mode.

SDO_READ_AXIS(0,$6061,0,2,0)

'read the control mode of device No.1, data is saved into table(0)

'print data

ENDIF

Instructions SDO_READ, SDO_WRITE_AXIS

17.4 Device Instructions

NODE_COUNT--Connected Device NO.

Type Field Bus Instructions

Description The total number of devices connected through Bus.

Only valid after a successful field bus scan.

Grammar Only for Read: var = NODE_COUNT (slot)

659

slot: slot NO., 0-default

Print directly, see example one.

Use as data directly, see example two.

Controller Controllers with EtherCAT or Rtex.

Example Example one

SLOT_SCAN(0)

? NODE_COUNT(0) 'print devices NO. connected in slot 0.

Example two

SLOT_SCAN(0)

IF NODE_COUNT(0) = 3 THEN 'define linking device number, then axes

mapping, axis atype setting and other

procedure code block.

ENDIF

Instructions NODE_INFO

NODE_STATUS--Device Status

Type Field Bus Instructions

Description Device status, which is valid after successful field bus scan.

BIT Meaning

0 Indicates if node exists,1-exist,0-not exist.

1 Communication status,1-error,0-normal.

2 Node Status, 1-error,0-normal.

When value is 1, then bit0=1, bit1, bit2=0, device communication is normal.

When value is 3, then bit0, bit1=1, bit2=0, error in device communication.

Grammar Only for read: var = NODE_STATUS (slot, node)

 slot slot NO., 0-default

 node device NO., starts from 0.

Controller Controllers with EtherCAT or Rtex.

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

?NODE_STATUS(0,0)

'print status of device 0, value is 1, communication is normal.

ENDIF

Instructions NODE_INFO

NODE_AXIS_COUNT--Connected Motor NO.

Type Field Bus Instructions

Description Connected motors of each device.

Only valid after successful field bus scan.

660

Grammar Only for Read: var = NODE_AXIS_COUNT (slot, node)

 slot slot NO., 0-defaul

 node device NO., starts from 0.

Controller Controllers with EtherCAT or Rtex.

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

? NODE_AXIS_COUNT (0,0) 'print connected device number.

ENDIF

Instructions NODE_INFO

NODE_IO--Device IO

Type EtherCAT Field Bus Instructions

Description IO start NO. setting of device, Input and output start NO. are the same

in one device.

Setting value should be times of 8.

Only valid after successful field bus scan.

Usually used in EIO expansion module for IO configuration, also valid in

devices with IOs.

Grammar To read: var=NODE_IO (slot, node)

To write: NODE_IO(slot, node)=iobase

slot slot NO., 0-default.

 node device NO., starts from 0.

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

NODE_IO(0,0)=32 'set IO start NO. as 32 in device 0.

?NODE_IO(0,0) 'print the IO start NO.

ENDIF

Instructions NODE_AIO

NODE_AIO--Device Analog

Type Field Bus Instructions

Description AIO start NO. setting of device, Analog Input and output start NO. are

the same in one device.

Only valid after successful field bus scan.

Usually used in EIO expansion module for AIO configuration, also valid in

devices with AIOs.

Grammar To read: var=NODE_AIO (slot, node[,idir])

To write: NODE_AIO(slot, node[,idir])=Aiobase

slot slot NO., 0-default.

node device NO., starts from 0.

661

idir choose AD or DA

0-default, set both AIN and AOUT, but only read AIN.

3-AIN

4-AOUT

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

NODE_AIO(0,0,3)=3 'set Ain start NO. as 3 in device 0.

?NODE_AIO(0,0,3) 'print AIO start NO. of device 0.

ENDIF

Instructions NODE_IO

NODE_INFO--Device Information

Type EtherCAT Bus Instructions

Description Read information of field bus devices.

Only valid after successful field bus scanned.

662

Grammar For reading: var=NODE_INFO (slot, node, sel, [,moduid])

slot: slot No., 0-default.

 node: device No., starting from 0.

sel: information No.

 Moduid: parameters can be selected, it is used when checking

submodule information, parameter value is n-1, n means the number of

submodules.

0-VENDER, Manufaturer No.

1-DEVICE, Device No.

2-VERSION,Version

3-ALIAS, Name to distinguish drive.

4-reserved

5-connection breaks, by BIT, 240531 adds.

6-ethernet state, by BIT, 240531 adds.

IO numbers as follow::

10- the number of IN

11- the number of OP (OUT)

12- the number of AIN (analog inputs)

13- the number of AOUT (analog outputs)

14- the bytes of PDO sending, 230823 adds

15- the bytes of PDO receiving, 230823 adds

16- the number of submodules

17- check submodule type, it needs moduid

18- lag time of scanned device (ns)

19- sync offset of EtherCAT (ns)

30- device special parameters

0x300-0x307-package losing information of Esc

Writing is valid in 4xx series controllers of fast firmware version above

20190201.

For writing: NODE_INFO (slot, node, sel) = value

slot: slot No., 0-default.

 node: device No., starting from 0.

sel: information No.

Value Description

3 ALIAS, alias for distinguish from drives, if drive uses eeprom

to save, this can be used to modify.

19 Sync offset iof Ecat (ns), it can be modified after bus scanned

and before scan open.

Controller Controllers with EtherCAT or Rtex

663

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

?NODE_INFO(0,0,10) 'read how many IN of device 0.

?NODE_INFO(0,0,0) 'read manufaturer No. of device 0.

?NODE_INFO(0,0,11) 'read how many OP of device 0.

ENDIF

Instructions SLOT_SCAN

NODE_PROFILE--PDO Reserved Setting

Type Field Bus Instructions

Description Profile setting of field bus devices.

Reserved, modification is not allowed after field bus starts.

Grammar To Read: var= NODE_PROFILE(slot,node)

To Write: NODE_PROFILE(slot, node) = iprofile[, reserve]

Controller Controllers with EtherCAT or Rtex

NODE_PDOBUFF--PDO Setting of Specail Devices

Type Field Bus Instructions

Description Support PDO of special EtherCAT devices.

Read or write PDO of devices except for IO and non-axis devices, such as

power supply devices.

For IO or axis based devices, there is already related axes parameters and IO

instructions to access to its PDO, so this instruction is useless here.

SLOT_START will read present PDO list automatically in advance and then

write available present PDO values.

It is better to modify the PDO list or present values of relative data

dictionary through SDO before calling SLOT_START.

It can be modified after SOD_START is executed. Also, set SOD_START as

SAFEOP status first, then try to initilize PDO status, finally set

SOD_START as OP status again.

664

Grammar Command Grammar: NODE_PDOBUFF (slot, node, index, subindex, type)

Function Grammar:

Buff=NODE_PDOBUFF (slot, node, index, subindex ,type)

Parameters：

slot: slot NO., 0-default.

 node: device NO., starts from 0.

 index: Data Dictionary NO., add “$” before the value to indicate

hexadecimal, such as $6060.

subindex: Subsidiary NO.

 type: Data Type

1 Boolean

2 Integer 8

3 Integer 16

4 Integer 32

5 Unsigned 8

6 Unsigned 16

7 Unsigned 32

Controller Controllers with EtherCAT, valid in 4 series with firmware version above

20170508.

Example >>NODE_PDOBUFF(0,0, $6040, 0, 3) = 15

>>? NODE_PDOBUFF (0,0, $6041, 0, 3)

Instructions SDO_WRITE, SDO_READ

NODE_PDO_WRBUFF – Offset Modify PDO

Type Field Bus Instructions.

Description Modify PDO according to offset.

Grammar Command Grammar:

NODE_PDO_WRBUFF (slot, node, offset, tableindex, size)

 slot: slot No., 0 – default

 node: device No., 0 –

 offse: PDO byte offset

 tableindex: TABLE starting No. that saves data

 size: the number of data bytes to be written

Controller Controllers with EtherCAT, ZMC4XX series, firmware above 20170515.

Example >>NODE_PDO_WRBUFF(0, 0, offset, tableindex, size)

Instructions NODE_PDO_RDBUFF

NODE_PDO_RDBUFF – Offset Read PDO

Type Field Bus Instructions.

665

Description Read PDO according to offset.

Grammar Command Grammar:

NODE_PDO_RDBUFF (slot, node, offset, tableindex, size)

 slot: slot No., 0 – default

 node: device No., 0 –

 offse: PDO byte offset

 tableindex: TABLE starting No. that saves data

 size: the number of data bytes to be written

Controller Controllers with EtherCAT, ZMC4XX series, firmware above 20170515.

Example >>NODE_PDO_RDBUFF (0, 0, offset, tableindex, size)

Instructions NODE_PDO_WRBUFF

NODE_REGWRITE – ESC Register Writing

Type Field Bus Instructions, only for EtherCAT

Description ESC register writing through device No. (node) and slot No.

Check from “RETURN” value, -1: reading succeed, 0: reading failed.

Please connect the device well, and scan the bus, then it can be executed.

Address must be valid (address that can be written).

Grammar Command Grammar:

NODE_REGWRITE (slot, node, address, bytes, value)

 slot: slot No., 0 – default

 node: device No., 0 –

 address: register address, if there is “$’, which means hexadecimal, for

example, $980

 bytes: data length, 1, 2, 4

 value: data value

Controller Controllers with EtherCAT, 220418 adds this function

Example >>NODE_REGWRITE (0, 0, address, bytes, value)

NODE_REGREAD – ESC Register Reading

Type Field Bus Instructions, only for EtherCAT

Description ESC register reading through device No. (node) and slot No.

Check from “RETURN” value, -1: reading succeed, 0: reading failed.

Please connect the device well, and scan the bus, then it can be executed.

Address must be valid (address that can be written).

666

Grammar Command Grammar:

NODE_REGREAD (slot, node, address, bytes, modbusindex)

 slot: slot No., 0 – default

 node: device No., 0 –

 address: register address, if there is “$’, which means hexadecimal, for

example, $980

 bytes: data length, 1, 2, 4

 modbusindex: MODBUS register No. that saves read data, -1: not to

save, print (output) directly.

Controller Controllers with EtherCAT, 220418 adds this function

Example >>NODE_REGREAD(0, 0, address, bytes, modbusindex)

NODE_PRESET--Device Preset

Type EtherCAT Field Bus Instructions

Description Preset of field bus devices, field bus will start in advance even if there is

no connected devices (drive,IO etc) after preset was done.

Modification is not allowed once field bus starts.

Use NODE_STATUS to check if any devices are connected after preset.

If the type of preset value doesn’t match actual value, then field bus can not

start.

If no preset value for added devices, and no scan process to detect them,

then field bus also can not start.

Valid in controllers with firmware version above 20160601.

Grammar Command Grammar1: NODE_PRESET (slot, node, manuid, productid)

Command Grammar2: NODE_PRESET (slot, -1), clear all preset.

Function Grammar1:

VALUE=NODE_PRESET (slot,node), check if there is preset.

Function Grammar1:

VALUE=NODE_PRESET (slot), check the maximum number of preset.

slot: slot NO., 0-default.

 node: Device NO., starts from 0.

 manuid: Manufacturer ID, see NODE_INFO for reference.

productid: Deveice ID serial NO., see NODE_INFO for reference.

Controller Controllers with EtherCAT or Rtex

Example NODE_PRESET(0,-1) 'clear previous setting.

NODE_PRESET (0,0, $83, 5) 'set the first NODE as OMRON drive.

SLOT_SCAN(0)

?"SCAN RESULT:",RETURN, "MAX", NODE_COUNT(0)

'it will show the total number of device is 1.

FOR i= 0 TO NODE_COUNT(0) -1

 ? "node", i

667

? "status",NODE_STATUS (0,i)

? "manu:",NODE_INFO(0,i,0)

? "dev:" ,NODE_INFO(0,i,1)

? "motor:", NODE_AXIS_COUNT(0,i)

Next

Instructions NODE_STATUS

ZML_INFO – Check Device XML

Type EtherCAT Bus Instructions

Description Check something about XML file of EtherCAT device.

ZML file is the compressed file of XML file, which is used to expand

functions for specific device from controllers.

Grammar Function Grammar: para = ZML_INFO(infosel, venderid, devid,

[version,])

 infosel: operation No.

Value Description

0 VENDER, manufacturer No.

1 DEVICE, device No.

2 VERSION, version

10 the number of fixed IN of device

11 the number of fixed OP of device

12 the number of fixed AIN of device

13 the number of fixed AOUT of device

19 Shift time configuration, the unit is ns

 venderid: manufacturer ID

devid: device ID

version: version No., optical

command grammar:

ZML_INFO(infosel, venderid, devid, [version,]) = para

Mode 19 is only supported now.

Note: several devices may share one XML file, at this time, they will change

at the same time when modifying several devices. XML file can be checked

through venderid, devid or ?*ETHERCAT after scanned.

Controller Controllers with EtherCAT

Example >>?ZML_INFO(19, $418108, $9252)

print: 0

Drive_Vender = NODE_INFO(Bus_Slot,i,0) 'read drive manufacturer

Drive_Device = NODE_INFO(Bus_Slot,i,1) 'read device No.

ZML_INFO(19, Drive_Vender,Drive_Device)=500000

'modify refresh period before scan

SYSTEM_ZSET = SYSTEM_ZSET OR 128

SLOT_SCAN(Bus_Slot)

LOCAL LOCAL_zmlinfo,LOCAL_nodeinfo

LOCAL_zmlinfo=ZML_INFO(19, Drive_Vender,Drive_Device)

668

LOCAL_nodeinfo=NODE_INFO(0,0,19)

IF LOCAL_zmlinfo = LOCAL_nodeinfo THEN

?"XML Success to write in"

ELSE

?"XML Fail to write in"

ENDIF

Instructions SLOT_SCAN

17.5 Drive Instructions

DRIVE_MODE—Drive Mode

Type Axis Parameters

Description Control Mode of Drive, Mapped data dictionary is 0x6060.

Only valid after correct ATYPE setting.(set as 65/66/67)

Grammar To Read: var=DRIVE_MODE (axis)

To Write: DRIVE_MODE (axis)= value

 Axis： Axis NO.

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0)

... 'axis enable process

IF NODE_COUNT(0)>0 THEN

DRIVE_MODE(0)=8 'set axis 0 as position control mode.

? DRIVE_MODE(0) 'print control mode value of axis 0.

ENDIF

DRIVE_PROFILE--Drive PDO Setting

Type EtherCAT axis Parameters

Description PDO Sending or Receiving setting of each axis.

Only valid after correct Atype setting. (set as 65/66/67)

Consult the manufacturer for more.

EtherCAT:

When DRIVE_PROFILE=-1, it indicates that controller will follow the

default PDO list in drive, only valid in controller with firmware above

20160601. If default PDO list did not contain OX6060, then not able to use

datum(21) for homing.

-1-default drive setting, only valid in controller with firmware above

20160601

0-default setting, csp position mode.

669

{0x60400010, 0x607a0020, 0x60600008},

//control word target position mode

{0x60410010, 0x60640020},

//status word position feedback.

1-csp position mode + torque feedback

{0x60400010, 0x607a0020, 0x60600008},

// control word target position mode

{0x60410010, 0x60640020, 0x60770010},

// status word position feedback present torque

2-csp position mode + torque feedback + latch 1up

{0x60400010, 0x607a0020, 0x60b80010, 0x60600008},

//control word target position probe setting, mode

{0x60410010, 0x60640020, 0x60770010, 0x60b90010, 0x60ba0020},

// status word, position feedback, present torque, probe status, probe

position

3-csp position mode + torque limit + torque feedback +rising edge of latch 1

{0x60400010, 0x607a0020, 0x60b80010, 0x60720010, 0x60600008},

//control word, target position, probe setting, torque limit, mode

{0x60410010, 0x60640020, 0x60770010, 0x60b90010, 0x60ba0020},

// status word, position feedback,present torque,probe status,probe position

4-csp position mode + torque feedback + drive IO input

{0x60400010, 0x607a0020, 0x60600008},

//control word, target position, mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020},

// status word, position feedback, present torque, drive IO input

5-csp position mode + torque feedback + drive IO output + drive IO input

{0x60400010, 0x607a0020, 0x60fe0120,0x60600008},

//control word, target position, IO output, mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020},

//status word, position feedback, present torque, drive IO input

6-for special drive

6-for special drive

8- for special drive

9- firmware above 160504

{0x60400010,0x607a0020,0x60fe0120,0x60b80010,0x60720010,0x606000

08},

//control word, target position, IO output(32 IOs), probe setting, torque

limit, mode

{0x60410010,0x60640020,0x60770010,0x60fd0020,

x60b90010,0x60ba0020},

// status word, position feedback, present torque, drive IO input(32), probe

670

status, probe position

10-firmware above 160504, and support drive_fe.

{0x60400010,0x607a0020,0x60fe0120,0x60b80010,0x60720010,0x606000

08},

//control word, target position, IO output, probe setting, torque limit, mode

{0x60410010,0x60640020,0x60770010,0x60fd0020,0x60b90010,0x60ba00

20, 0x60f40020},

// status word, position feedback, present torque, drive IO input, probe

status, probe position, drive_fe

11-firmware above 160504, test special for probe

{0x60400010, 0x607a0020, 0x60b80010, 0x60600008},

//control word, target position, probe setting, mode

{0x60410010,0x60640020,0x60770010,0x60b90010,0x60ba0020,

0x60bb0020, 0x60bc0020, 0x60bd0020},

// status word, position feedback, present torque, probe status, probe

position1/position2/position3/position4

12-firmware above 160504, for special drive

{0x60400010, 0x607a0020, 0x60600008},

//control word, target position, mode

{0x60410010, 0x60640020, 0x60fd0020},

//status word, position feedback, drive IO input

13-firmware above 160504, speed forward, acceleration feedforward.

{0x60400010, 0x60B20010, 0x607a0020, 0x60B10020, 0x60600008},

//control word, acceleration feedforward, target position, speed feedforward,

mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020, 0x606c0020},

// status word, position feedback, present torque, IO, actual speed

17-firmware above 160504, switchable mode: csp/csv/cst

{0x60400010,0x60710010,0x60ff0020,0x607a0020,0x60b80010,0x607200

10,0x60600008},

//control word, cyclic torque, cyclic speed, target torque, target position,

probe mode, torque limit, mode

{0x60410010,0x60770010,0x60640020,0x60fd0020, 0x60b90010,

0x60ba0020, 0x60bb0020},

//status word, present torque, position feedback, IO, probe status, probe

position 1/position 2/

18-firmware above 160504, switchable mode: csp/csv/cst + torque feedback

read

{0x60400010,0x60710010,0x60ff0020,0x607a0020,0x60b80010,0x607200

10, 0x60600008},

//control word, cyclic torque, cyclic speed, target position, probe setting,

torque limit, mode

{0x60410010,0x60770010,0x60640020,0x60fd0020, 0x60b90010,

671

0x60ba0020, 0x60bb0020, 0x60bc0020, 0x60bd0020},

//status word, present torque, position feedback, IO, probe status, probe

position 1/ position 2 / position 3 / position 4.

20-firmware above 160504, csp position + csvspeed

{0x60400010, 0x60ff0020, 0x607a0020, 0x60600008},

//control word, target speed, target position, mode

{0x60410010, 0x60640020},

// status word, position feedback

21-firmware above 160504, csp position + csvspeed + torque feedback

{0x60400010, 0x60ff0020, 0x607a0020, 0x60600008},

//control word, target speed, target position, mode

{0x60410010, 0x60640020, 0x60770010},

// status word, position feedback, present torque

22-firmware above 160504, csp position + csvspeed + torque feedback +

rising edge of latch 1(color mark triggered)

{0x60400010, 0x60ff0020, 0x607a0020, 0x60b80010, 0x60600008},

//control word, target speed, target position, probe setting, mode

{0x60410010, 0x60640020, 0x60770010, 0x60b90010, 0x60ba0020},

//status word, position feedback, present torque, probe status, probe position

23-firmware above 160504, csp position + csvspeed + torque feedback +

rising edge of latch 1 + torque limit

{0x60400010,0x60ff0020,0x607a0020,0x60b80010,0x60720010,

0x60600008},

//control word, target speed, target position, mode, probe setting, torque

limit, mode

{0x60410010, 0x60640020, 0x60770010, 0x60b90010, 0x60ba0020},

//status word, position feedback, present torque, probe status, probe position

24-firmware above 160504, csp position + csv speed + IO input + position+

torque feedback

{0x60400010, 0x60ff0020, 0x607a0020, 0x60600008},

//control word, target speed, target position, mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020},

//status word, position feedback, present torque, drive IO input

25-firmware above 160504, csp position + csv speed + IO input +position+

torque feedback

{0x60400010, 0x60ff0020, 0x607a0020, 0x60fe0120,0x60600008},

//control word, target speed, target position, IO output, mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020},

// status word, position feedback, present torque, drive IO input

30-firmware above 160504, csp position + cst torque

{0x60400010, 0x60710010, 0x607a0020, 0x60600008},

//control word, target torque, target position, mode

672

{0x60410010, 0x60640020},

//status word, position feedback

31-firmware above 160504, csp position + cst torque + torque feedback

{0x60400010, 0x60710010, 0x607a0020, 0x60600008},

//control word, target torque, target position, mode

{0x60410010, 0x60640020, 0x60770010},

//status word, position feedback, present torque

32-firmware above 160504, csp position + cst torque + torque feedback +

rising edge of latch 1

{0x60400010, 0x60710010, 0x607a0020, 0x60b80010, 0x60600008},

//control word, target torque, target position, probe setting, mode

{0x60410010, 0x60640020, 0x60770010, 0x60b90010, 0x60ba0020},

//status word, position feedback, present torque, probe status, probe position

33-firmware above 160504, csp position + cst torque + torque feedback +

rising edge of latch 1 + torque limit

{0x60400010,0x60710010,0x607a0020,0x60b80010,0x60720010,0x606000

08}

//control word, target torque, target position, probe setting, torque limit,

mode

{0x60410010, 0x60640020, 0x60770010, 0x60b90010, 0x60ba0020},

//status word, position feedback, present torque, probe status, probe position

34-firmware above 160504, csp position + cst torque + torque feedback

+drive IO input

{0x60400010, 0x60710010, 0x607a0020, 0x60600008},

//control word, target torque, target position, mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020},

//status word, position feedback, present torque, drive IO input

35-firmware above 160504, csp position + cst torque + torque feedback +

IO input +IO output

{0x60400010, 0x60710010, 0x607a0020, 0x60fe0120,0x60600008},

//control word, target torque, target position, IO output, mode

{0x60410010, 0x60640020, 0x60770010, 0x60fd0020},

//status word, position feedback, present torque, drive IO input

Rtex field bus

0-No dirve IO mapping

1-with drive IO mapping (set start address through DRIVE_IO)

Grammar To read: var= DRIVE_ PROFILE(axis)

To write: DRIVE_ PROFILE(axis)= value

 axis: axis NO.

Controller Controllers with EtherCAT or Rtex

673

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

AXIS_ADDRESS(1)=1

ATYPE(1)=65

DRIVE_ PROFILE(1)=-1 'set 1PDO as -1, default setting

? DRIVE_ PROFILE(1) 'print PDO setting of axis 1

ENDIF

Instructions ATYPE, NODE_PROFILE

DRIVE_CW_MODE--Drive Setting

Type Axes Parameters

Description Drive sets parameters.

Only valid after correct Atype setting. (set as 65/66/67)

For convenience, some version can operate this directly.

Note: don’t modify control word of RTEX freely.

0-Controller will adjust DRIVE_CONTROLWORD automatically, now

DRIVE_CONTROLWORD is invalid in this situation.

1-Allow to set DRIVE_CONTROLWORD by manual in this situation.

Grammar To read: var=DRIVE_CW_MODE(axis)

To write: DRIVE_CW_MODE(axis)=value

 axis: axis NO.

Controller Controllers with EtherCAT or RTEX

Instructions ATYPE, DRIVE_CONTROLWORD

DRIVE_CONTROLWORD--Drive Control Word

Type Axis Parameters

Description Drive control word, set as per bit.

Only valid after correct ATYPE setting. (set as 65/66/67)

For EtherCAT based drive, the mapped data dictionary is 0x6040.

This parameter will change automatically as per the WDOG /

AXIS_ENABLE when Atype of controller is 65, in order to enable the

drive. Main bits setting as follow, see relevant drive manual for details.

674

For Rtex based drive

This parameter will be set automatically, if needs to set by manual, then set

DRIVE_CW_MODE as 1 first. Don’t modify freely, bit meaning as

following, see Panasonic Rtex manual for details.

Grammar To Read: var=DRIVE_CONTROLWORD(axis)

To Write: DRIVE_CONTROLWORD(axis)=value

 axis: axis NO.

Controller Controllers with EtherCAT or Rtex

Example Example one: EtherCAT

SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

AXIS_ADRESS(0)=1

 ATYPE(0)=65 'position control mode

DRIVE_PROFILE(0)=0 'set PDO as 0

DRIVE_CONTROLWORD(0)=128 'servo errors clear

DELAY (100)

DRIVE_CONTROLWORD(0)=6 'servo shutdown

DELAY (100)

DRIVE_CONTROLWORD(0)=15 'servo switch on

ENDIF

Example two: Rtex

SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

 AXIS_ADRESS(0)=1

 ATYPE(0)=50 'position control mode

DRIVE_PROFILE(0)=1 'servo with IO

675

DRIVE_CW_MODE=1 'set control data word by manual.

DRIVE_CONTROLWORD(0)=128 'servo enable.

ENDIF

Instructions ATYPE, DRIVE_CW_MODE

DRIVE_STATUS--Drive Status

Type Axis Status

Description Check drive status as per the bit value.

Only Valid after correct Atype Setting. (set EtherCAT based drive as

65/66/67, set RETX based drive as 50/51/52)

For EtherCAT based drive, the relevant data dictionary(PDO) is 6041.

See the drive manual for details.

Status Word PDO state

xxxx xxxx x0xx 0000 b not ready to switch on initialization, not done

xxxx xxxx x1xx 0000 b switch on disabled initialization, done

xxxx xxxx x01x 0001 b ready to switch on main power is off

xxxx xxxx x01x 0011 b switch on servo enable off/servo prepared

xxxx xxxx x01x 0111 b operation enabled servo enable on

xxxx xxxx x00x 0111 b quick stop active stop rapidly

xxxx xxxx x0xx 1111 b fault reaction active abnormal (alarm) judge

xxxx xxxx x0xx 1000 b fault abnormal (alarm) status

For Rtex Based Drive

Status Dictionary of Rtex drive as follow, see related Panasonic Rtex

manual for details (chapter 4-2-3.)

Grammar Only for read: toq = DRIVE_STATUS (axis)

 axis: axis NO.

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

ATYPE(0)=65 'position control mode

? DRIVE_STATUS (0) 'print device status of axis 0

ENDIF

Instructions ATYPE, DRIVE_PROFILE

676

DRIVE_IO--Drive IO Setting

Type Axis Parameters

Description Configure the IO start NO. of drive, number of input and output are

the same.

Only valid when DRIVE_PROFILE setting supports Drive IOs reading or

writing.

Grammar To read: var= DRIVE_IO (axis)

To write: DRIVE_IO (axis)=value

 axis: Axis NO.

For inputs and outputs function and address of EtherCAT fieldbus servo, see

data dictionary 60FD, 60FE for reference. (attention: some manufacturers

don’t set standard protocol address, please see relevant drive manual)

Rtex Fieldbus Servo inputs and outputs function related controller

address=DRIVE_IO+NO.

DRIVE_IO and below NO. Servo function

Inputs

0 NOT/POT

1 POT/NOT

2 HOME

3 SI-MON1/EXT1

4 SI-MON2/EXT2

5 SI-MON3/EXT3

6 SI-MON4/EX-SON

7 SI-MON5/E-STOP

Outputs

0 EX-OUT1

1 EX-OUT2

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0)

... 'axis enable process

IF NODE_COUNT(0)>0 THEN

DRIVE_IO(1)=32 'start IO NO. of axis1(drive 1) is set as 32,

DIM var 'define variable.

var=DRIVE_IO(1) 'assign start NO. of axis 1 to var.

?var 'print IO start NO. of axis 1. Directly.

ENDIF

Instructions NODE_IO, DRIVE_PROFILE

677

DRIVE_TORQUE--Drive Torque

Type EtherCAT axis status

Description Current drive torque value.

Only valid after correct ATYPE and DRIVE_PROFILE setting.

Grammar Only for read: var=DRIVE_TORQUE(axis)

 axis: axis NO.

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

ATYPE(0)=65 'position control mode

DRIVE_PROFILE(0)=1 'set PDO mode as 1, with torque feedback.

? DRIVE_TORQUE (0) 'print torque of axis 0.

ENDIF

Instructions ATYPE, DRIVE_PROFILE

DRIVE_FE--Drive Error

Type Axis Status

Description Read present error overrun of drive, mapped object dictionary is

0x60F4.

Only valid after correct ATYPE setting.(set as 65/66/67)

For ZMC408SCAN, valid in ATYPE=22 and with MPOS, then return drive

receive and MPOS deviation.

Grammar Only for read: var=DRIVE_FE (axis)

 axis: Axis NO.

Controller Controllers with EtherCAT or Rtex

Example SLOT_SCAN(0) 'field bus scan.

IF NODE_COUNT(0)>0 THEN

AXIS_ADDRESS(0)=1 'assign the first axis as axis 0

ATYPE(0)=65 'axis Type as 65, position control mode.

DRIVE_PROFILE(0)=0

'set PDO message mode through DRIVE_PROFILE.

?DRIVE_FE (0) 'read following error value of axis 0.

ENDIF

Instructions DRIVE_FE_LIMIT

DRIVE_FE_LIMIT--Drive Error Limit

Type Parameters of EtherCAT based axis

Description Set present error overrun of drive.

678

Only Valid after correct Atype Setting. (set as 65/66/67) Reserved.

Grammar To Read: var=DRIVE_FE_LIMIT(axis)

To Write: DRIVE_FE_LIMIT(axis)= value

 axis: axis NO.

Controller Controllers with EtherCAT or Rtex

Instructions DRIVE_FE

DRIVE_CLEAR--Alert Clear

Type Field Bus Instructions

Description Operate present BASE axis, clear alert of drive.

Return succeeds or not through RETURN.

Error 6015 will come when use this instruction if there is no error in drive,

but no effect on procedure execution.

Grammar BASE(axis NO.)

DRIVE_CLEAR(para)

0 Clear present alert

1 Clear history alert

2 Clear external input alert

Controller Controller with EtherCAT or RETX interface.

Example SLOT_SCAN(0)

IF NODE_COUNT(0)>0 THEN

BASE(0) 'choose axis0.

DRIVE_CLEAR(0) 'clear present alert.

ENDIF

Instructions DRIVE_READ, DRIVE_WRITE

DRIVE_READ--Read Parameters

Type Field Bus Instructions, only valid in Rtex controller.

Description Operate Base axis, read drive parameters.

Check value of RETURN to judge if the operation is done successfully or

not.

Grammar DRIVE_READ(para [,vr_index])

1: Parameters class*256+ Parameters NO. (Pr7.20=7*256+20)

2: Parameters=130, read latch status, BIT0 and BIT1 indicate status of 2

channels.

3: Parameters=$10000+(ssid), read information of Rtex drive system, string

type data will be saved in VRSTRING.

4: Parameters=$20000+(Alert Code)+($1000*index), read alert information.

5: Parameters = $30000 + (monitor code) + ($1000*index), read monitor

information.

679

vr_index: save the read data in VR, if this parameter is omiited, then

print on the output box directly.

Normal parameters as follow:

1.Servo Parameters

Parameter function value

Pr0.00 Set motor turn direction 0: CW 1: CCW

Pr0.01 Control mode setting Set as 0: half-closed control

Pr0.08 One round pulse amount 0-8388608 (as per actual

motor)

Pr0.09 Gear ratio molecule set 0-1073741824

Pr0.10 Gear ratio denominator set 1-1073741824

Pr4.01 Positive limit position

signal setting

OFF:00818181h (8487297）

ON: 00010101h (65793)

Pr4.02 Negative limit position

signal setting

OFF:00828282h (8553090）

ON: 00020202h (131586)

Pr4.03 Home signal setting OFF:00A2A2A2h

(10658466）

ON: 00222222h (2236962)

2.Rtex Communication Parameters

Pr7.20 Rtex communication

period

-1：make Pr.91 set take effect.

3：0.5ms

6：1.0ms

Pr7.21 Rtex instruction update

period ratio

1：1 times

2：2 times

Pr7.91 Rtex communication

period expansion

62500 ns

125000 ns

250000 ns

500000 ns

1000000 ns

2000000 ns

3.Syestem ID Command

SSID Definition

$01 Manufacturer name

$05 Device type

$12 Drive type NO.

$13 Drive List NO.

$14 Drive software version

$15 Drive type

$22 Motor type NO.

$23 Motor List NO.

680

4.Alarm Command

Function

code

Function Index

$000 Read present alert /

alert record

0: alert code of this time

1: alert code of former time

2: alert code of former two times

...

14: alert code of 14 times before

$001 Clear present alert 0: clear alert of this time

$011 Clear all alerts 0: clear alert record

$021 Clear errors of

external distance

sensor

0: clear latch errors through external

distance sensor of serial

communication type. Then, please

disconnect control power and restart.

5. Monitor

Function

code

Function Index

$01 Position deviation,

instruction unit

0: instruction deviation after filtering

$02 Encoder resolution

ratio, pulse/round

0: motor encoder resolution ratio

$04 Instruction position,

instruction unit

0: internal instruction position after

filtering

$05 Actual speed, Pr7.25 0: actual speed of motor

$06 Internal instruction

torque, 0.1%

0: arrived motor instruction torque

$07 actual speed,

instruction unit

0: actual position of motor

$09 Latch position 1,

instruction unit

0: actual speed of latch CH1 motor

$0A Latch position 2,

instruction unit

0: actual speed of latch CH2 motor

Controller Controllers with Rtex

Example Only valid when field bus starts successfully

Example one

IF NODE_COUNT(0)>0 THEN

BASE(0) 'choose axis 0

DRIVE_READ(7*256+11,0)

'read value of parameter Pr7.11, save in Vr(0)

 ?vr(0) 'print

ENDIF

Example two

681

IF NODE_COUNT(0)>0 THEN

BASE(0) 'choose axis 0

DRIVE_READ($10000+$01) 'read vendor name, print.

ENDIF

Instructions DRIVE_WRITE, DRIVE_CLEAR

DRIVE_WRITE--Write Parameters

Type Field Bus Instructions, only valid in Rtex controller.

Description Operate Base axis, read drive parameters.

Check value of RETURN to judge if the operation is done successfully or

not.

Grammar DRIVE_WRITE(para [,vr_index])

1: Parameters class*256+ Parameters NO. (Pr7.20=7*256+20)

2: Special parameters=128, here write EEPROM (now value=1)

3: Special parameters =$40000+typecode+(set value*256), use homing latch

position function of drive

value: parameters’ value

1.Servo Parameters

Parameter function value

Pr0.00 Set motor turn direction 0: CW 1: CCW

Pr0.01 Control mode setting Set as 0: half-closed control

Pr0.08 One round pulse amount 0-8388608 (as per actual

motor)

Pr0.09 Gear ratio molecule set 0-1073741824

Pr0.10 Gear ratio denominator

set

1-1073741824

Pr4.01 Positive limit position

signal setting

OFF:00818181h (8487297）

ON: 00010101h (65793)

Pr4.02 Negative limit position

signal setting

OFF:00828282h (8553090）

ON: 00020202h (131586)

Pr4.03 Home signal setting OFF:00A2A2A2h

(10658466）

ON: 00222222h (2236962)

Relative torque:

Pr0.13 The first torque limit 0~500%

Pr5.21 Torque limit selection

When torque controls,

Pr0.13 is fixed.

Please see below:

Set

value

TL_SW=0 TL_SW=1

negative positive negative positive

0, [1] Pr0.13

2 Pr5.22 Pr0.13 Pr5.22 Pr0.13

682

3 Pr0.13 Pr5.22

4 Pr5.22 Pr0.13 Pr5.22 Pr5.25

Pr5.22 The second torque limit 0~500%

Pr5.25 torque limit in positive 0~500%

Pr5.26 torque limit in negative 0~500%

Relative speed:

Pr3.12 Acceleration time setting 0~10000ms (reach 1000.r/min)

Pr3.13 Deceleration time setting 0~10000ms (reach 1000.r/min)

Pr3.14 S acceleration and deceleration time setting 0~10000ms

Pr3.17 Speed limit selection:

select speed limit value

mode when torque

controls

Set

value

SL_SW

0 1

[0] Pr3.21

1 Pr3.21 Pr3.22

When set as 1, select it as

SL_SW value of RTEX

communication instruction.

Pr3.21 Speed limit value 1 0~20000.r/min

Pr3.22 Speed limit value 2 0~20000.r/min

2.Rtex Communication Parameters

Pr7.20 Rtex communication period -1: make Pr.91 set take effect.

3: 0.5ms

6: 1.0ms

Pr7.21 Rtex instruction update

period ratio

1:1 times

2: 2 times

Pr7.91 Rtex communication period

expansion

62500 ns

125000 ns

250000 ns

500000 ns

1000000 ns

2000000 ns

3.Homing Latch Mode

typecode Description

$50 Monitor under position latch status

$51 Position latch 1 starts

$52 Position latch 2 starts

$53 Position latch 1 and 2 start

$54 Position latch 1 stops

$58 Position latch 2 stops

$5c Position latch 1 and 2 stop

4.Set value

Set value = latch position 1 setting + ($10* latch 2 setting)

683

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

LATCH_SEL2 LATCH_SEL1

Latch 1/2 setting Description

$0 Z Phase signal trigger

$1 EXT1 logic rising edge

$2 EXT2 logic rising edge

$3 EXT3 logic rising edge

$9 EXT1 logic falling edge

$10 EXT2 logic falling edge

$11 EXT3 logic falling edge

Controller Controllers with Rtex

Example Only valid when field bus starts successfully

Example one

IF NODE_COUNT(0)>0 THEN

BASE(0) 'choose axis 0

DRIVE_READ(7*256+11,0)

'read value of parameter Pr7.11, save in Vr(0)

 ?vr(0) 'print

ENDIF

Example two

IF NODE_COUNT(0)>0 THEN

BASE(0) 'choose axis 0

DRIVE_READ($10000+$01) 'read vendor name, print.

ENDIF

Instructions DRIVE_READ, DRIVE_CLEAR

684

Chapter XVIII ZHD Teaching Box

18.1 Teaching Box Commands

LCD_CONNECT – LCD No. Setting

Type Teaching Box Commands

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in teaching box terminal.

Set the other side controller’s LCD (HMI) No. that is to be connected,

default is 0. When controller supports multi-HMI, it can be set as other

values.

After configuration, teaching box needs restarting, then it can be connected.

Grammar VAR1=LCD_CONNECT LCD_CONNECT=VAR1

Example
>> LCD_CONNECT=1

>> LCD_CONNECT=0

IP_CONNECT – IP Connection

Type Teaching Box Commands

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in teaching box terminal.

Set the other side controller’s IP that is to be connected.

It will reconnect after each time modification.

Grammar IP_CONNECT = dot.dot.dot.dot

Example
>> LCD_CONNECT=1

>> LCD_CONNECT=0

IP_ADDRESS – IP Address

Type Teaching Box Commands

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in teaching box terminal.

Specify teaching box’s IP address, the default is 192.168.0.10

Grammar IP_ADDRESS = dot.dot.dot.dot

Example >> IP_ADDRESS = 192.168.0.14

685

IP_GATEWAY – IP Gateway

Type Teaching Box Commands

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in teaching box terminal.

Specify teaching box’s IP gateway, the default is 192.168.0.1

Grammar IP_GATEWAY = dot.dot.dot.dot

Example >> IP_GATEWAY = 192.168.0.1

IP_NETMASK – IP Mask

Type Teaching Box Commands

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in teaching box terminal.

Specify teaching box’s IP mask, the default is 255.255.0.0

Grammar IP_NETMASK = dot.dot.dot.dot

Example >> IP_NETMASK = 255.255.0.0

18.2 Controller Commands

LCD_LEDSTATE – LED State Setting

Type System Screen Parameters

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in controller terminal.

Set LED state on teaching box, it is set by BIT, default is 1, and turn on the

LED.

It needs both firmware support of controller and teaching box.

Valid in VERSION_BUILD = 230801 or above.

Grammar
VAR = LCD_LEDSTATE (lcdnum) LCD_LEDSTATE (lcdnum) = VAR

 lcdnum: controller LCD (HMI) No., default is 0

Controller Controller that supports ZHMI (RTHMI)

Example LCD_LEDSTATE(0) = 1

686

LCD_WDOGTIME – Time Setting for Screen Power-Off

Type System Screen Parameters

Description

This command is used when controller and teaching box communicates

successfully, and it is operated in controller terminal.

Set the time to process screen power-down problem, the unit is ms.

Press the emergency stop switch automatically (physical key No. is 5) when

operating this time and there is no communication, when it is 0, this

function is OFF.

Valid in 5XX series with firmware version 20180404 or above, and valid in

4XX series with firmware version 20170721 or above.

Grammar

LCD_WDOGTIME (lcdnum) = time

 lcdnum: controller LCD (HMI) No., default is 0

 time: time, the unit is ms

Controller Controller that supports ZHMI (RTHMI)

Example LCD_WDOGTIME(0) = 100

687

Chapter XVIIII MotionRT Commands

19.1 MotionRT Commands

CARD_INFO – Read & Write Control Card Info

Type Control Card Commands

Description Read / Write control card information.

Grammar

--How to Read--

var = CARD_INFO (cardnum, sel)

 cardnum: sub card No., 0 ~ N ~ 1 (N: the number of control cards.

When no subcard, N is 1)

 sel: information No.

Value Description

0 The totals of sub-card that are returned, now cardnum should

be 0.

1 DEVICE, device No., hardid.

2 VERSION, version

3 Sub-card dial code, it is only valid in PCI.

4 Reserved

5 Unique No. of sub-card, the last PCI sub-card’s unique No. is

the unique No. of RT.

6 Reserved for special No.

7 Reserved

8 IO offset, it automatically sort by default when power on.

9 AIO offset

10 The number of IN

11 The number of OP

12 The number of AIN

13 The number of AOUT

14 Reserved

15 The number of HW OP

16 The number of pulse axes

17 The number of encoders

18 The number of ECAT, 0 / 1

19 The number of scan, 0 / 1

20 The number of 3D SCAN

21 Support power-down, the number of VR, usually XPCI doesn’t

bring with VR.

22 VR offset, sorting automatically

23 The number of PWM

24 PWM starting No. on sub-card

688

--How to Write--

CARD_INFO (cardnum, sel) = value

 cardnum: sub card No., 0 - default

 sel: information No.

Value Description

8 IO offset, it automatically sort by default when power on.

Note: value must be multiple of 8

9 AIO offset, it automatically sort by default when power on.

Example

GLOBAL value

valu=CARD_INFO (0,1) ‘read control card device No.

?valu

end

CARD – Print Sub-Card Info

Type Control Card Commands

Description Print sub-card information (send command in ZDevelop / RTSys).

Grammar

?*CARD

 HardId: hardware version

 Pul: pulse

 In: the number of IN

 Op: the number of OP

 Ad: the number of AIN

 Da: the number of AOUT

 Pwm: the number of Pwm

 flash: flash size

 size: ROM size

 serial: card No.

 license: parameters configuration

Example

?*CARD

REG_CARD – Latch Selection

Type Control Card Commands

Description

Select latch IN. When several sub-card support latching, it can switch.

Used together with REGINPUTS, REGIST. After calling REGIST, it can

switch immediately.

689

Latch Position: REG_POSE, REG_POSF, REG_POSG. REG_POSH

Latch Channel: MARKE, MARKF, MARKG, MARKG (it can be expanded

to 8 channels latching at most)

Grammar

REG_CARD = value

Set REG_CARD = 1 to use axis specified latch.

When other values are set, which means it specifies the card No. for

latching.

SLOT_SLAVE – EtherCAT Redundancy Configuration

Type Special parameter

Description

Configure two ECAT channels as one channel, then support hot redundancy

backup.

Notes:

1. It is set when bus stops.

2. After setting, it only can operate islot 1, that is, islot 2 can’t be operated.

3. When bus initializing, the wiring must be normal, otherwise,

initialization will fail, or appear error of scanned devices numbers, you

can check the configuration by “?SLOT_SLAVE(islot1).

Grammar

SLOT_SLAVE(islot1)=islot2

 Islot1: master bus, must connect to the first device’s IN

 Islot2: slave bus, must connect to the last device’s OUT

controller
VPLC7XX controllers whose firmware version should be above 240520,

multi-card is valid.

Example SLOT_SLAVE(0)=1

690

Chapter XX Commands of Local Slave

Interface

ZMIO_CONFIG – Set/Get Analog Range & Channel State

Type Local slave level interface RS485 bus command for XPLC300 / ZMC432M.

Description
Read or configure expansion sub-module’s AD/DA channel switch states

and range types.

Grammar

To read: var = ZMIO_CONFIG (sel, moduleid)

To write: ZMIO_CONFIG (sel, moduleid, value)

 sl: function No.

 mduleid: expansion submodule address

 value: configure expansion submodule channel value or range type

 --sel:

sel Description

1 Configure expansion submodule AD/DA range type.

2 Configure expansion submodule analog AD channel switch state.

--range data values of “value”

type value range type value range

AD

2 0-10V

DA

10 0-10V

3 -10-10V 11 -10-10V

4 4-20mA 12 4-20mA

5 0-20mA 13 0-20mA

6 0-5V 14 0-5V

7 -5-5V 15 -5-5V

--channel data values of “value”, 4 groups of values correspond to 4

channels of AD module

AD Channel CH3 CH2 CH1 CH0

value 8 4 2 1

 When multiple channels are configured and opened, “value” is the total

of all opened channel value. For example, if CH1 and CH2 are opened, then

value will be 6 (CH2+CH1=6).

Controller XPLC300, ZMC432M

Example

ZMIO_CONFIG (1, 0, 10)

‘configure DA range type of submodule whose address is 0 as 0-10V

ZMIO_CONFIG (2, 0, 15)

‘open AD all channels of submodule whose address is 0

?ZMIO_CONFIG (1, 0)

‘get AD/DA range types of submodule whose address is 0

?ZMIO_CONFIG (2, 0)

‘get the AD channel switch state of submodule whose address is 0

691

ZMIO_INFO – Check ZMIO Itself Expansion

Type Local slave level interface RS485 bus command for XPLC300 / ZMC432M.

Description Used to check XPLC300B series controllers’ ZMIO expansion.

Grammar

Grammar 1: var = ZMIO_INFO (sel)

Grammar 2: var = ZMIO_INFO (17, node)

 sel: function No.

 node: module No., starting from 0, each one module is connected, the

No. + 1

moduleid: expansion submodule address

--sel:

Function No. Content

10 Max IN

11 Max OP

12 Max AIN

13 Max AOUT

16 The number of modules

Controller XPLC300, ZMC432B

Example

?ZMIO_INFO(10) ‘print itself ZMIO expansion’s max IN.

?ZMIO_INFO(11) ‘print itself ZMIO expansion’s max OP.

?ZMIO_INFO(12) ‘print itself ZMIO expansion’s max AIN.

?ZMIO_INFO(13) ‘print itself ZMIO expansion’s max OP.

?ZMIO_INFO(16) ‘print how many modules for itself ZMIO

?ZMIO_INFO(17,0) ‘print the type No. of the first module expanded

692

Chapter XXI Simple Routines

21.1 Common Operation

IO Operation

WHILE 1 'cycle

IF IN(0) = ON THEN 'input 0 is on

OP(2, OFF) 'close output 2.

ELSE

OP(2, ON) 'open input 2

ENDIF

WEND

SP Instruction continuous interpolation

ERRSWITCH = 3 'output all information

BASE(0,1,2,3) 'choose X Y Z U

RAPIDSTOP(2)

WAIT IDLE

DPOS = 0,0,0,0

ATYPE =1,1,1,1 'pulse based stepper or servo

UNITS = 100,100,100,100 'pulse amount,100 pulse per mm

SPEED = 200,200,200,200 'FROCE_SPEED will be limited by this speed

ACCEL = 2000,2000,2000,2000 'acceleration set

DECEL = 2000,2000,2000,2000 'deceleration set

MERGE = ON 'open continuous interpolation

CORNER_MODE=0 'close corner speed mode, set STARTMOVE_SPEED,

ENDMOVE_SPEED by manual

'DECEL_ANGLE = 15 * (PI/180) 'angle of deceleration starts, 15 degrees

'STOP_ANGLE = 45 * (PI/180) 'angle of the lowest speed, 45 degrees

WHILE 'cycle

IF IN(0) = ON THEN 'start motion when input 0 is on

TRACE "start movesp"

693

'start move, single speed of every distance and stop speed are different.

 FORCE_SPEED = 100 'the first speed is 100

 ENDMOVE_SPEED = 10 'end move speed of the first segment is 10

 MOVESP(100,0)

FORCE_SPEED = 150 'the second speed is 150

 ENDMOVE_SPEED = 15

STARTMOVE_SPEED = 15 'start speed here is more than end speed of first motion, so

start speed will obey end speed of former motion, it is 10.

 MOVESP(0,100)

 FORCE_SPEED = 200 'the third speed is 200

 ENDMOVE_SPEED = 20

STARTMOVE_SPEED = 20 'start speed here is more than end speed of second motion,

so start speed will obey end speed of former motion, it is

15.

 MOVESP(0,100)

 FORCE_SPEED = 300 'the fourth speed is 300, actually is 200 limited by SPEED

 ENDMOVE_SPEED = 30

STARTMOVE_SPEED = 30 'start speed here is more than end speed of second motion,

so start speed will obey end speed of former motion, it is

20.

 MOVESP(0,-100)

 WAIT IDLE 'wait until motion stops

 DELAY(100) 'time delay

 ENDIF

WEND

END

Conversion between String and Data

DIM val1,val2,array1(15) 'define variable and array

val1=1234 'assign variable 1 as 1234

FOR i=0 TO 14

 array1(i)=0 'clear arrays

NEXT

694

?val1,val2 'print two variables

?*array1 'print array

array1=TOSTR(val1) 'data convert to string, and assign to array

?*array1 'print array value again

array1=TOSTR(val1)+"1asf"'combine tostr and other string

?*array1

val2=val(array1) 'string convert to data, and assign to variable 2

?val2 'print variable 2 for determine

'conversion only valid between number and string, other strings, such as alphabet, symbol etc, are

not allowed.

Handwheel

Handwheel is an encoder, which is usually used to correct work-piece coordinate. Handwheel

motion is similar to mechanical gears motion and linear motion with different proportions.

ERRSWITCH = 3 'output all information

CONST AXISHAND = 0

BASE(AXISHAND) 'choose axis 0 as handwheel input

ATYPE=6 'pulse + direction, for orthogonal input handwheel, use 3

BASE(1) 'axis 1 will as slave axis of handwheel

ATYPE=1 'stepper

DPOS = 0

UNITS = 100 'pulse amount, 100 pulse per mm

SPEED = 200

ACCEL = 3000

DECEL = 3000

SRAMP = 20

CLUTCH_RATE = 0 'use speed and acceleration to limit.

DIM POSLAST 'record former position

POSLAST = DPOS

WHILE 1 'choose handwheel by manual to link to multiplying ratio

IF IN(0) = ON AND IN(1) = OFF THEN

 CONNECT(1,AXISHAND) 'link to axis 0, ratio is 1.

 ELSELF IN(1) = ON AND IN(0) = OFF THEN

695

 CONNECT(10, AXISHAND) 'link to axis 0,ratio is 10

 ELSELF IN(0) = ON AND IN(1) = OFF THEN

CONNECT(50, AXISHAND) 'link to axis 0, ratio is 10, in terms of stepper motor, if

ratio is too high, it may cause package lost or the motion

lasts for a long time.

 ELSELF MYTYPE = 21 THEN 'cancel CONNECT

 CANCEL

 ENDIF

 IF POSLAST<> DPOS THEN

 POSLAST = DPOS

 TRACE DPOS

 ENDIF

WEND

END

Fly-Shearing

Please refer to example 2 of MOVELINK command.

Position Comparison Output

Please refer to Chapter XI “Position Comparison Output”, there are hardware position comparison

output and software position hardware comparison.

Power Failure Storage

Please refer to ONPOWEROFF routines.

Robot

Please refer to Chapter IV “6 FOD Robotic Arm”, there are hardware position comparison output

and software position hardware comparison.

696

Robotic Arm by MOVESYNC Command

This example is one SCARA.zpj project file, it includes “building.bas” and “motion.bas” files.

Please refer to below contents.

“Building.bas”

DELAY (1000)

dim axis_j0,axis_j1,axis_jz,axis_jv,axis_x,axis_y,axis_z,axis_RZ

axis_j0 =0 'axis' big arm

axis_j1 =1 'axis' small arm

axis_jz =2 'axis' telescopic axis

axis_jv =3 'axis' rotate axis

axis_x =7 'big arm of simulation axis

axis_y =8 'small arm of simulation axis

axis_z =9 'telescopic axis of simulation axis

axis_RZ =10 'rotate axis of simulation axis

dim L1 'big arm length

dim L2 'small arm length

dim L3 'offset in X direction

dim ZDis 'rotate axis turns one, the motion distance of axis Z

L1=400

L2=400

L3=0

ZDis=0 '0 decouples RZ and Z

dim u_m1 'the number of pulses when motor 1 turns one circle

dim u_m2 'the number of pulses when motor 2 turns one circle

dim u_mz 'the number of pulses when motor z turns one circle

dim u_mv 'the number of pulses when motor v turns one circle

u_m1=131072

u_m2=131072

u_mz=131072

u_mv=131072

697

dim i_1 'joint 1 transmission ratio

dim i_2 'joint 2 transmission ratio

dim i_z 'joint z transmission ratio

dim i_v 'joint v transmission ratio

i_1=80

i_2=50

i_z=2

i_v=6750/384

dim u_j1 'actual pulses of joint 1 in one circle

dim u_j2 'actual pulses of joint 2 in one circle

dim u_jz 'actual pulses of joint z in one circle

dim u_jv 'actual pulses of joint v in one circle

u_j1=u_m1*i_1

u_j2=u_m2*i_2

u_jz=u_mz*i_z

u_jv=u_mv*i_v

dim p_z 'pitch of axis Z

p_z=20

'''''set joint axis

BASE(axis_j0,axis_j1,axis_jv,axis_jz) 'select axis No. of joint axis

DPOS= 0,0,0,0 'homing

atype=0,0,0,0 'axis type is pulse axis

UNITS=u_j1/360,u_j2/360,u_jv/360,u_jz/p_z

'set axis Z' units as 1mm pulses, set other axes as 1° pulses

speed=100,100,100,100 'set speed

accel=1000,1000,1000,1000

decel=1000,1000,1000,1000

CLUTCH_RATE=1000,1000,1000,1000 'use joint axis' speed and acceleration to limit

merge=on 'open continuous interpolation

SRAMP = 100

FS_LIMIT = 1000,1000,1000,1000

RS_LIMIT = -1000,-1000,-1000,-1000

698

'''''set virtual axis

BASE(axis_x,axis_y,axis_RZ,axis_z)

ATYPE=0,0,0,0 'set as virtual axis

TABLE(1000,L1,L2,u_j1,u_j2,u_jv,L3,ZDis) 'fill in parameters according to manual

UNITS=1000,1000 ,u_jv/360,1000 'motion precision, set it in advance, because it can't be

modified during motion

speed=100,100,100,100 'set speed

accel=1000,1000,1000,1000

decel=1000,1000,1000,1000

FS_LIMIT = 1000,1000,1000,1000

RS_LIMIT = -1000,-1000,-1000,-1000

GLOBAL g_op

g_op= 0

while 1

 if g_op=1then

 BASE(0,1,2,3) 'configure joint axis

 CONNFRAME(1,1000,7,8,9,10) 'axis 7,8,9,10 are virtual axis X,Y,Z,W, open inverse

connection

 g_op= 0 'reset

 ?"Inverse Mode"

 elseif g_op= 2 then

 base(7,8,9,10) 'select virtual axis No.

 CONNREFRAME(1,1000,0,1,2,3) 'axis 0/1/2/3 are joint axes, open forward connection

 g_op= 0

 ?"Forward Mode"

 endif

wend

end

“Motion.bas”

GLOBAL SUB MOVESYNCTEST()

 ERRSWITCH = 4

 TRIGGER

699

 OP(1,ON)

 g_op =1

 DIM

WAIT_X,WAIT_Y,WAIT_Z,WAIT_A,CONVREG_Axis,CONVREG_POS,CONVSYNCGO_Ti

me,CONVSYNC_Time,CONVBack_Time

 WAIT_X = -26

 WAIT_Y = 362

 WAIT_Z = 0

 WAIT_A = 0

 'run general parameters

 CONVREG_Axis = 11

 CONVREG_POS = 350

 CONVSYNCGO_Time = 300 'chasing time

 CONVSYNC_Time = 2000 'synchronization time

 CONVBack_Time = 500

 BASE(7,8,9,10) 'run at waiting position

 MOVEABS(WAIT_X,WAIT_Y,WAIT_Z,WAIT_A)

 WAIT UNTIL IDLE(7)

 DIM convREG_X,convREG_Y,convREG_Z,convREG_A,convAngleX,convAngleY

 '//the conveyor belt is in the 225-degree direction of the coordinate system, the positive angle

of the belt dpos with the X-axis is 225, and the angle with the Y-axis is 135

 convREG_X = 56 'coordinate when triggering position latch

 convREG_Y = 462

 convREG_Z = 0

 convREG_A = 0

 convAngleX = 225/180*PI 'angle radian between belt positive and robotic arm X

 convAngleY = 225/180*PI - PI/2 'angle radian between belt positive and robotic arm Y,

please note the radian value can't be negative value, if it is minus, it needs +2*PI.

 BASE(11) 'conveyor axis

 UNITS = 1910738.4889

700

 SPEED = 30

 VMOVE(1)

 MPOS=350

 WAIT UNTIL DPOS(11) < 407 'wait for the conveyor to be brought to the trigger location

 ' 'Pay attention to the writing method of separated axes. Make sure that all axes are included

every time. If you do not need to follow, write the following axis as -1, but do not use the

following mode of -1 casually.

 ' 'here is only doing chasing, no synchronization

 base(7)

MOVESYNC(convAngleX,CONVSYNCGO_Time,CONVREG_POS,CONVREG_Axis,convRE

G_X)

 BASE(8)

MOVESYNC(convAngleY,CONVSYNCGO_Time,CONVREG_POS,CONVREG_Axis,convRE

G_Y)

 BASE(9)

 MOVESYNC(0,CONVSYNCGO_Time,0,-1,convREG_Z)

 BASE(10)

 MOVESYNC(0,CONVSYNCGO_Time,0,-1,convREG_A)

 'synchronization motion

 base(7)

MOVESYNC(convAngleX,CONVSYNC_Time,CONVREG_POS,CONVREG_Axis,convREG_

X)

 BASE(8)

MOVESYNC(convAngleY,CONVSYNC_Time,CONVREG_POS,CONVREG_Axis,convREG_

Y)

 BASE(9)

 MOVESYNC(0,CONVSYNC_Time,0,-1,convREG_Z)

 BASE(10)

 MOVESYNC(0,CONVSYNC_Time,0,-1,convREG_A)

 'here, synchronization stops, return to upper of the designated placing position

 BASE(7)

 MOVESYNC(0,CONVBack_Time,0,-1,WAIT_X)

701

 BASE(8)

 MOVESYNC(0,CONVBack_Time,0,-1,WAIT_Y)

 BASE(9)

 MOVESYNC(0,CONVBack_Time,0,-1,WAIT_Z)

 BASE(10)

 MOVESYNC(0,CONVBack_Time,0,-1,WAIT_A)

ENDSUB

Read Encoder

Encoder read of Panasonic A6

'************************absolute encoder******************************

SETCOM(38400,8,1,0,1,0) 'set ports 485 as self-defined protocol

GLOBAL DIM tempchar 'receive one byte

GLOBAL DIM neqbuff(2) 'send identification code, code of 485 is: 81H, 05H

neqbuff(0) = $81

neqbuff(1) = $05

GLOBAL DIM eotbuff(2) 'receive identification code, code of 485 is: 80H,04H

eotbuff(0) = $80

eotbuff(1) = $04

GLOBAL DIM ackbuff 'receive response, 06H

ackbuff = $06

GLOBAL DIM cmdbuff(20) 'send command array

GLOBAL DIM getbuff(20) 'receive string

GLOBAL DIM getnum 'received bytes

getnum = 0

GLOBAL DIM highdata 'multi circles data of encoder

GLOBAL DIM lowdata 'single circle data of encoder

runtask 4,get_char 'start task to receive string

702

MODBUS_REG(0)=0

WHILE 1

IF MODBUS_REG(0) = 1 THEN 'judge if receives data

 MODBUS_REG(0)=0

 getmpos(1,45) 'read single and multi circles value of station 1

 ENDIF

WEND

END

'read coordinate

GLOBAL SUB getmpos(sifunum,rcr) 'read absolute position of servo 1

cmdbuff(0) = $00

 cmdbuff(1) = sifunum

 cmdbuff(2) = $d2

 cmdbuff(3) = rcr

 neqbuff(0) = $80 + sifunum

 neqbuff(1) = $05

 eotbuff(0) = $80

 eotbuff(1) = $04

 getnum = 0

 putchar #1,neqbuff

 TICKS = 2000 'delay

 WAIT UNTIL(getnum = 2) OR TICKS< 0

 IF getnum = 2 THEN 'if gets 2 characters

IF (getbuff(0) = $80 + sifunum) and (getbuff(1) = $04) THEN

'send command if receive commands

 getnum = 0

 PUTCHAR #1,cmdbuff 'send command to read encoder.

 TICKS = 2000

 WAIT UNTIL (getnum = 3) OR TICKS < 0

 IF (getbuff(0) = $06) AND (getbuff(1) = $80) AND (getbuff(2) = $05) THEN

'if get send requirement, send response.

getnum = 0

 PUTCHAR #1,eotbuff 'send message, wait to receive data

703

 TICKS = 2000

 WAIT UNTIL (getnum = 15) OR THEN < 0

 IF getnum = 15 THEN '11-10 is multi circles data, 9-7 is single circle data.

 PUTCHAR #1,ackbuff

 highdata = getbuff(11) * $100 + getbuff(10)

 lowdata = getbuff(9) * $10000 + getbuff(8) * $100 +getbuff(7)

 PRINT getbuff(11),getbuff(10),getbuff(9),getbuff(8),getbuff(7),getnum

 ELSE

 PRINT getnum,getbuff(0) ,getbuff(1), "read 1 again after time out "

 ENDIF

 ELSE

 PRINT getbuff(0) ,getbuff(1), "read 2 again after time out "

 ENDIF

 ELSE

 PRINT getbuff(0), getbuff(1), "drive no response"

 ENDIF

ELSE

 PRINT "drive no response "

ENDIF

END SUB

'serial port receive

GLOBAL SUB get_char()

WHILE 1

GET #1,tempchar

 getbuff(getnum) = tempchar

 getnum = getnum + 1

 WEND

END SUB

Self-defined G code

ERRSWITCH = 3 'output all information

BASE(0,1,2,3) 'choose X Y Z U, don’t modify freely, since there is rule in G01.

RAPIDSTOP

WAIT IDLE

704

DPOS = 0,0,0,0

ATYPE=1,1,1,1 'pulse based stepper or servo

UNITS = 100,100,100,100 'pulse amount, 100 pulse per mm

SPEED = 200,200,200,200

ACCEL = 2000,2000,2000,2000

DECEL = 2000,2000,2000,2000

MERGE = ON 'open continuous interpolation

CORNER_MODE = 2 'start corner deceleration

DECEL_ANGLE = 15 * (PI/180)

STOP_ANGLE = 45 * (PI/180)

G_INIT() 'G initialization

WHILE 1 'cycle motion

IF IN(0) = ON THEN 'start motion when input 0 is on

 'run a box

 G91 'relative position

 G01 X100 Y0

 G01 X0 Y100

 G01 X-100 Y0

 G01 X0 Y-100

 WAIT IDLE 'wait until motion stops

 DELAY(100) 'time delay

 ENDIF

WEND

END 'for avoid executing following SUB file again, make this file exit automatically when

running

'relative position mode:

GLOBAL SUB G_INT()

DIM coor_rel

coor_rel = 1 'relative position mode

END SUB

GLOBAL GSUB G01(X Y Z U)

TRACE "G01 entered, distance:" sub_para(0),sub_para(1),sub_para(2),sub_para(3)

'debug output

 IF coor_rel THEN

705

 MOVE(sub_para(0),sub_para(1),sub_para(2),sub_para(3)) 'relative position

 ELSE

 LOCAL xdis, ydis, zdis, udis

 IF sub_ifpara(0) THEN 'if there are parameters

 xdis = sub_para(0)

 ELSE

 xdis = ENDMOVE_BUFFER(0)

 ENDIF

 IF sub_ifpara(1) then

 ydis = sub_para(1)

 ELSE

 ydis = ENDMOVE_BUFFER(1)

 ENDIF

 IF sub_ifpara(2) THEN

 zdis = sub_para(2)

 ELSE

 zdis = ENDMOVE_BUFFER(2)

ENDIF

 IF sub_ifpara(3) THEN

 udis = sub_para(3)

 ELSE

 udis = ENDMOVE_BUFFER(3)

 ENDIF

 MOVEABS(xdis,ydis,zdis,udis) 'absolute position

 ENDIF

END SUB

'absolute position mode

GLOBAL GSUB G90()

 TRACE "G90 entered"

 coor_rel = 0

END SUB

'relative

GLOBAL GSUB G91()

 TRACE "G91 entered"

706

 coor_rel = 1

END SUB

'delay

GLOBAL GSUB G04(P)

 TRACE "G04 entered"

 IF sub_ifpara(0) THEN

 DELAY (sub_para(0))

 ELSE

 ENDIF

END SUB

GLOBAL GSUB G00(X Y Z U)

 TRACE"G00 entered, distance:" sub_para(0),sub_para(1),sub_para(2),sub_para(3)

'debug output

 IF coor_rel THEN

 MOVE(sub_para(0),sub_para(1),sub_para(2),sub_para(3))

 ELSE

 local xdis, ydis, zdis, udis

 IF sub_ifpara(0) THEN

 xdis = sub_para(0)

 ELSE

 xdis = ENDMOVE_BUFFER(0)

 ENDIF

 IF sub_ifpara(1) THEN

 ydis = sub_para(1)

 ELSE

 ydis = ENDMOVE_BUFFER(1)

 ENDIF

 IF sub_ifpara(2) THEN

 zdis = sub_para(2)

 ELSE

 zdis = ENDMOVE_BUFFER(2)

 ENDIF

 IF sub_ifpara(3) THEN

 udis = sub_para(3)

707

 ELSE

 udis = ENDMOVE_BUFFER(3)

 ENDIF

 MOVEABS(xdis,ydis,zdis,udis)

 ENDIF

END SUB

21.2 Module Communication

CAN Communication

Wiring between controllers.

CANL - CANL

CANH - CANH

Add a resistance of 120 Ohm between CANL and CANH

Procedure in Master

CANIO_ADDRESS = 32 'set as master

STOPTASK1

RUNTASK 1,task_canget 'start to get task

GLOBALIF_send

IF_send= 1

WHILE 1

IF if_send = 1 THEN

 TABLE(0,0,8,1,2,3,4,5,6,7,8) 'send 8 bytes to controller which can-cob-id is 0.

 CAN(0,7,0) '0-CAN channel,7-send data,0-start table address of data

 if_send = 0

 ENDIF

708

WEND

END

GLOBAL SUB task_canget() 'receive task

 WHILE 1

CAN(0,6,10) 'receive data, data will be saved after table(10). Table(10)

means CANID, when it is <0, which means no data.

 'table(11) means data number received. table(12)……means

data.

 IF(table(10) >= 0) THEN 'judge if data was received

 ?"ID of controller that sends data:",table(10)

 ?"data bytes number:",table(11)

 ?"data:"table(12),table(13),table(14),table(15),table(16),table(17),table(18)

 ENDIF '0-CAN channel,7-send data,0-start table address of data

 WEND

END SUB

Procedure in Slave

CANIO_ADDRESS = 0 'slave

STOPTASK 1

RUNTASK 1,task_canget 'start to receive task

GLOBAL if_send

if_send = 0

WHILE 1

WAIT UNTIL if_send = 1 'wait until data comes.

 TABLE(0,32,1,$ff) 'send 1 byte to controller which can-cob-id is 32,it is FF.

 CAN(0,7,0) '0-CAN channel,7-send data,0-start table address of data

 if_send = 0

 WEND

 END

GLOBAL SUB task_canget() 'receive task

WHILE 1

CAN(0,6,10) 'receive data, data will be saved after table(10). Table(10)

means CANID, when it is <0, means no data.

 'table(11) means data number received. table(12)……means

709

data.

 IF(table(10) >= 0) then 'judge if data was received

 ?" ID of controller that send data:",table(10)

 ?" data bytes number:",table(11)

 ?"data："table(12),table(13),table(14),table(15),table(16),table(17),table(18)

 if_send = 1

 EDNIF

WEND

END SUB

HMI Communication

This HMI starts from 0, some other HMIs start from 1, all is mapped to address 0 in controller.

'**********initialization module*********

ERRSWITCH = 3 'output all information

RAPIDSTOP(2)

WAIT IDLE

BASE(0,1) 'choose X Y

UNITS = 100,100

SPEED = 100,100

ACCEL = 1000,1000

DECEL = 1000,1000

SRAMP = 100,100

DIM run_state 'run status

710

run_state = 1 '1-stop, 1-run, 2-homing

MODBUS_REG(0) = run_state 'show running status

DIM radius,length 'radius, length

radius = 100 'default radius value

length = 300 'default length value

FLASH_READ 0,radius,length

MODBUS_IEEE(2) = radius 'show radius value

MODBUS_IEEE(4) = length 'display length value

DIM home_done 'finished sign position of homing, 0-not finish,1-homing finish

home_done = 0 'enter not go homing status when power is on

MODBUS_BIT(0) = 0 'start, button resets

MODBUS_BIT(1) = 0 'stop, button resets

MODBUS_BIT(4) = 0 'homing, button resets

MODBUS_BIT(5) = 0 'save data, button resets

MODBUS_BIT(1000)=0 'axis X, homing sign is 0

MODBUS_BIT(1001)=0 'axis Y, homing sign is 0

STOPTASK 2

RUNTASK 2, guidetask 'start manual run task

'**********button scan module*********

WHILE 1 'scan HMI button input

IF MODBUS_BIT(0)= 1 THEN 'press start button

 MODBUS_BIT(0) = 0 'button resets

 IF run_state = 0 THEN 'standby stopped

 IF home_done = 0 THEN 'if homing motion is done, start motion

 TRACE "before move need home"

 ELSEIF home_done = 1 THEN 'if homing motion is done, start motion

 TRACE "move start"

 STOPTASK 1 'software is safe, stop task 0

 RUNTASK 1, movetask 'start run process task 1

 ENDIF

 ENDIF

ELSEIF MODBUS_BIT(1) = 1 THEN 'stop to press button

 TRACE "move stop"

 MODBUS_BIT(1) = 0 'button resets

 RAPIDSTOP(2)

 STOPTASK 1

 RAPIDSTOP(2)

711

 run_state = 0 'stop sign

 MODBUS_REG(0) = run_state 'display state

 ENDIF

 IF MODBUS_BIT(4) = 1 THEN 'press homing button

 MODBUS_BIT(4) = 0 'homing reset

 IF run_state= 0 THEN

 stoptask 1

 runtask 1, home_task 'start homing task

ENDIF

 ENDIF

'''reserve data

 IF MODBUS_BIT(5) = 1 THEN 'save data, press button

 MODBUS_BIT(5) = 0 'save data, button resets

 print "write data into FLASH "

 radius = MODBUS_IEEE(2)

 length = MODBUS_IEEE(4)

 FLASH_WRITE 0,radius,length 'write data into fan sector

ENDIF

WEND

END

'**********process motion module*********

movetask: 'run task: draw arc + runway

 run_state =1 'enter run state

 MODBUS_REG(0) = run_state

 radius = MODBUS_IEEE(2) 'read radius

 length = MODBUS_IEEE(4) 'read length

 TRIGGER

 BASE(0,1) 'choose XY axis

 MOVEABS(0,0)

MOVE(length,0) 'move runway path starts from the origin

 MOVECIRC(0,radius*2,0,radius,0)

 MOVE(-length,0)

 MOVECIRC(0,-radius*2,0,-radius,0)

 WAIT IDLE(0)

 run_state = 0 'enter standby state

 MODBUS_REG(0) = run_state

END

712

'**********homing task*********

home_task:

 TRACE "enter home task"

 run_state = 2 'homing sign

 MODBUS_REG(0) = run_state 'display state

 TRIGGER

 BASE(0,1)

 CANCEL(2) AXIS(0) 'first axis 0, stop axis 1

 CANCEL(2) AXIS(1)

 WAIT IDLE(0)

 WAIT IDLE(1)

 'DATUM(3) AXIS(0) 'homing of actual device axis 0

 'DATUM(3) AXIS(1) 'homing of actual device axis 1

 MOVEABS(0) AXIS(0) 'homing of virtual device axis 0

 MOVEABS(0) AXIS(1) 'homing of virtual device axis 1

 WAIT IDLE(0)

 MODBUS_BIT(1000)=1 'set sign, indictates axis 0 has done homing motion

 WAIT IDLE(1)

 MODBUS_BIT(1001)=1 'set sign, indictates axis 1 has done homing motion

 home_done = 1

 TRACE "home task done"

 run_state = 0 'return to standby state

 MODBUS_REG(0) = run_state

END

'**********manual motion*********

guidetask:

WHILE 1

 IF run_state = 0 THEN 'judge if stops or not

 BASE(0)

 IF MODBUS_BIT(10) = 1 THEN 'left

 MODBUS_BIT(10) = 0

 VMOVE(-1)

 ELSEIF MODBUS_BIT(11) = 1 THEN 'right

 MODBUS_BIT(11) = 0

 VMOVE(1)

 ELSEIF MTYPE = 10 OR MTYPE = 11 THEN 'not be VMOVE motion

 CANCEL(2)

 ENDIF

713

 BASE(1)

 IF MODBUS_BIT(20) = 1 THEN 'left

 MODBUS_BIT(20) = 0

 VMOVE(-1)

 ELSEIF MODBUS_BIT(21) = 1 THEN 'right

 MODBUS_BIT(21) = 0

 VMOVE(1)

 ELSEIF MTYPE = 10 OR MTYPE = 11 THEN 'not be VMOVE motion

 CANCEL(2)

 ENDIF

 ENDIF

 DELAY(100)

WEND

END

Self-defined Ethernet Communication

OPEN #11, "TCP_SERVER",1000 'use self-defined Ethernet channel 2, as master, port NO. is

10

GLOBAL DIM tempchar

GLOBAL CONST datamax=20

GLOBAL DIM datanum

 datanum=0

GLOBAL DIM DATA(datamax)

STOPTASK1

RUNTASK 1,aa

WHILE 1

 tempchar = 0 'clear former characters.

 GET #11,tempchar 'get single character, save it in tempchar

 PRINT tempchar 'print ASCII code of character

 DATA(datanum) = tempchar 'save in array

 datanum = datanum + 1

 IF datanum = datamax then 'if exceed array space

 datanum = 0

 FOR i = 0 to datamax-1 'clear data in array.

 Data(i) = 0

 NEXT

714

 ENDIF

 IF tempchar = 59 then 'if meet character ;stops.

 PRINT #11,"ok1245"

 ENDIF

 DELAY(10)

WEND

END

SUB aaa()

WHILE 1

tempchar = 0 'clear former characters.

 GET #10,tempchar 'get single character ,save it in tempchar

 PRINT tempchar 'print ASCII code of character

 DATA(datanum) = tempchar 'save in array

 datanum = datanum + 1

 IF datanum = datamax then 'if exceed array space

 datanum = 0

 FOR i = 0 to datamax-1 'clear data in array.

 DATA(i) = 0

 NEXT

 ENDIF

 IF tempchar = 59 then 'if meet character ;stops.

 PRINT #10,"aaaaaaaaaa"

 ENDIF

 WEND

END SUB

Communication between controllers

Valid in the latest firmware, download master and slave procedure separately into different

controllers, and connect with controller’s net interface with reticle.(can use switch)

''''''''''''''''''''''''master controller

DIM i,j,lasttick

MODBUS_REG(j)=0

MODBUSM_DES2($1 , 20, "192.168.0.11") 'controller IP can’t be same

WHILE 1

715

 lasttick=TICKS

 FOR i =0 TO 9999

 MODBUS_REG(0) = i

 MODBUSM_REGSET(0,1,0)

 MODBUS_REG(0) = 99

 MODBUSM_REGGET(0,1,0)

 IF MODBUS_REG(0) <> i THEN PRINT "MODBUS_REG(0)=" MODBUS_REG(0),

"MODBUSM_STATE=" MODBUSM_STATE

 NEXT

 ?lasttick-TICKS

WEND

END

''''''''''''''''''''''''slave controller

DIM j

ADDRESS=1

MODBUS_REG(j)=0

WHILE 1

 IF MODBUS_REG(0) <> 0 then

 SPEAKOUT(100)

 ENDIF

WEND

END

String and Self-defined Communication

SETCOM(38400,8,1,0,0,0) 'set as RAM mode

DIM TEMPVAR 'define variable

DIM VALUE

DIM CHLIST(10) 'define array

FOR i=0 TO 9

GET #0, TEMPVAR 'read data through channel 0

 CHLIST(i)=TEMPVAR 'read data store in array in sequence

Next

TRACE CHLIST 'debugging

VALUE = VAL(CHLIST) 'convert to variables

PRINT #0, TOSTR(CHLIST) 'convert to string

716

21.3 Bus Initialization

EtherCAT Initialization

Requirements: controllers with EtherCAT interface, servo based drive must support EtherCAT

fieldbus, valid in ZDevelop version above 2.5.

This only sets fieldbus enable operation, others should be set in upper computer, like pulse amount,

axis speed, motion path, etc.

''''''''''''''''''''''''initialization preparation

RAPIDSTOP(2)

WAIT IDLE

FOR i=0 to 10 'cancel former Fieldbus axes setting

 ATYPE(i)=0

NEXT

''''''''''''''''''''''''EtherCAT fieldbus initialization

SLOT_SCAN(0) 'start scan

IF RETURN THEN

 ?"fieldbus scan successfully", "linked devices number："NODE_COUNT(0)

 ?

 ?"start to map axes NO."

 AXIS_ADDRESS(0)=0+1 'Map Axes NO.

 ATYPE(0)=65 'EtherCAT Type, 65-position, 66-speed control,67-torque control

DRIVE_PROFILE(0)= -1 'servo PDO functions

when atype is 66, set as 20, when atype is 67, set as 30

 DISABLE_GROUP(0) 'each axis as one group

 ?"axes map finished"

 DELAY (100)

 SLOT_START(0) 'start fieldbus

 IF RETURN THEN

 ?"fieldbus starts successfully"

 ?"start to clear drive errors(set according to drive data dictionary)"

 DRIVE_CONTROLWORD(0)=0 'clear errors for cooperating with servo

 DELAY (10)

 DRIVE_CONTROLWORD(0)=128 'when bit7=1, force servo to clear errors

717

 DELAY (10)

 DRIVE_CONTROLWORD(0)=0 'clear errors for cooperating with servo

 DELAY (10)

 DATUM(0) 'clear all axis errors of controller

 DELAY (100)

 ?"ready to enable axes "

 AXIS_ENABLE(0)=1 'axis 0 enable

 WDOG=1 'main switch of enable

 ?"axis enable finished"

ELSE

 ?"fail to fieldbus start"

 ENDIF

ELSE

 ?"fail to scan fieldbus"

ENDIF

END

Rtex Initialization

Requirements: controllers with RTEX interface, use Panasonic RTEX servo drive.

RAPIDSTOP(2)

WAIT IDLE

FOR i=0 to 10 'cancel former Fieldbus axes setting

 ATYPE(i)=0

NEXT

SLOT_SCAN(0) 'start to scan

IF RETURN THEN

 ?" fieldbus scan successfully ", "linked devices number："NODE_COUNT(0)

 ?" start to map axes NO."

 AXIS_ADDRESS(0)=0+1 'map axis NO.

 ATYPE(0)=50 'Rtex Type, 50-position control, 51-speed control, 52-torque control

 DRIVE_PROFILE(0)=1 'servo mode that support IO mapping

 DISABLE_GROUP(0) 'each axis as one group

 ?"axis NO. mapping finished"

 DELAY (100)

 SLOT_START(0) 'start fieldbus

 IF RETURN THEN

718

 ?"open Fieldbus successfully"

 DATUM(0)

 DELAY (100)

 ?"ready to enable axes"

 AXIS_ENABLE(0)=1 'enable axis 0

 WDOG=1 'main switch of enable

 ?" axes enable finished "

ELSE

 ?" Fail to open fieldbus "

 ENDIF

ELSE

 ?"Fail to scan fieldbus"

ENDIF

END

719

Chapter XXII Error and Debug

Due to wrong wiring, procedure logic problems, instructions errors, etc., motor will not run

as expected, controller will show errors.

How to find out reason and solve problems, the first rule is to close other software, then use

Zdevelop to debug, following functions should be known: manual motion debugging, interrupt

debugging, oscilloscope collection, register check, remote commands, procedure information print,

fast IO test.

22.1 List of Common Problem

Problem Debugging Solutions

Motor doesn’t run Manual Motion Debug

Register value on HMI is not correct Check Register

Not run as expected in procedure Interrupt Debug + Procedure Information Print

inputs or outputs don’t work Fast IOs Test

Machine shakes too much Oscilloscope Collection

Problem Checking

If there is procedure error, first check procedure problem:

 when procedure motion appears errors, ZDevelop software will show error information. If

there is no error information, check through ?*task command, then double-click error information,

it will turn to procedure error position autoamtically. Relevant codes as follow, see “Error Code

List”.

Problem Possible Reasons

2043:Unknown function is met Function is not supported by controller.

stop of error:2049

Line not ended.

1.some commands must occupy a whole line.

2.no need () for calling GSUB.

stop of error:2033

Unknown label is met

1.not-defined variable/array

2.not-defined SUB process

3.with defined array, but defined commands aren’t

executed, maybe relevant files are not set run automatically.

2048:Function can only be used

in expression

Function must be with return value, but no need in the start

position.

2064:Param few Function parameters are too less.

2063:Param too many Function parameters are too more.

2072:Need = sign Not write “=”.

720

2060:Syntax format error There exists grammar error of instruction.

error:1010 Pause repeat

error:1011 No motion, so can’t pause.

The procedure running errors are solved, it still exists abnormal operation. If motor doesn’t

work, then check following settings.

1. Reason of Drive

Since drive motor is not set inverse IO level by default, so limit position will appear errors.

Solution: set limit position level inversion according to drive manual. For example, for Panasonic servo,

parameters should be: Pr4.01=010101h(65793), Pr4.02=020202h(131586). For other brands, please see

relevant manual.

Relevant

parameters

Default values

（decimal）

Position control/full-closed control

Signal name logic

Pr4.00
00323232h

（3289650）
SI-MON5 Normally open (ON)

Pr4.01
00818181h

（8487297）
POT Normally close (NC)

Pr4.02
00828282h

（8553090）
NOT Normally close (NC)

Signal name Sign NO.
Set value

Normally open (ON) Normally close (NC)

invalid - 00h It can’t be set

Positive drive forbids input POT 01h 81h

Negative drive forbids input NOT 02h 82h

2. Reason of procedure

1) UNITS value is too small, this causes extreme slow motion speed. This can’t be

distinguished by naked eyes.

2) there is abnormal status of motor(limit position, alert…), then it can’t move, print

AXISSTATUS value to judge.

3）pulse can’t sent correctly when there is wiring error of motor.

4) axis enable OP port close (for servo motor, it needs to open).

5) program processing makes the motor unable to move, download the empty program.

6) drive motor alarm.

Following reasons only for fieldbus axis:

7) fail to fieldbus scan, print return value.

8) WDOG main enable and AXIS_ENABLE axis enable instructions are closed.

9) there are errors of drive status setting. See drive manual for details.

721

3. Problem checking steps:

1) use ZDevelop software.

2) close all other software and procedures linked with the controller, except ZDevelop, to

avoid these external elements make influence on operation.

3) use ZDevelop download an empty program to controller, for avoid making influence by

internal elements.

4) open ZDevelop, “view”-“motion by manual” and “view”-“axis parameters”

5) following steps only for pulse axis.

Motor only can do single-direction motion, possible reasons as follow:

1.motor is in the limit position status, see AXISSTATUS.

2.wrong motor control mode, set INVERT_STEP as relevant mode (double pulse / pulse +

direction).

3.check if motor wiring is correct.

722

22.2 Solutions

Manual Motion Debug

Use “Manual” motion to check if there are wiring problems.

Close all related software except ZDevelop, and use ZDevelop to link with controller, download

an empty procedure. And select axis No. through VIEW-AXIS PARAMETERS, manually set axis

type ATYPE, pulse amount UNITS, speed SPEED, acceleration ACCEL, deceleration DECEL,

etc., then click view -- manual, operate motor by manual.

Operation Method: hold LeftMove/RightMove, motor will run continuously, it stops when

releasing. “DPOS” (command position) shows how many pulses sent now (the unit is units). Fill

in “Distance” parameter well, then check “Move”, please note there is one “Absolute”, when it is

checked, motor will run to “you filled distance” directly, when not checked, it will keep moving

according to the distance parameter (relative motion).

When click left or right, followed situation will happen:

1. Motor doesn’t run, DPOS changes.

A. pulse was sent from controller, check if there is drive alarm, check motor wiring.

B. UNITS is too small, motor is running slightly, not able to observe.

2. Motor only runs at one direction

Check the motor control mode, controller only supports double pulse or pulse + direction 2-

axis control mode, orthogonal pulse is not supported.

3. Motor only runs when operate one side (left or right).

A. check motor wiring.

B. motor control mode and controller control mode are different, default controller control

mode is pulse + direction, use INVERT_STEP to modify.

4. Motor doesn’t run, DPOS also doesn’t change.

Check if there is an alarm from AXISSTATUS.

5. For controller that is supplied by dual-power, please check whether IO 24V is wired

723

and supplied normally.

Interrupt Debug

Interrupt debugging is used to check procedure process or logic and judge procedure logic errors.

Also, it checks influence on registers, variables, arrays, etc. together with monitor content.

Debugging procedure should be same as controller procedure.

Press F9 to add interruption points. In Develop, connect controller well, then click debug-

start/stop debug to enter debugging mode.

In debug mode, task running process, monitoring item, sub process, local variables in subsidiary

functions all can be checked.

Oscilloscope Collection

Oscilloscope can collect all kinds of data types, click “view-oscilloscope-source” to check.

Oscilloscope is usually used to judge actual speed and position of motor.

724

XYmode is used to check two-dimensional trajectory, source of first 2 channels should be set as

DPOS or MPOS.

If machine shakes too much, then use oscilloscope to collect encoder feedback MSPEED, to check

if wave shape is smooth, if it is smooth, which means pulse delivery is stable, then continue to

check if speed curve is too steep and if speed is too big in constant speed mode

Register Check

In Develop, click view-register to check registers data. including register types: IN, OP,

MODBUS_4X, MODBUS_0X, TABLE, VR, AIN, AOUT.

725

It is only valid in controller that supports PLC

If registers in HMI did not change as expected, now check relative register type and number of

touch screen to confirm this register value has changed or not. If it changed, there is

communication problem between controller and HMI, check the wiring and communication

parameters setting. If it not changed, there is procedure logic problem. Check if program is

executed correctly or not through interrupt debug.

Remote Commands

Online command executes instructions that are sent out, which is usually used to check if

controller instructions are normal.

Such as, when procedure is already executed, but motor doesn’t run as expected. For this situation,

it can’t confirm the result from other tasks in procedure or controller function. Now, download an

empty program (without code) into controller, then send remote commands to check possible

reasons.

Print Program Information

Print information in different procedures to check if procedure is executed or the number of

execution or which relative executed parameters.

The print instruction is PRINT, also the omit type of print is “?” (English character).

Fast IOs Test

Connect Ddevelop with controller, click view-input/output, link output and input one by

one(EGND must be linked) at the same time, then operate output, check output status in Develop

at the same time.

Some controllers need additional 24V power to supply IOs.

If checking expansion module IOs, first need to confirm there is a 120Ω resistance between CANL

726

and CANH and DIP setting is correct, then check wiring of main power and IOs power supply is

right. At last, check as above steps.

Axis Parameters Status Judge

Axis parameters can be checked on PARAMETER, such as ATYPE, UNITS, SPEED, etc. and

can be modified directly here. But not valid for parameters read.

Judgements of axis running state: IDLE, AXISSTATUS and AXIS_STOPREASON.

1.IDLE: judge if motion instruction of axis finishes or not, motion in process-0, motion finishes-1.

For axis status, often use WAIT IDLE(AXSI NO.) to judge.

2.AXISSTATUS can check all status of axis. Show value with decimal, judge status with relevant

binary, there can appear several errors at the same time.

3.AXIS_STOPREASON latch stop reasons, write 0 to clear, latch AXISSTATUS information as

per bit.

727

Appendix I Error Code List

Code Error Code Description Possible Reason Solution

External Error Code

201 Invalid Sub-Module

Set ZMIO_OFFSET as

minus or the No. that

exceeds starting IN &

OUT No., and it must be

the times of 8, such as,

ZMIO_OFFSET = -8.

210 Oversize File

Downloaded zpj project

or zar file is too large,

please check controller

specification by “?*max”.

211 File Size Error

212 State Error
When in Resume, it

is non-pause state.

When in Resume, it is in

non-pause state, see if RT

running state is switched

too fast, this usually

appears MotionRT7.

213
Download & Upload File Error,

Package Loss

Appear when

calling PC function.

214
Downloaded File Length Verify

Error

215 Insufficient Buffer Length

when the sending

character string is

too long, return this.

Check the length of

character string

command. It can’t be too

long.

217 Unsupported Controller Function

218
Wrong Called & Transferred

Parameters

219
Downloading Error, Multi-File

Downloading

See if several files now

are downloading at the

same time.

220
Filename Error, Be with Special

Character

See if the filename has

unsupported character.

221 Too Long Filename
See if the filename’s

length exceeds.

222 Invalid File

The file may not exist,

open it, see whether there

is alarm, and check which

one.

223 Locked, Password Protection Enter correct password.

224 Locked, Password Protection 2 Don’t unlock the

728

controller too frequently,

and the password must be

correct.

225 Unknown Error

226 Disk Space Error

227 Firmware Version Error

1. Check whether it is

the latest one –

update.

2. See if it matches with

your controller –

change correct one.

228 File Open Error

229 Connection Error

230 Fail to “bind”

231 File Read Error

232 File Write Error

233 Link Encrypted

234 Firmware Error 1. Update dll.

235 File Delete Error

236 Path Error

237 File Close Error

240 XPCI Sub-Card State Error

241
XPCI Sub-Card Memory

Resource Error

242 Sub-Card Setting Error

243 Unsupported Sub-Card

Chip Self-Checking Error

260 Hardware Error, LED Shrinks

261 Disk Unformatted

262 RTC Error

263 NORFLASH Error

1. There is strong

interference, please

restart, if still, contact

with us.

2. For XPCIE, please

check wiring cable,

make sure it is good.

264 RAM Error

1. Make sure internet

stable.

2. Haware error, contact

with us.

265 NANDFLASH Error Same as code 263.

266 U Disk Error
1. See whether U disk is

plugged in stably.

729

2. Interface error,

contact with us.

267 FPGA Error 1. Contact with us.

268 Ethernet Hardware Error 1. Contact with us.

Software Error

271 Backup Power Error 1. Contact with us.

272 Sub-Card Doesn’t Exist

273 ID File Lost 1. Contact with us.

274 System File Lost 1. Contact with us.

275
No Master Control, Appear in

Sub-Card

276 Program File Verify Error

1. For ZMC0XX, see

whether is ROM file.

2. Check if ZAR file is

correct.

277 Program File Error
1. See whether it lacks

program file.

278 ZAR File “apppass” Error

279 ZAR File ID Error

280 Too Many BAS Files

1. Check controller

supported BAS file

numbers (?*max –

max_file), then see

whether it exceeds.

281
Sub-Card ID Conflict / Multi-

Master Conflict

282 Unsupported Function

1. The controller

doesn’t support this

function.

2. See if it is controller

new function, then

update the firmware.

283 “set” File Error Parameter file lost.

1. Please modify needed

parameters that are

saved into flash, then

generate as set file

automatically.

284
ZAR File Not Matched with

Controller

285 Image File Error

286 Font File error

287 .c File Function Syntax Error
Usually C language

program error

1. Check your edited C

language program.

2. If bottom layer C

730

language error, please

contact with us to

update.

288
Above Abnormal, Alarm Again

when Powered On.

289 Too Fast Reset

290 Drive Program Init Error

291 fpga Error
1. Please restart.

2. Contact with us.

292 Insufficient mmap

293 MotionRT Trial Expires

1. Check whether the

License is configured

2. For trial mode, please

restart MotionRT.

zmotion

1000 Motion Offset Error

1001 Must Be Interpolation State

1002 No Motion Buffer

1003 Can’t Be in Interpolation State

1004 Slave Axis is Moving

1005
Unsupported Motion Control

Function

1006 Arc Position Error

1007 Ellipse Para AB Error

1008 Motion Module Para IN Error

1009 In Motion, Operate Not Allowed

1010 Repeat Run “Pause” & Others

1011 In IDLE, Can’t Do Pause, etc.

1012
Now Motion Doesn’t Support

Pause

1013 Pause Point Not Found

1014 Unsupported ATYPE

1015 ZCAN ATYPE Conflict

1016 Unsupported Axis Function

1017 FRAME Correction Data Error

1018
Too Less FRAME Correction

Data

1019 Too Less Met FRAME Data

1020
Too Less FRAME Data

Auxiliary Para

1021

Too Small Span Between

FRAME Correct Data, < Joint-

Axis Numbers

731

1022 FRAME IN Coordinate Error

1023
In FRAME, No Way to Modify

Coordinates

1024
FRAME Inverse Kinematic

Error

1025 Not FRAME Status

1026 FRAME HAND Error

1027
Can’t Switch Attitude in

Interpolation

1028
UNITS of Special Joint-Axis &

Virtual-Axis Should Be Same

1029 FRAME Called INIT Para Error

Distance / angle

para exceeds, note

the angle unit.

1030

CORNERMODE 7-Bit Set

Already, But Unsupported

Motion

1031
CORNERMODE 7-Bit Set

Already, But Not in FRAME.

1032 AXIS_ADDRESS Error

1033 Too Many Interpolation Axes

1034 INTCYCLE Time Out

2000
RTBASIC Module Offset, Para

in Module Error

2001-

2020

Internal Error in RTBASIC

Module

1. Check if there are

same definition name

of different types’

variables according to

the message hint.

2. Check if it prints

unassigned variable

in the function.

2021 Manual Stop

2022
Task Stops Because Other Tasks

Error

2023 Operate RO Para
1. Read only parameter

can’t be modified.

2024 Array Exceeds

1. Modify the number

of defined arrays

(table index starts

from 0).

2025 Variables > Controller Allowed 1. Check ?*max –

max_sub, if more,

please select other

models.

2026 Arrays > Controller Allowed

2027
Array Space > Controller

Allowed

732

2028 SUB > Controller Allowed

2029 Mark Name Error

Command edit error

/ no note for

Chinese

1. See if there are

unsupported symbols

(especially in

function, variable

definition).

2030 Too Long Mark Name

1. See if function or

variable definitions

are too long,

controller has own

limit.

2031 No “)”

1. See if the parentheses

are full.

2. See if the parentheses

are correct or if there

is special character in

the middle.

2032 Unknown Character

Command para’s

comma is Chinese

symbol.

1. See if there are

unsupported symbols.

2033 Unknown Name in Expression
Undefined variable /

array

1. See if commands are

edited correctly, and

whether commands

are supported.

2034
SUB Can’t Be Used in

Expression

1. Modify SUB usage

method, SUB

function only can be

called.

2043
Unknown Command Mark (Now

Line 1st Mark Name)

Command editing

error

1. See if there are wrong

editing commands,

and if commands are

supported.

2044 Stack Overflow

SUB function

recursive calling >

system allowed

times

1. Check “?*max” –

“max_callstack”, see

the limit, each

controller is different.

2. See if functions are

called mutually.

2045 Too Complex Math expression

1. Check and modify

the math expression,

each controller is

different.

2046 No End Quote Mark Found
1. Check and modify

quote mark.

2047 No Returned Value for The 1. Cancel related

733

Command, Can’t Read commands / functions

in expression or use

in online command.

2048
Function Must Return a Value,

Not at Beginning of First Line

1. See if executed

function that needs

return value but the

expression didn’t

output the value, like,

directly run SIN(1).

2049
Special Command Must Be One

Separate Line

Some commands

must occupy one

whole line.

1. Edit related

commands in

separate line.

2050 Para / Array Needs Index

2051 Variables Can’t Use Index

2052
Array Redefine & Inconsistent

Length

Define same arrays

many times.

1. Check if the array is

redefined, and see if

the length is not

same.

2053
Array Defined Length Para

Error, Minus / Oversize

2054 Mark Defined as SUB

SUB progress mark

can’t be defined

again.

1. Check if the function

name is redefined.

2055 Mark Defined as Parameter

1. Check if the

parameter name is

redefined.

2056 Mark Reserved, Can’t Use

1. Check defined mark

name, see if conflict

with existed para

command, (mpos, ..)

2057 Unrecognizable Character
Like “&” can’t be

identified by system

1. See if undefined

value is transferred.

2058 SUB Calling Out Stack (Repeat)
1. Check SUB calling

logic and correct it.

2060 Syntax Format Error
1. Find the wrong line,

and correct it.

2061 Parameter Overflow

2062 Function Para Range Error

1. Check the command

parameter or custom

function parameter,

see if the range

exceeds.

2. Check task No., if it

is more than allowed

by ?*max – max_task

734

3. Check if there inputs

too many contents in

executing line.

2063 Too Many Function Parameters

2064 Too Less Function Parameters

2065 Lack Operands

1. Check if the

operation expression

is full.

2066 Lack Operands after Operators

2067 Lack Operands before Operators

2068 Unknown Operators

2069 Lack Binary Operators

2 commands are in

one line, one

operator is needed.

2070 CALL Must Call SUB

1. Correct the content to

be called after CALL,

it must be SUB type.

2071 No AUTO, Won’t Start

2072 Lack Assignment Symbol

When there is no

comma between

data, use “space”.

1. Correct expression

information, add

needed assign symbol

2073 Empty File

2074
SUB Defined Mark Name

Conflicts

1. Check and correct

parameter definition.

2075 Task to Be ON is Running

1. Check if there is

conflict on executing

task No.

2076 Multi-Para, Please Use Comma
1. Check parameter

used format, correct.

2077 No “<”
1. Check if the brackets

are full

2078 Too Much “IF”

1. Cut down the number

of IN, each controller

is different.

2079 Too Much “Loop”

1. Cut down the number

of LOOP, see “?*max

-- max_loopnest”,

each controller is

different.

2080 Too Less Interpolation Axes
1. Correct the number

of axes.

2081 CONST Can’t Be Modified.

It will report and

error when defined

constant data is

assigned again.

1. Correct CONST

usage.

2082
Command Doesn’t Support

Online Sending

735

2083 Too Many SUB Defined Para

1. Cut down local

parameters (< ?*max

-- max_local of one

sub), each controller

is different.

2084
SUB with Para Can’t Use in

GOTO

1. Use GOTO command

correctly.

2085 Too Many LOCAL Defined Para

1. Cut down the

number, each

controller is different.

2086
LOCAL Variable Name & File

Variable Name / Others Conflict

1. Correct related

content.

2087
LOCAL Doesn’t Support Array

Definition.

1. Correct LOCAL

command usage.

2088
GSUB Defined Para Letters

Repeat
 1. Correct repeated part.

2089
GSUB Defined Para Only Can

Be Single Letter

1. Correct non-single

part.

2090 RO Parameter Error
1. Read only parameter

can’t be modified.

2091 GSUB_IFPARA Usage Error

2092 Divisor is 0
1. See if one divisor in

the code is 0, correct.

2093 Over Buffer

2094
Online Commands Blocking Too

Long (Time)

1. Check the network.

2. Check if there are too

much data

transferring in a short

time.

3. Make sure link stable,

and bandwidth is OK.

2095 Same Para Name 1. Rename.

2096 Use Uninitialized Value 1. Initialize the value.

2097 Axis No. Conflicts 1. Correct axis mapping

2098 Data Type Error

2099 Inside Error
1. Usually defined name

conflict, correct.

2100 Too Many SCANEDGE

2101 ZINDEX Type Mismatch

2102 ZVOBJ > Allowed Numbers

2103 Inconsistent ZVOBJ Definition

2104 ZINDEX Value Error

2110 Call Command Not Enabled

2120
Structure Define Conflict, Can’t

Define Multi at the Same Time

736

2121
Name & System Command

Conflict

2122
Structure Definition Can’t Be

Recursive

2123
Structure “item” & Structure

Name Conflict

2124
Syntax Error, Lack Structure

Type

2125 Structure “item” Error

2126 Lack Structure Element

2127 Lack Structure Variable

2128 Structure > Allowed Numbers

2129 Structure Element > Allowed

2130 Structure Type Undefined

2131 Data Type Undefined

2132
Structure Define Should Be

Before Codes

2133
Can’t Dynamically Delete Static

Definition

2134 Lack Array Type

2150
Function Return Not Immediate

Done

2151

Function Can’t Immediate

Return Because Now Expression

Doesn’t Support

2152 Dynamic Stake is Overflow

2200 Function Calling Not Done

2901
System Error, Too Many Defined

Mark (variable, array, process…)

3201 Over Buffer

3202 File Abnormal End

3203
Program Structure Command

Lack Something
no THEN after IF.

1. Compatible error, see

if the command is

full, such as, no

THEM in IF.

3204 Internal State Error

3205 Unsupported Function

1. The controller

doesn’t support this

function.

2. See if it is controller

new function, then

update the firmware.

3206 Internal Calling Para Error
1. You used controller

unsupported function,

737

please see whether

controller supports.

2. EtherCAT config file

is not loaded.

3212 Unknown Error

3230

3231 Insufficient Resources

3232

3233 OS Return Error

3242 “os” Error

3243 U Disk Uninserted

1. Check if the U disk is

inserted and is stable.

2. Check if the U disk

that can be known by

your controller.

3244 File Opened Again

3245 Oversize File

3248 Filename Error

3249 Too Long Filename

3250 No This File

3301 Arc 3 Points are in One Line
1. Correct command

usage.

3302
2 Parallel Lines, No Intersection

Point

1. Correct command

usage.

3401 MODBUS Master Para Error

1. See if MODBUS

master para is correct,

see if the length

exceeds.

3402 Message Response Timeout

1. See communication

configuration.

2. See if there is

blocking / unstable

network.

3403 Message Length > Max Buffer
1. Sending data exceeds

the limit.

3404
MODBUS Message Bytes / ID

Error

3405

3406

3407 MODBUS Return Para Error

3408 MODBUS Return Doesn’t

738

Support

3410 Receive Data in Blocking

3420
MODBUS Salve Returns

Unsupported Function Code

3421
MODBUS slave station returns

invalid function codes

3422
MODBUS Slave Return Address

Space Error

1. Master and slave

addresses are not

matched, please read

& write not existed

register addresses,

then set correct one.

3423
MODBUS Slave Return Data

Length Error

3424
MODBUS Slave Return Length

Too Long

3501 ZCAN Return No Sub-Card

3502
ZCAN Return No Sub-Card

Related Axis

PLC (Controller Side)

4001

4002 Parameter Error

4003 Unknown Type

4004 Unknown Function

Unknown function

is called, or the

called function is

not GLOBAL type.

Modify the syntax usage.

4005 Stack Too Many STL

4006 Too Many Stakes

4007
Too Complex Program, Too

Much BLOCK

4008 No Stack BLOCK

4009 No Stack STL

4010 No Stack

when using MPP

and MPS

commands, MPP >

MPS

Determine error position,

then modify the script.,

MPP used times should

be same as MPS.

4011
MC Can’t Be in the Middle of

STL

4012 MC Level Error

4013
STL Only Can Be Main File

Main Task

4014 File Content Error

739

4015 RET Must Be after STL Correct it.

4016 > Register Range

4017 < register Range

4018 L Not Defined

4019 Don’t Support G Code Function

4020
COTO Can’t Cross PLC &

BASIC

In Basic, you used

GOTO to jump to

PLC.

Use syntax correctly.

4021 Only One PLC Main Task

4022 Syntax Error

4023 FOR NEXT Error, Mismatched Use syntax correctly.

4024 FOR NEXT Error, no NEXT Use syntax correctly.

4026 FOR MC Mixed Use Use syntax correctly.

4027 FOR STL Mixed Use Use syntax correctly.

4030 Must Use in PLC Main Task

4031 Must Use in Interrupt

4032 Too Less Parameters

4033 Too Many Parameters

4034 Multiples of 8

4035 Register Mark Error

4036 Register Type Error

STL command and

others use wrong

register type

Determine alarm position

and correct the script.

4037 Too Many LV

4038 Read-Only

PLC (PC Side)

4501

4502

4503 Insufficient Memory
The memory

exceeds allowed
Optimize the memory.

4504 Reflow to Busbar

The soft component

is connected direct,

and parallel to the

busbar.

Delete the connection that

is not correct.

4505 Reflow

Direct connect, and

parallel to other soft

components without

the soft component.

Delete the connection that

is not correct.

4506
AND Command Can’t Connect

to Busbar Directly.

No other elements

between AND type

and busbar.

Add the component, or

delete this ladder

diagram.

4510
Not Full, No OUT Command in

the Right

No output command

is connected after

ANB command or

after the component.

Determine where is

wrong, then correct it.

740

4511
In the Rightmost, it is Not OUT

Type.

Check if it is output type

in the rightmost side.

4512 Rightmost Must Be Separate

2 output types of

components that are

in the rightmost side

are connected.

Check if they are

connected in the

rightmost.

4513
OUT Type Must Be in Right

Most

Output types’

component is not

the rightmost side

of ladder diagram,

but in the middle or

left side.

Check if there is output

type is in the middle or

left.

4514 Unsupported Command Type

Check where the

unsupported type is, and

correct it.

4515 Inside Error

4516 Inside Error

4517 Empty Register

There is no any

value in called

register.

Assign the register that is

to be called.

4518 DOT Value Exceed

4519 Register Exceed

Called register

exceeds the number

of registers.

Modify the usage range of

the calling register to be

within the specified

number range

4520 Too Many Characters

4521 Register Type Error

Script used register

type is not

controller standard

register type.

Check if the used register

type is consistent, valid.

4522 Register Value Error

Register value input

by the component /

command is wrong.

Find the wrong

component or command

(wrong register value).

4523 Too Many Registers

4524 Too Less Registers

The component

didn’t set the

register.

Add register for the

component or command

that didn’t set register.

4525 STL Usage Error

4526 RET Usage Error
RET should be used

after STL.

4527 RET Repeat

RET command or

component is used

again.

Delete one.

4528 END / LBL Position Error

4529 Function Can’t Be Connected to

741

Busbar Directly

4530 No Push when Out the Stack

when using MPP

and MPS

commands, MPP >

MPS

4531 Too Many MPS
Keep using MPS

over 11 times

Determine the usage

times, and correct it.

4532 Register Type Usage Error
You used supported

register type.
Use correct register type.

4533 ANB Error, Insufficient Blocks

No others after

ANB, real numbers

of used is not

consistent with

needed.

4534 ORB Error, Insufficient Blocks

No others after

ORB, real numbers

of used is not

consistent with

needed.

4535
ANB Error, Can’t Combine after

OUT

After OUT

command, then you

call ANB.

4536
ORB Error, Can’t Combine after

OUT

After OUT

command, then you

call ORB.

4537
AND Can’t Be Connected to

Busbar Directly

AND command or

other components

are connected to

busbar directly,

before, there is no

other command /

component.

Determine where is the

wrong position, then

correct the script or LAD.

4538
OR Can’t Be Connected to

Busbar Directly

OR command or

other components

are connected to

busbar directly,

before, there is no

other command /

component.

Determine where is the

wrong position, then

correct the script or LAD.

4539 OR Can’t Be after OUT

4540 STL & MC Can’t Be Shared

4541
MC Can’t Be Connected to

Busbar Directly

4542 @Register Without Brackets

4543 Note Error

742

4544 Too Many LAD Columns
LAD columns >

controller allowed

Too many LAD columns,

please delete some.

4545
OUT Type Can’t Be Connected

to Busbar Directly.

Output types

component connects

to busbar directly.

Delete the corresponding

OUT type component.

HMI

5000 LCD No. Error

HMI running

tasks > controller

allowed.

See if it is more than

allowed (allowed can be

known from ?*max –

max_hmi), more, please

select other controllers.

5001 HMI File Error Inside error Please contact with us.

5002 LCD No. Conflict
Multiple HMI file

use same LCD No.

See if there ae same LCD

No.

5003 Unsupported Object Inside error Please contact with us.

5004 Insufficient Memory

Too small memory

setting for VPLC7

or other controllers

don’t support.

1. For VPLC7XX,

adjust “config --

hmisize”.

2. Contact with us.

5005 “Control” Error

One abnormal

“layer” value set by

PC software is

transferred.

Contact with us.

5006 Window No. Exceed
You set too large

window No.

1. Set it as a small one.

2. If it is full, contact us.

5007 Invalid Window No.

1. In base window,

you opened one

window that

doesn’t exist.

2. One invalid

window is

opened by the

HMI_SHOW -

WINDOW.

Check if you opened the

base window that had

been opened by the

command already.

5008 HMI Content Error Inside error Contact with us.

5009 Same Window No.

Two HMI files or

several windows

use same window

No.

See if they are same.

5010 Object Property Lost Inside error Contact with us.

5011 >1 KeyboardShow in Keyboard

5012 ACTION Type Error

Because action

value is abnormal in

PC configuration.

Contact with us.

743

5013 Too Many Events

5014 Back to Last Window Failed

5015 Can’t OFF Base Window

Check HMI file’s base

window, and check script

“close” logic.

5016 No Related Character in Font

This will not alarm,

but the character

that can’t be known

will not be shown.

5017 Must Use in HMI Task

5018 Wrong Control Type Because the control

is operated by the

command but it

doesn’t support.

Check parameter

configuration and related

HMI window, see if they

are consistent.

5019 Control ID Not Exist

5020 Control ID Conflict

Different controls

are set same

component No.

Correct it.

5021 LCD No. Error

PC host computer

error

PC host computer error

5022 No Valid LCD Found

5023 LCD No Opened

5024 LCD No Data

5025 Program Reset

5026 LCD Opened

5027 Not Network LCD
PC host computer error (300 uses internal LCD

No., the HMI with x uses network LCD No.)

5028 Unsupported Compress Reserved Reserved

5029 Unsupported Color Depth
Controller doesn’t

support that.
Contact with us.

5030 Unsupported Data Type Inside error Contact with us.

5031 Device No. Error

5032 LCD_SET Can’t Use Reserved

5033 Don’t Set REDRAW in DRAW

In draw function,

you used set_redraw

command.

“set_redraw” is one

refresh function that must

be used in refresh

function.

5034
DRAW Function Only Can Be

DRAW

“draw” command is

used in refresh

function.

Draw command (usually

the beginning of draw)

must use in draw

function.

5035 Can’t Call in DRAW

The command that

operates control is

used in draw

function.

Commands that operate

control to show, control

state can’t be used in

draw function.

5036 Fixed Inner LCD Resolution

5037 LCD Resolution Beyond Set resolution > You can check x and y

744

controller allowed parameter (?*max –

max_hmi), that is, the

resolution size.

5038 Library File Name Error

Called library file

name is wrong

while using text

library.

Check the control “text

library” or the command,

correct the name.

5039 Too Many Characters

5040 Object Property Lost Inside error Contact with us

5041 No KeyboardShow in keyboard

5042 Too Many States

5043 Unsupported Draw Property

5044
Remote Communication Device

Name Error

5045
Remote Communication Data

No Update

5101 Invalid Date Format

You used invalid

format while using

SYSTEM command

(like, not the format

of % + letter).

Use correct data

format: % + letter

5102 Control Not Exist

You use the

command to operate

the control that

doesn’t exist (such

as, online change

control text).

Use correct control ID.

5103 Too Many / Less Polygon Points
The polygon points

is <2 / >32.

Check the point numbers,

and better to use

DRAW_POLYGONS.

5104 No Free Scroll Bar

You used auto-

allocate ID syntax

while initializing

the scroll bar.

Note to release ID No.

that is not used, if you

need more, please contact

with us.

5105 Invalid Scroll Bar ID

You called invalid

scroll bar ID when

using scroll bar

command (such as,

you used ID (>31)).

Use correct initialization

scroll ID.

5106 Unsupported Function

Controller used

unsupported HMI

control / command.

Contact with us to see if

there is new firmware.

5107 Not Load Image

You don’t import

the image while

CAD command is

Please use CAD control

to import corresponding

graphics, then do other

745

executing. CAD operations.

5108 File Broken

Usually appears

when importing

broken format of

strong formats (bin

file).

Reexport broken bin file.

5019 Menu Para Error

5110
Not Enough table Space when

Exporting, then Overflow

Make table space large

through the command or

change one controller if

now it is the max space.

5111 Unsupported Data Type
Change as correct data

type.

5112 Unsupported Control Type
Change control ID, and

use correct control.

5113 Array Overflow Exceed max value

Check array size, and see

whether transferred array

max value exceeds or not.

5114 Inside Error Error in HMI inside Contact with us.

5115 Channel Overflow

EtherCAT Bus Errors

6000
EtherCAT Module Error, SLOT

No. Error

6001
Inside Error, Unsupported

Function

6002 No Stack

6003 Unknown

6004 “mbox” Occupied

6005 Parameter Error

6006 Supported Device Types Exceed

6009 NODE Operated Exceed

6010 Slave State Error

6011 Unsupported Slave

6012 Insufficient Resources

6013 Slave Device Respond Timeout

Slave doesn’t respond

when master writes data

several times for a long

time (like, >400ms),

please check from drive

error, time when problem

appears, and controller

performance, etc.

6014 Insufficient Buffer

6015 Respond Package WKC Error Slave returned WKC

746

counts is wrong, please

check specific reason.

6016 Too Long SDO Respond Content

Slave respond SDO

length is too long, please

check if the sent SDO

data type is correct.

6017 SDO Respond Error

The transmission of the

SDO read or write

operation is actively

rejected by the servo and

terminated. The cause of

the error needs to be

analyzed in combination

with the specific SDO

content sent, such as

reading a data object that

does not exist in the data

dictionary, or writing

PDO data during

operation.

6018 SDO Respond Data Length Error

Usually because

sent SDO data type

is incorrect or

unsupported.

Check SDO data type, if

it is correct.

6019 WKC Timeout

Slave returned WKC

timeout, please check

from drive error,

controller performance,

time when problem

appears, etc.

6020 STATE Switch Timeout

SoE state switching

timeout, that is, master

doesn’t get correct

respond from slave after s

long time requesting on

switch the state, please

check from drive error,

controller performance,

time when problem

appears, etc.

6021
SDO ABORT, Drive Return

Error

Data dictionary

reading or writing

error / write drive

function that is not

supported.

The transmission of the

SDO read or write

operation is actively

rejected by the servo and

terminated. The cause of

747

the error needs to be

analyzed in combination

with the specific SDO

content sent. Generally,

because sent incorrect /

unsupported SDO.

6022

6023 NODE PROFILE Error

6024 Axis PROFILE Error

6025 Too Many Axes

Bus axis numbers exceed

allowed, please check and

correct.

6026 Exceed Custom PDO Buffers

6027 Too Many Custom Numbers

6028
Don’t Modify PROFILE after

ON

6029
PDO Package Length > System

Allowed

Check “profile” setting,

for functions that will not

use, don’t configure PDO.

6030 Scan First

6031 Too Many Devices

6032 Over buff Length

6035 Preset & profile Conflict

6036 Too Many PDO

6037
Special Profile, Drive doesn’t

Support it.

6038 “preset scan” Not Matched

6039 “preset” Empty

6040 No Scan

6042 Device Not Support

6045 Mail Timeout

6046 Data Lost

6047 Data Type Error

6048 PDO Not Support

6049 Unsupported Sub-Module

6050 Too Many Submodules

6051 Unknown Submodule

6055
Operated PDO Type Length Not

Matched

6056 PDO R & W Content Not Found

6057
PDO Key Content Error (like,

DRIVE_STATUS)

6058 AL State Reading Error

6059 AL State Error, Non-OP State

6060 Drive Error

748

6061 Insufficient XmlEsi Buffer

6065 IO PDO Must Byte Offset (≠0)

6066 IO PDO Not Continuous

6067
DA PDO Type Conflict, Only

Can Be Single Type

6068 ZML File SM Info Lost Correct xml file, and

convert it to zml again,

contact with us to add.
6069 ZML File Key Info Lost

6070 ZML File Needs More Space

6071 Wrong ECAT Module Numbers

6072 ZML File Message Repeat

6073
Module startup Doesn’t Support

CA Method

6208 RTEX Drive ID Conflict

6209 Scan Timeout
Usually because

cable.

6210 RTEX Initialize Failed

6211 RTEX Scan Result Error

6212 RTEX Device Type Error

6213 RTEX Message Timeout

6214 RTEX SDO Message Error

6500-

6520
EIO Error

6501 PDO Length Settings Error

6502 Mail Length Settings Error

6503
Don’t Modify RO Data

Dictionary

Read only data dictionary

can’t be modified.

6504
Too Many Data Dictionary

Arrays

6510
PDO Written Content Error, First

Level Index Content Error

6511 PDO Data Content Repeat

6512
PDO Content Error, Dictionary

No. Error

6513
PDO Content Error, Dictionary

Sub No. Error

6514
PDO Content Error, Dictionary

Length Error

6515 Too Many PDO

6516 Slave AML Alarm

6517
Slave WDOG Alarm, PDO

Package Loss All the Time

NC Module

7003 Unsupported Syntax when

749

Analyzing

7006
No Info about which Axis &

Channel of The Command

7008
ACOS Operation Command

Parameters Out of Range

7009
ASIN Operation Command

Parameters Out of Range

7010 The Divisor Can’t Be 0

7011

The Exponent Must Be an

Integer When the Base is

Negative.

7012 Character Error

Because there are

characters that can’t

be analyzed.

7014 Wrong Digit Format

7032 Inner Syntax Error

7034 Flat Switching Error
One wrong flat

value is transferred.

7037
Unsupported Operation

Command

7041 Feed Speed is 0, Can’t Run G1

7043
Feed Speed is 0, Can’t Run G2,

G3

7057 Appear Unused Axis Parameter

7066 Too Long of This Line Code

256 characters can

be edited in one

line.

7069
Arc Start Point = End Point by

Radius Method

7077 No “=” in Assignment Command

7078 Illegal G Code

7096 Lack “[” after ATAN

7097
Lack “[” after Operation

Command

7098 Illegal N Code > 999999

7100 Illegal M Code

7101 Arc Para R & IJK Mixed Use

7102-

7119

Muti Axis Specified Info (A~F,

H~L, P~Z, 7012=A、7107=H、

7112=P), Can’t Know Which

One

7121 Negative Can’t Be Squared

7124 Negative in G Code

7127 Negative in M Code

7132 Brackets Embedded in One

750

Bracket for Noting

7133 Syntax Error, No Read Value

7134 Digit Lost

7135 Read Value is Not Integer

7136 Inner Syntax Error

7142 Illegal Para & Variable Address

7147 Arc Parameter Lack

7153
Too Small Arc Radius to Arrive

End

7156 ATAN No “/”

7161 Inner Syntax Error

7168 ≥2 Same Type Command of G

7169 ≥2 Same Type Command of M

7170 Can’t Open NC File

7171-

7188
Inner Syntax Error

7196 0 / - Value in LN

7197 Arc Radius R is 0

7200 Empty Analysis Code

7201
No Symbol, Integer Can’t Be

with “+ / -” Symbol.

7202
No Integer (without symbol)

Read

7203
No Symbol, Read Number Can’t

Be with “+ / -” Symbol.

7204
No Real Number (without

symbol) Read

7220-

7246

Unused Key Words in Code

Line, 7220-7228:

XYZABCUVW, 7229-7231:

FST, 7232-7241: EDHIJKLPQR

7301
Command Type / Command

Code Not Exist

7302
Register Command Existed

Already

7303 Microprogram No. Exceed

7304 Command Group No. Exceed

7305 Command Code Exceed

7306 Expand Type Not Exist

7307 Command Priority Exceed

7308
Empty Command (for the

function “call”)

7309 Command Not Exist

7311
Command of Priority 0 & Others

Appear at the Same Time

751

7312

Here are Multi Motion

Commands / Commands with

Coordinate Para Synchronously

7313 Inner Error

7314 Inner Error

7315 Inner Error

7319 Too Many Parameters Checked

7320 Lack Parameter to Check

7350 Illegal Parameter Checking

7351 Undefined G Code

7352 Undefined Length Unit

7353 Undefined Type / Mode

7354 Inner Error

7355 Unknown Coordinate Axis You used unset axis.

7356
No p, IJK Para for Scaling

Command

7357
Scaling Command’s Para P &

IJK Mixed Use

7358 Inner Error

7359
Tool Compensation Radius > the

Cutting Arc Radius

7360
Inner Error, Preset GOTO

Numbers > Allowed (256)

7361 Invalid Channel No.

7362
Target Channel is Running Other

Tasks

7363 No Run Task of Target Channel
Pause / stop the free

channel task

7364

Can’t Switch Work Plane, Unit

after ON Tool Compensation /

Coordinate Rotate Function

7365
Can’t Use Gsub Expand

Command in “Online Output”

7366
G04.1 Q_ Transferred Wrong Q

Arguments

Q arguments

doesn’t contain its

own channel.

Transferred channel

No. by Q arguments

is out of the range.

7367 G04.1 Q_ Wait P Signal Error

Channels that wait

mutually, signal P

are different.

7370
No WHILE / DO for

Microprogram

7371 WHILE & END Should Be

752

Together

7372 WHIE > Allowed Layers (5)

7373
Not Found “GOTO” Target

Address

7374
Subprogram Calling > Allowed

Layers Embedded

8 layers can be

embedded at most.

7375 Empty Subprogram File

7376 Subprogram File Oversize <10k

7379 Unsupported Microprogram No.

7380

Mian Axis is In Motion of Feed

Axis, Can’t Modify Main Axis

Speed & Ratio

When the main axis

and feed axis are

same axis, please

switch motion and

speed well.

7400 Parameter Error

7401 Para Address No Open

7402 Invalid Para Address

7403 Invalid Para Value
Parameter value

exceeds valid range.

7404 No Permission to R & W Para

7405 Can’t Modify Para Description

7407 Para Form File Reading Error

7408 Parm Form File Writing Error

7410
G Code File (Expand Type) is

Full

Max: 12 expansion

names

7411 Expand G Code File Type Failed
Transferred invalid

suffix name

7412 Para Form File ON Failed

7413 Dynamically Expand Para Failed

Expand the number

of parameters that

can be expanded,

parameter address is

out of range.

7414 System Variable Unused
Access invalid

system variables

7421-

7436

Your Assigned Axis Direction,

which Exceeds the Range of the

First Journey (soft limit)

9912
Pull-Down List, Control Call

Function Error

PC Side Error

753

20000 PC Wrong Offset

20001

20002 Wrong Parameter

20003 Timeout fifo buffer blocked

20004

20005

20006 Operating System Error

20007 Serial Port Open Failed

20008 Ethernet Open Failed

Check if IP is correct, see

if it can be scanned, the

network link is normal?

20009 Handle Error Check if the network

breaks because of wiring /

unstable network.
20010 Sending Error

20011
File Error: Unsupported Head

File, Unrecognizable

20012 File Length Error

20013 Too Many Filename

Check project related

filename, whether it is too

long, if yes, then correct.

20014 File Not Exist

Check project file’s

related folder, maybe one

file lacks, usually it

appears when deleted the

file without IDE

operation.

20015 ZLB Library File Error

20016 File Not Compile

Usually because

PLC file is not

compiled.

Generally, PLC file has

no compile.

20018 Firmware File Error

Usually because

firmware file is

broken.

20020 Incorrect Firmware File

Check if updated

firmware is consistent

with controller model.

20021 Unsupported Function

1. Check the controller

model, whether it

supports this function

2. Check if there is new

function for the

controller, if yes, try

to update firmware.

20022
“mmap” Failed

RT LOCAL Open Failed

RT memory config

is too large.

754

20023
“xplcterm” Runs Incorrectly / No

Enough Permission

20024 No Card / No Drive in PCI Link

20025 Drive Enumerate Failed

20026 Interface Enumerate Failed

20027 Unknown

20028 PCI Card Not Exist

20029 Too Many PCI Cards Connected

20030 Insufficient IN Buffer Length

1. Check if defined

function name, para

name are too long.

2. Check the firmware

version, if it is low,

then this length of IN

command name is not

supported.

20031
Password Protection, Return

after LOCK

20032
Password Protection, Too Fast to

Unlock.

20033 File Open Failed

20034 Unsupported Function

20035 Too Long Message

20036

20037 Too Many Parameters

20038 Report Para Numbers Error

20039 No Assigned Para in Report Para

20040
MotionRT Connect Failed

MotionRT Not Opened

20100
Response Buffer Length Not

Enough

30000
Above 30000 – ZAUX Auxiliary

Library Errors

755

Appendix II Module Expansion

Module expansion is used to expanse pulse-axis, digital inputs & outputs and analog inputs &

outputs when there is no enough axis resource and IO resource on controller. Pulse-axis extension

is only valid in expansion module with pulse interface, which means bus axis can’t be expanded.

IO (digital input and output): IO points of ZMC4XX series and above can reach 4096.

AIO (analog input and output): AIO points of ZMC4XX series and above can reach 520.

ZCAN fieldbus expansion: it only can extend 4 pulse axes, but it is not recommended to use

axis expanse board too much, controllers with multiple pulse axes can be used.

Maximum IO expansion points can be check in hardware manual, or input “?*max” in the

“COMMAND AND OUTPUT”.

For connection way, there are ZCAN fieldbus and EtherCAT fieldbus module expansion,

their expansion wiring and resource mapping methods are different.

For product series, there are three module expansion, ZCAN, EtherCAT and ZMIO300.

ZMIO300 series communication modules are CAN communication module and EtherCAT

communication module.

All controllers include CAN bus interface, but EtherCAT interface is only valid in EtherCAT

fieldbus Controller.

After expansion module and controller wiring, there needs to operate map, then expanded IO

and axis resource become useful. CAN fieldbus expansion map method differs from EtherCAT

bus, the mapped NO. should not repeat in the whole control system when do map, if IO NO. range

of controller or expansion module repeat, only one is valid.

ZCAN Expansion Module

Expansion wiring

When CAN fieldbus links with multi CAN expansion module, all CANL and CANH

756

interface of CAN communication module link together separately, and connect a 120ohms

resistance between 2 sides.

Expansion module CAN ports:

Stitch NO. Name Description

1 GND Internal power position

2 CANL CAN differential data-

3 EARTH/SHIELD Shield layer

4 CANH CAN differential data+

5 +24V Internal power 24V input

Wiring method of controller and CAN expansion module as followed picture, connect a 120

ohms resistance between CANL and CANH, and the eighth bit of the last CAN communication

module DIP as ON(there connected a 120ohms resistance between CANL and CANH), others no

need to operate, just operate the terminal expansion module.

CAN communication must link with relevant GND, or main power of controller and

expansion module should be the same one, prevent expansion modules from burning out.

 ZCAN wiring can refer this: ZMC432+ZIO1608M+ZAIO0802M, CAN expansion uses a

twisted-pair shield cable, and the shield layer is grounded.

ZIO expansion module needs main power and IO power, double power supply, it will be

useless when no IO power. ZAIO expansion module only needs main power supply.

Resource mapped

ZCAN expansion module resource become useful after mapping, IO map use dial switch

setting of expansion module itself, axis map uses AXIS_ADDRESS instruction.

There is slight difference of mapped NO. rule between IO and AIO, details as follow.

757

IO mapped

ZCAN expansion board usually with 8-bit dial switch, dial ON open, as follow:

1-4: 4-bit CAN ID is used to ZCAN expansion module IO address map, relative value is 0-15.

5-6: CAN communication speed, relative value is 0-3, and there are 4 speed values.

7: reserved

8: a 120ohms resistance, dial ON, which means there has connected a 120ohms resistance

between CANH and CANL

When dial 1-4 to choose CAN address, set relevant expansion IO NO. range according to

CAN dial address, set every bit OFF value is 0, ON as 1, address combined value=dial code 4 × 8

+ dial code 3 × 4 + dial code 2 × 2 + dial code 1.

Dial switch should be dialed well before power on, dial again after power on is invalid, which

means it needs power on again.

Digital start IO mapping from 16, and increases as multiple of 16

Dial 1-4 combination value Start IO NO. End IO NO.

0 16 31

1 32 47

2 48 63

3 64 79

4 80 95

5 96 111

6 112 127

7 128 143

8 144 159

9 160 175

10 176 191

11 192 207

12 208 223

13 224 239

14 240 255

15 256 271

758

Dial 1-4 combination value Start AD NO. End AD NO. Start DA NO. End DA NO.

0 8 15 4 7

1 16 23 8 11

2 24 31 12 15

3 32 39 16 19

4 40 47 20 23

5 48 55 24 27

6 56 63 28 31

7 64 71 32 35

8 72 79 36 39

9 80 87 40 43

10 88 95 44 47

11 96 103 48 51

12 104 111 52 55

13 112 119 56 59

14 120 127 60 63

15 128 135 64 67

Dial 5-6 choose CAN fieldbus communication speed, speed combination value=dial

62+dial 51, combination value is from 0 to 3, relative speed as follow:

Dial 5-6 value CANIO_ADDRESS high 8-bit value CAN communication speed

0 0（is relevant to decimal 128） 500KBPS（default）

1 1（is relevant to decimal 256） 250KBPS

2 2（is relevant to decimal 512） 125KBPS

3 3（is relevant to decimal 768） 1MBPS

CAN communication speed of controller is set through CANIO_ADDRESS instruction, also

there are 4 choices of speed parameters, but should be same as combination value related to

expansion module communication speed value, then can mutual communication.

 CANIO_ADDRESS instruction also can set CAN communication main station and slave

station, default value is 32, as main port, set others as slave port.

CAN communication configuration can be check in “State the controller”.

759

Dial switch setting notes:

Expansion module dial switch according to IN of present IO points and OP maximum

(external IO interface numbers+ pulse axis IO interface numbers)

For example, controller has 28 IN and 16 OP itself, which means start address of the first

expansion module should exceed 28, and address dial should be set as combination value 1

according to IO map rule(binary combination value is 0001, relevant dial 1-4 from right to left,

dial 1 as ON, dial others as OFF), here the IO NO. on expansion module is 32-47, and 29-31,

empty IO NO. won’t be used.

Following expansion module continues to dial set as IO point sequence.

When IO NO. range of controller and expansion module is the same, only one is valid.

Recommended to reset dial, then IO NO. of the whole control system will not repeat.

ZCAN expansion module IO map configuration example:

Control module configuration: a ZMC432+a ZIO1632MT+a ZIO16082M+a ZAIO0802M

760

CAN wiring method refers to former picture, set correct dial code ID of every module, and

set the eighth-bit dial code of the last expansion module as ON (means connected a 120ohms

between CANL and CANH), use ZDevelop software to link controller, click “controller-state the

controller” to check ZCAN node information, including all device information linked with CAN

fieldbus.

Set CAN ID of ZIO1632 as 1, expanded digital input IO NO. are 32-47, all 16 amounts.

Expanded digital output IO NO. are 32-63, all 32 amounts.

Set CAN ID of ZIO16082 as 1, expanded digital input IO NO. are 64-79, all 16 amounts.

Expanded digital output IO NO. are 64-71, all 32 amounts. And there are 2 pulse axes.

Set CAN ID of ZAIO0802 as 1, expanded analog input AD NO. are 40-47, all 8 amounts.

Expanded analog output DA NO. are 20-21, all 2 amounts.

Axis mapped

When expanse pulse-axis in CAN fieldbus expansion way, ZIO16082M can be chosen, and

expanse 2 pulse axes.

Expanse axis needs to axis map, use AXIS_ADDRESS instruction, map rule as follow:

AXIS_ADDRESS(axis NO.)=(32*0)+ID 'local axis port 0 of expansion module

761

AXIS_ADDRESS(axis NO.)=(32*1)+ID 'local axis port 1 of expansion module

ID is the combination value of expansion module 1-4 bits address dial code.

After set axis parameters, it can use expansion axis, for example:

ATYPE(6)=0 'set as virtual axis

AXIS_ADDRESS (6)=1+(32*0) 'map axis 0 of CAN expansion module (ID=1) to axis 6

ATYPE(6)=8 'ZCAN expansion axis, stepper in pulse direction or servo

UNITS(6)=100 'pulse amounts 100

SPEED(6)=100 'speed 100units/s

ACCEL(6)=1000 'acceleration 1000units/s^2

MOVE(100) AXIS(6) 'expansion axis move 100units

EtherCAT Expansion Module

Expansion Wiring

EtherCAT expansion module wiring only needs EtherCAT interfaces of every module link

with each other. EIO series expanse board with 2 EtherCAT interfaces, EtherCAT port 0 links

with main controller, EtherCAT port 1 links with lower expanse board or drive device, they can

not be used wrongly.

EIO expansion wiring reference: ZMC432+EIO1616+EIO1616MT+EIO24088.

762

Resource mapped

IO map on EtherCAT bus uses NODE_IO instruction(digital) and NODE_AIO

instruction(analog), axis map uses AXIS_ADDRESS instruction.

Slot NO. and device NO. follow the liking sequence with controller, and start from 0.

IO mapped

NODE_IO instruction sets start NO. of device digital IO, single device input and output start

NO. is the same. It should wait until fieldbus scan successfully, then set. NODE_AIO and

NODE_IO instructions are the same basically.

Grammar:

NODE_IO(slot, node)=iobase

slot: slot NO., 0-default

node: device NO., start from 0

ioBASE: mapped IO start NO., result only is the times of 8

NODE_AIO(slot, node[,idir])=aiobase

slot: slot NO., 0-defualt

node: device NO., start from 0

idir: select AD/DA. 0-default, and set AIN and AOUT at the same time, but only read AIN,

3-AIN, 4-AOUT.

IO mapped example: ZMC432 controller links with 2 EtherCAT expansion module as

sequence. Configuration: a ZMC432 + a EIO1616MT + a ZMIO-4AD.

SLOT_SCAN(0) 'scan fieldbus

IF NODE_COUNT(0)>0 THEN 'judge there is device on slot 0

NODE_IO(0,0)=32 'set device 0 IO start NO. of slot 0 as 32

NODE_AIO(0,1,3)=8 'set device 1 AIN start NO. of slot 0 as 8

763

ENDIF

Axis mapped

Fieldbus axis needs to be axis mapped, use AXIS_ADDRESS instruction, operation ways as

follow:

AXIS_ADDRESS(axis NO.)=(slot NO. <<16)+drive NO. +1

Axis map should be written in the fieldbus initialization procedure, after fieldbus is scanned,

before open fieldbus.

For example:

AXIS_ADDRESS (0)=(0<<16)+0+1 'the first ECAT drive, drive NO. is 0,binding with axis

0

AXIS_ADDRESS (0)=(0<<16)+0+1 'the second ECAT drive, drive NO. is 1, binding with

axis 2

AXIS_ADDRESS (0)=(0<<16)+0+1'the third ECAT drive, drive NO. is 0,binding with axis

0

ATYPE(0)=65 'set as ECAT axis type, 65-position, 66-speed, 67-torque

ATYPE(1)=65

ATYPE(2)=65

764

Appendix III HMI Communication

Controller and HMI Communication Introduction

Controller or HMI usually is linked through serial port or net port, serial port and net port of

controller use MODBUS protocol, HMI with MODBUS communication protocol can be used

with Zmotion controller, also with ZHD series HMI, which is developed by Zmotion itself.

ZHD400X as follow:

When controller uses MODBUS protocol communicate with the third party, the data should

be passed in the MODBUS register. Controller will program more flexibly and free matched with

ZHD series HMI.

There are some differences between controller MODBUS address and other manufacturers’

HMI address map relations. The relation between controller and HMI modbus register address as

follow:

Controller MODBUS address starts from 0, when do communication with WEINVIEW, all

address starts from 0, so they are relative.

Controller MODBUS_BIT(0) is relevant to WEINVIEW MODBUS_0X-0, Boolean type.

Controller MODBUS_REG(0) is relevant to WEINVIEW MODBUS_4X_0, word register

type.

When do communication with MCGS, MCGS address starts from 1, controller address starts

from 0, so HMI address adds 1.

Controller MODBUS_BIT(0) is relevant to MCGS MODBUS_0X_1, Boolean type.

Controller MODBUS_REG(0) is relevant to MCGS MODBUS_4X_0, Word register type.

Controller procedure can use ZBASIC and PLC to program, for ZHD series, use HMI.

Connect Controller with HMI

Normal step:

765

1. Download program written in ZDevelop into controller.

2. HMI program written by relevant programming software is downloaded and saved in HMI.

3. After program is downloaded, choose serial port or net port link with HMI, and controller

run offline.

Connect with ZHD Series HMI

It is convenient to connect Zmotion Controller with ZHD300X and ZHD400X Series of

Zmotion HMI, HMI procedure can be downloaded into controller, followings are ZHD400X usage

methods, the difference between ZHD300X and ZHD400X is, the former is RS232 serial

communication, the latter is net communication, but other configurations are the same.

ZHD400X matches with a net line, and link it to EtherNET controller net port, three cables

are led out from the edge of the crystal head of the network cable, namely the power cable of the

teaching box and the emergency stop signal cable. The red cable is the positive pole of the 24V

power supply, the black cable is the negative pole of the 24V power supply, and the purple cable

is the emergency stop signal cable.

Main power of HMI and controller can be the same.

Steps for connecting HMI to controller:

1.use ZDevelop software to write HMI program, then connect to controller, download the

program into ROM for storage when power off, next, disconnect controller and ZDevelop and

power on the HMI.

2.connect the ZHD400X directly to the network port of the controller using the provided

cable, and then click on the four corners of the screen in the order of drawing a Z, 2 times in a row,

wake up the screen, and a setting window will pop up to perform touch correction, controller IP

modification, etc.

766

3.below is the setting window, and gain the current connected controller IP address from

jumped window automatically, please confirm IP is correct, then click Connect. Now, HMI shows

starting basic content.

4.if there is no real HMI, it can download HMI program into simulator, then simulate on

XPLC screen platform.

After connecting simulator and downloading program, click “显示” , the simulation page will

appear.

Connect to the third-party HMI

The touch screen that supports the standard MODBUS protocol can communicate with

ZMOTION motion controller, communication data is put in the MODBUS register to transmit,

and support connecting to the controller through the serial port or the network port.

When the touch screen and the controller establish a communication connection, the

connection is mainly operated on the touch screen side, and the corresponding serial port or

network port parameters should be matched when connecting.

The available register types for communication are as follows: MODBUS_BIT (Boolean),

MODBUS_REG (16-bit integer type, MODBUS_LONG (32-bit integer type), MODBUS_IEEE

(32-bit floating point type), MODBUS_STRING (8-bit byte type).

Communication example between the controller and the third-party touch screen: Take the

communication between the controller and the Weilun screen as an example to expand the use of

767

the touch screen.

1. Download controller program

Program of controller is programmed by ZDevelop software and downloaded into controller.

2. Download HMI program

Program of touch screen is programmed by EasyBuilder software, after programming, then

open “system parameter setting” window, please see below.

1) Add devices to be connected with touch screen

Device list shows local touch screen and local device, if there is local device, please double

click this line, if there isn’t, click “new build device/servicer” like the below, then device property

window will jump.

2) Set device property

Like above, select device type, first select MODBUS IDA communication protocol, then

select according to actual connection method of touch screen and controller.

There is different between serial port communication and net port communication, please see

following for details.

768

If connects through serial port:

Device type: select mode MODBUS RTU (Zero-BASEd Addressing)

Interface type: select serial port (RS485/RS232)

COM: Baud rate matched with communication port and other parameters, see below, now,

the parameter must be same as port parameter connected on controller. After setting, confirm that

system parameter setting window is closed.

If connects through net port:

Device type: select mode MODBUS RTU (Zero-BASEd Addressing), interface type will

changed into Ethernet automatically.

IP: fill the IP address and port number of controller that is to be connected currently. See

below:

After setting, confirm that system parameter setting window is closed.

769

After system parameters are set, compile written configuration program, click “编译”, open the

window.

Click right corner “开始编译”, if compiling successfully, there will print information, and

“开始编译” will become “编译”, if program is incorrect, the window will print error information,

then need to modify program until it compile successfully.

If it is successfully, connect touch screen to PC and download the program.

770

Click download, program is downloaded into HMI through Ethernet, and after downloading,

the program has been written into touch screen, now, disconnect touch screen and PC.

3. Touch screen communicates with controller

After the program on the controller side is successfully downloaded to the controller, and the

program on the touch screen side is successfully downloaded to the touch screen, it can be

disconnected from the PC, and the touch screen and the controller can be connected. At this time,

the touch screen and the controller can communicate with each other.

4. Controller and touch screen simulate offline

If there is no controller or touch screen, it can use simulator. The ZDevelop program is

downloaded to the simulator and only supports network port connection. According to the above

steps, when setting the system parameters of the EasyBuilder software, select the device type as

MODBUS IDA—MODBUS TCP/ IP (Zero-BASEd Addressing), fill in the IP address of the

simulator IP: 127.0.0.1, select "Online Simulation" to connect the controller program and the

configuration program for simulation.

After clicking the online simulation, the compilation will start automatically, and the

compilation result will correctly open the following touch screen simulation interface, which can

be operated at this time. If the compilation is unsuccessful, an error message will be reported.

Touch screen simulation interface:

771

772

Appendix IV ETHERCAT Communication

EtherCAT bus is a real-time industrial field bus communication protocol based on Ethernet

development architecture. It is currently one of the fastest industrial Ethernet technologies,

providing nanosecond-level precise synchronization, high performance, flexible topology, low

cost, high precision, the application is simple and so on.

EtherCAT takes full advantage of the full-duplex nature of Ethernet, using master-slave mode

media access control. The EtherCAT network is obviously different from the ordinary Ethernet. In

the same EtherCAT network, there is only one EtherCAT master station, and the EtherCAT slave

station has a chip ESC (EtherCAT Slave Controller) specially processing EtherCAT

communication data. The ESC chip can take out the data sent by the master station to the slave

station when the EtherCAT data frame passes, and insert the data that the slave station needs to

transmit to the master station into the EtherCAT data frame, the last EtherCAT slave station in the

network ESC automatically close the loop and return the processed messages to the master station

in turn. The data transmission diagram is shown in the figure below:

Controller EtherCAT communication port and EtherCAT slave station transfer data through

COE (CANopen over EtherCAT) protocol.

 There are 2 ways to transmit data between controller and slave station, one is data-

transmitting periodically as defined time, this is called PDO(Process Data Object), another is

request-response data-transmitting, this is called SDO(Service Data Object).

EtherCAT fieldbus communication process:

773

Process Data Object (PDO)

PDO means periodical data interaction function between master station and slave station in

EtherCAT Bus network. PDO data is used for periodical data reading and controlling, and write &

read speed is fast. When master station and slave station interact data through PDO, one side sent

the data, another side no need to respond. When controller controls EtherCAT slave station

through motion instructions, then controller and slave station interact data through PDO.

Drive PDO must be configured in EtherCAT initialization, and PDO list of drive is

configured by DRIVE_PROFILE. Currently, there are more than 20 kinds of configuration to be

selected, each configuration includes data dictionary description. If DRIVE_PROFILE can’t meet,

PDO can be self-defined, using SDO related instructions to operate data dictionary for configuring

needed PDO.

The PDO list can be regarded as an array space. Each array element stores different function

codes. The PDO executes the operations corresponding to these function codes in one cycle. These

function codes are called the data dictionary. The data dictionary uses 4-digit hexadecimal

numbers. To indicate that the planning method is through the corresponding PDO mapping and

PDO parameter index in the object dictionary.

There are two types of PDOs: TxPDO for transmission and RxPDO for reception. A node's

TxPDO is to transmit data from this node to other nodes, while RxPDO is to receive data

774

transmitted by other nodes. A node has 4 TxPDOs and 4 RxPDOs respectively. Each byte in the

data field of the PDO message is used for data transmission, so the message utilization rate is high.

All transfer data in the PDO must be mapped in the object dictionary:

After configuration, the transmission sequence of PDO is: application object 3, application

object 1, application object 2.

Service Data Objects (SDO)

SDO data is used to send communication data when the master needs to read or write the

parameters of the slave. In this way, only the master station can read or write the data of the slave

station. After the master station sends the data, the slave station needs to respond.

SDO can be used to access the object dictionary of the remote node, read or set the data in it.

The self-defined configuration of the read-write PDO list of the data dictionary is realized through

the instructions SDO_READ, SDO_READ_AXIS and SDO_WRITE, SDO_WRITE_AXIS.

SDO messages contain index and sub-index information so that objects can be easily located

in the object dictionary, and the complex data structures in the object dictionary can be easily

accessed through SDO. The triggering method of SDO is command response type, that is, after the

SDO client sends a read/write request, the SDO server must respond, both the client and the server

can actively terminate the transmission of SDO, the request message and the response message

pass through different COB-IDs differentiate.

SDO can transmit data of any length. If the data to be transferred exceeds 4 bytes, a

fragmented transfer must be performed. The last piece of data contains an end marker.

Data Dictionary:

EtherCAT communication operation object dictionary, which is an ordered group of objects,

each object is addressed with a 4-bit hexadecimal index value, in order to allow access to a single

element in the data structure, an 8-bit sub-element is defined at the same time. Index, multiple data

objects are combined into a data dictionary, also known as PDO list.

Each node has an object dictionary that contains all the parameters describing the device and

its network behavior. Refer to the following table for the structure of the object dictionary. The

775

relevant range of the object dictionary of the node is between 0x1000-0x9FFF.

Index Content

0x0001-0x0FFF Protocol type description, data type, line rule type description,

configuration form information.

0x1000-0x1FFF Communication area

0x2000-0x5FFF Function property of object self-defined by device manufacturer, it is used

to set functional codes and static parameters.

0x6000-0x9FFF Data object defined by line rule, it is used for device controlling and

monitoring.

0xA000-0xFFFF Reserved

Index 1600h~17FFH use RxPDO mapping configuration, when configured, it will be

allocated to 1C12h. Index 1A00h~1BFFH use TxPDO mapping configuration, when configured, it

will be allocated to 1C13h.

Normal data dictionary reference:

Index
subin

dex
Name Data Range

Data

Type

W/

R
PDO

Contro

l mode

EEPR

OM

6040h

00h

Control word
0-65535 U16

RW

RxPDO

All
NO

6041h State word RO

6060h
Control mode

set
-128~127

18

RW YES

6061h
Control mode

check
 RO TxPDO NO

6071h Target torque -32768 ~ 32767 I16
RW RxPDO

tq, cst
YES

6072h Max torque 0-65535 U16 All

6077h Actual torque -32768~32767 I16 RO TxPDO All

NO
607Ah

Target

position

-2147483648 ~

2147483647
I32 RW RxPDO pp, csp

607Eh
Motor

Polarity
0-255 U8

RW

NO All

YES 6091h

01h

Electronic

gear ratio

numerator
1~4294967295 U32

02h

Electronic

gear ratio

denominator

6098h 00h
Homing

mode
-128~127 18 RxPDO hm

60FDh
00h Digital input

0~4294967295 U32
RO TxPDO

All
NO

01h Digital output RW

RxPDO

YES

60FFh 00h Target speed
-2147483648 ~

2147483647
I32 RW pv, csv NO

(W/R: write or read. W: write, R: read, RO: read only, RW: write only)

Different values indicate different functions, and please refer to drive manuals description to

776

set. When some parameters are set well, they are written into drive failure storage memory, and

restart drive for taking effect.

777

Appendix V RTEX Bus

Some models of ZMOTION motion controller support RTEX bus, RTEX fieldbus axis,

EtherCAT bus axis, pulse axis joint interpolation. RTEX bus is high-speed network fieldbus

developed by Panasonic, which suits to real-time bus of small system, and the pipeline composed

of small equipment is more flexible and faster.

Currently, RTEX bus supports 32 nodes, and each whole data package includes 32 nodes

output information and feedback information, it has 64 data blocks totally. Additionally, RTEX

bus provides control word register and status word register. And each data block is 16bytes, only

including needed position, speed information and other command word and status word. Take

main station based on RTEX bus as core, main computer sends control commands to all nodes

once, at the same time, it gains all feedback signals of nodes, then it can complete control for all

node outputs.

The master station equipped with the RTEX communication IC and the slave station are

connected in a ring to form a multi-axis servo communication system. The structure is as follows,

and the PHY is the physical layer chip. Shielded twisted pair cables should be used for connecting

wires.

When the synchronization bit of communication and servo is established, the timing of

command reception and corresponding transmission is uncertain. Whether the synchronization is

completed can be judged by reading the current state of the command.

The RTEX communication IC includes a sending memory, a receiving register, a control

register and a status register. The sending memory is used to store data instructions, and the

receiving register is used to store the response data.

778

RTEX parameter writing and reading use DRIVE_READ and DRIVE_WRITE to operate

below drive parameters.

Relative setting parameters:

Type No. Property Name Range Unit Description

0 00 C Set rotate direction 0~1 - Set relation between

indication direction and

motor rotation direction.

0-CW is positive, 1-CCW

is positive

0 01 R Set control mode 0~6 - Set control mode of servo

drive

0-half closed loop control

position/speed/torque

control mode can switch

1-full closed loop control

only position control

(contour/period)

0 08 C Instruction pulse

amount as per

round of motor

rotates

0~2023 pulse Set the number of pulse

when motor rotates one

round

0 09 C Electronic gear

ratio numerator

0~2030 - Set the numerator of

electronic gear ratio

0 10 C Electronic gear

ratio denominator

0~2030 - Set the denominator of

electronic gear ratio

779

0 13 B The first torque

limit

0~500 % Set the first limit value of

torque output by motor,

parameter value is limited

by the max torque of

motor.

3 12 B Acceleration time 0~10000 ms Set the time to accelerate

3 12 B Deceleration time 0~10000 ms Set the time to decelerate

3 14 B S acceleration and

deceleration time

0~1000 - To do S curve process for

acceleration and

deceleration

3 17 B Speed limit value

selection

0~1 - Select speed limit:

0-speed limit 1, 1- speed

limit 2

3 21 B Speed limit value

1

0~20000 r/min Set speed limit value,

internal value is limited by

Pr5.13 (pass speed level),

Pr6.15 (the second pass

speed level) and the

minimal and internal set

speed of pass speed

protection level.

3 22 B Speed limit value

2

0~20000 r/min set speed limit value when

Pr3.17 (speed limit

selection) = 1 and SL_SW

= 1.

Internal value is limited by

Pr5.13 (pass speed level),

Pr6.15 (the second pass

speed level) and the

minimal and internal set

speed of pass speed

protection level.

5 21 B Torque limit

selection

1~4 - Set torque limit selection

method: positive /

negative.

When sets as 0, set

internal as 1.

5 22 B The second torque

limit

0~500 % Set the second limit value

of torque output by motor,

and motor max torque

limit value

5 25 B Positive torque

limit

0~500 % When Pr5.21(torque limit

selection) = 4 and TL_SW

= 1, set positive torque

limit, parameter values are

780

used for max torque limit

of motor.

5 25 B Negative torque

limit

0~500 % When Pr5.21(torque limit

selection) = 4 and TL_SW

= 1, set negative torque

limit, parameter values are

used for max torque limit

of motor.

5 26 A Software limit

function

0~3 - Set valid / invalid software

position limit function

when in contour position

control (pp).

Valid software position

limit value, it is set

through Pr3.11 (positive

software position limit

value) and Pr7.12

(negative software

position limit value)

0-two sides software

position limit are valid.

1-only negative side is

valid

2-only positive side is

valid

3-both are invalid

Due to this set value and

invalid position limit

signal (PSL/NSL), RTEX

communication state is 0,

also it is 0 when homing

reset does not finish.

7 11 A Positive software

position limit

value

-

1073741

823 ~

1073741

823

Instru

ction

unit

When positive/negative

software position is over

limit, RTEX

communication state

PSL/NSL will become

ON(=1)

Positive software position

limit value must be bigger

than negative value.

7 12 A Negative software

position limit

value

7 20 R RTEX

communication

period

-1~12 - Set RTEX communication

cycle

-1: set Pr7.91 as valid

3: 0.5ms

6: 1.0ms

781

7 21 R RTEX instruction

update period ratio

setting

1~2 - Set the ration of RTEX

communication period and

instruction update cycle.

Set value = instruction

update value /

communication period

1: 1 time

2: 2 times

7 22 R RTEX function

expansion

-32768 ~

32767

- bit0 sets RETX

communication data

0: 16 bytes mode

1: 32 bytes mode

bit1 uses TMG_CNT

multi-axis synchronization

mode, please set as 0

when no use.

0: half-synchronization in

axes (some are not

synchronized)

1: full-synchronization in

axes

When in bit4 half closed

loop control, external

distance sensor position

information function

setting.

0: invalid

1: valid

(when in full closed loop,

it is no relevant to this bit

setting, it can monitor

external distance sensor

position)

7 91 R RTEX

communication

period expansion

0~20000

00

ns When Pr7.20 = 1, RTEX

communication period

only can be set as 62500,

125000, 250000, 500000,

1000000 and 2000000.

Otherwise, there will be

Err93.5 “parameter setting

abnormal protection 4”

A: always valid

B: prohibit modifying parameters when motor is in motion or when the instruction is sending.

C: it becomes valid after controlling power reset, controlling software reset mode of RTEX

communication reset instruction or property C parameter valid mode finished.

782

R: control power restart and become valid

RTEX communication cycle (Pr7.20, Pr7.91) and instruction update cycle (Pr7.21) need to be

consistent with cycle of upper equipment. At the same time, RTEX expansion functions (Pr7.22)

should be same as upper equipment, if they are different, the motion can’t be executed.

Mode setting example as below: communication period is 0.5ms, instruction update period is

1ms, half closed loop, 16 bytes mode, under half synchronization mode in axes.

Pr0.01=0 (half closed loop control)

Pr7.20=3 (communication cycle is 0.5ms)

Pr7.21=2 (instruction update cycle 1ms=05ms*2 times)

Pr7.22=0 (16 bytes mode, half synchronization mode in axes)

(when Pr7.20 is not equal -1, Pr7.91 can be set optionally)

Possible reasons if drive doesn’t move:

Number Item Description

0 No reason Reason of not rotation can’t be checked, usually in rotatable

status

1 Servo is not in

preparable status

Main power of drive doesn’t input

Alarm emerges.

Synchronization between communication and servo doesn’t

finish.

Attribute C parameter validation mode processing under

restart command is medium

2 Servo is not enabled Servo ON command is not input, Servo_On bit is 0, EX_SON

(external servo ON input) did allocation, signal is OFF, etc.

3 Drive prohibit input

is valid

When Pr5.05=0～1 (sequence when driving is prohibited,

except for immediate stop), when Pr5.04=0 (driving

prohibition input is valid), when the positive direction driving

prohibition input (POT) is ON, the action command is

positive direction, when the negative direction driving

prohibition input (POT) is ON, the action command is

negative direction.

When Pr5.05=2 (sequence when driving is prohibited, except

for immediate stop), when Pr5.04=0 (driving prohibition input

is valid), it is no relation with motion instruction input or not,

when the positive/negative direction driving prohibition input

(POT) is ON, it stops.

4~5 Torque limit setting

is small

Valid torque limit setting value, it is set below extra 5%.

7 Low position

instruction input

frequency

Position instruction of each control period is below 1 unit.

783

10 Command speed of

RTEX

communication is

small.

For RTEX communication command speed, they are set

below 30r/min.

11 Manufacturer use -

12 Command torque of

rtex communication

is small.

For RTEX communication command torque, decrease to

below 5% of extra torque.

13 Speed limit is small When Pr3.17=0, Pr3.21 speed limit value is set under

30r/min.

When Pr3.17=1, speed limit value of parameter assigned by

SL_SW (Pr3.21/Pr3.22) is set under 30r/min.

14 Others Not in 1~13, motor doesn’t rotate (small instruction, heavy

load, lock, crash, drive, motor malfunction, etc.).

