Zmotion RTBasic Program Manuals

Version 1.1.0

Foreword

Zmotion Technology is a national high-tech enterprise, which devotes to study motion control and
general motion control products. Zmotion Technology has attracted experienced talents from
famous companies or institutions, such as Huawei, ZET, Huazhong University of Science and
Technology etc. Zmotion insists self- innovating and collaborating with comprehensive
universities to research basic knowledge of motion control. Due to its concentration and hard work
in motion control technology, ZMOTION already become one of the fastest growing industrial
motion control companies in China, and it is also the rare company that has managed core
technologies of motion control and real time industrial control software completely.

All Zmotion products development obeys standard IPD-CMM from Huawei, which means they
have stability and reliability of telecom level, perfect compatibility and expansibility of software
or hardware. Zmotion provides powerful and convenient ZDevelop development environment, and
it supports ZBasic, ZPLC ladder diagram and ZHMI configuration second-development and
hybrid program. Real time simulation and online-tracking Debug are available, also it supports all
kinds of control systems call different program language’s function library.

This manual is to better serve customers and provide customers with more comprehensive
reference materials. ZMOTION is committed to the continuous optimization and improvement of
products, so that customers can quickly understand our products. And the product manuals will
also be updated all the way.

This manual includes the use of Zmotion ZDevelop software, detailed instruction, program
operation logic description, motion buffer principle, expansion module, axis application, controller
introduction and wiring reference between the controller and other components, and it can support
multiple communication methods. In addition, application routines of typical industries are
provided for programming reference.

+ Relative Program Manuals:

ZMotion PC Function Library Program Manual
ZMotion PLC Program Manual

ZMotion HMI Program Manual

ZMotion Robotic Arm Instruction Description Manual
ZDevelop Use Manual

These materials and other hardware manuals all can be downloaded from
http://www.zmotionglobal.com

http://www.zmotionglobal.com/

Safety Tips

. Precautions

The controller is highly integrated, and it is designed to be small and lightweight, that’s easy
to install, and users can use the space efficiently. The controller can be installed on a panel or
standard rail, and it can be installed horizontally or vertically.

As the basic rule for installing and arranging various equipment in the system, isolate low-
voltage logic equipment such as controllers from heat radiation, high voltage and electrical
noise, and keep away from dust, corrosive gases, water, oil, chemicals and other places.
When configuring the layout of the controller on the panel, since the controller will generate
heat when running for a long time, it should be considered to arrange the controller in a
cooler area, and less exposure to high temperature environment will prolong the service life
of electronic equipment. The high temperature environment may cause that the controller
can’t be used normally.

Also, wiring of the equipment in the panel should be considered during installation. Avoid
laying low-voltage signal lines and communication cables in slots with AC power lines and
high-energy fast-switching DC lines.

Please leave sufficient interspace around the controller for cooling and wiring of the
controller. The controller can be cooled by natural convection. To ensure proper cooling,

interspace must be left above and below the equipment.

. Warnings

The controller is a weak current device, so it needs to be installed in a place that is not easy to
touch, such as the casing, control cabinet or electric control room, to avoid being touched by
non-operators.

For your personal safety, please do not approach the machine when it is running.

Do not disassemble, repair or modify this product.

External use of control circuit to form emergency stop circuit, interlock circuit, limit circuit is
equal to the circuit related to safety protection.

When installing or removing the controller, the power supply of the control system should be
completely disconnected to avoid unnecessary losses caused by electric shock or accidental
equipment operation.

Failure to comply with the above requirements may result in serious personal injury and

3

property damage, and Zmotion Technology does not assume the corresponding risks and

responsibilities.

3. Wiring Requirements

>

Use screws to fix the controller to prevent the product from being dropped or subjected to
abnormal shocks and cause malfunctions.

In order to ensure stable communication, the communication cable of the controller should be
a high-performance cable with shielding layer.

Use 24V DC power supply to supply power to the controller, and the 10 port needs to be
powered separately, which is separate from the controller power supply.

Each component of the controller network for safety reasons, ensure that all commons and
grounds of the controller and related equipment are grounded at the same point, which should
be directly connected to the system earth ground. When determining the grounding point, the
safety grounding requirements and the proper operation of the protective interrupting device
should be considered.

After completing all wiring work, power on the control circuit, do not operate with power on.
All line connections should be as short as possible to reduce interference and ensure

communication quality.

Copyright statement

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the
written permission of the Zmotion Technology, no person shall reproduce,
translate and copy any content in this manual.

ZMC controller software involved in details as well as the introduction and
routines of each instruction, please refer to ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in
design and functions and other aspects, Zmotion Technology reserves the final
interpretation! Subject to change without notice!

A\

Pay attention to safety when debug the machine! Be sure to design effective
safety devices in the machine, and add the error handling procedures in software.
Zmotion has no obligation or responsibility for the loss.

Content

Chapter I Introduction of Motion CoNntrol ProdUCTS.........c.cevviiiiieene i 25
1.1 Motion Control ProdUCE OVEIVIEBW.........cceruiieiiirierieieii sttt 25
1.2 Motion Control Product AQVANTAGEcecveierereeiere e seee e se ettt see e sae e 26
1.3 Controller Main FUNCtion DeSCIIPLIONc.coveieiieeiere e 27
1.4 Applications OF CONTIOHIEN.........cccviveeie e 28
1.5 CoNtroller INTEITACEooiieiciee e 29
SO0 i o] | I=T S U7 o - TSRS 30

Chapter 11 ZDevelop SOftWare PrOgramcc.oiviveiererereeiesesieseesae s se e e e e seessesseeeeseeses 34
2.1 Program Software INtrodUCTION..........cccveiererirece et nne 34
2.2 NEBW PIOJECL. .. i vieeiecre sttt ettt ettt re e e aenresneeeentesreeneenaenrens 35
2.3 0nline Command and OULPULcveivieeiee ettt sre e e e 39
2.4 HOW 10 USE OSCIlIOSCOPEeiveeeeeiisiecieeee ettt st nne 41

S Tot T o L= T [] T - T S 41
2.4.2. HOW t0 CONFIGUIE SCOPEecvveeiiierieceee ettt 44
24.3. How to Import & Export Scope Data........cccovvvveiieiiiinie i 49
24.4. How to Sample bY SCOPE..........ccoco oo 49
245, SCOPE NEEAS......ei ittt nne e e e 50
2.4.6. SCOPE USAGE ROULINEoveivveiieieiieiie et 51
2.5 Program DEIUGocvviiiiec et ne 55
2.5.1 Enter Program DeBUG........ccoiiiiiiec e 55
2.5.2 Task and WatCh WINAOWScccoiiiiiiiiieieec s 56
2.5.3 Usage 0f DebUY TOOI Bar........cccvccieiiiiiieiee et 56
2.5.4 Breakpoint DEDUQGooviiec e 57
2.6 The VIEBW WINUOW ..ottt 58

Chapter 111 Basis of BasiC Programmingcccooveieriiiiirerieiese e se e ssee e e 60

3.1 Programming Basic KNOWIEAQEccevvrieiiieie et 60
K00 I o oo | 10 o TSRS 60

B CommoNn Program SIIUCTUIE........ceiieiieiie ittt sttt 60

B SUD-PIOCEAUIE ..ottt e re et sresneeneenne 65

TN B B | - E TV RUPPRPRURTT 66

B Data Definition ... 66

L B - /oL SOOI 68

I BT - W @] o1 U1 o] o PSSR 70

3.2 Three Programming Methods of ZAeVelopccvcvvviiiieeie e 72
3.2.1 Hybrid Programmingccccoeieeiieieiiieeiese e sie et sne e 72
3.2.2 PLC and BASIC Call Each Otherccooiiiiiiiiieiees s 73

TR B (=T 1 (-] S 74
Be B L TADIE bbb bbb e 74
B2 2 FLASH ...ttt ettt et es 76

TR T Y TSP 77

3. BAMODBUS........oo 78

3.4 MUIEI-TASK PrOQIaMoviiieeiee sttt sna et ste et sreenee e nras 81
3.4.1 ConCePt OF IMULI-TASK.eeieeiieeieie st 81
3.4.2 CheCk MUILI-TaSK STATUScceieiieierie ittt 83
3.4.3 Multi-task Start and STOPcccvvveieereriiieiere e s 84
3.4.4 Pause and ReSUME OF TASKcccveveriiiiiieieie et 86
3.4.5 Basic and PLC Task Call Each Other...........ccoovvveriiiieiiniiee e 87
3.4.6 MUILI-taSK ROULINGocveieieieie ettt 38

3.5 Three Kinds of INTEITUPLIONccveiiiiiiciee et 90
3.5.1 Power Failure INtEITUPTIONccveieieieceeeeee et 92
3.5.2 EXternal INtErTUPLIONocvveiee et 92
2.5.3 TIMEr INTEITUPLIONoiviieieic et resne e e e 93

BTV, 1T (N = T 93
3.6.1 The Concept of Motion BUFFEr..........cocevviiee e 93
3.6.2 MOLION BUFTEE......eciciccececes e 94
3.6.3 Motion BUffer BIOCKEMccccveieriiiiecie st 96
3.6.4 Output in MOtION BUFFEEoovi e 98

Chapter IV Communication MetNOd...........ceriiiiiiiec e 99

4.1 Serial Port COMMUNICALIONcoveieieie et re e e 99
4.1.1 The Serial POIt TYPE....cciieeierieiie sttt sre e sre e eeennens 99
4.1.2 Serial Connection Method..........ccccveviiiieeiere e s 101

4.2 Net POrt COMMUNICALION.c.viiiieeierie ettt nnas 103

4.3 CAN BUS COMMUNICALIONc.viiiiieieieie ettt nne e 106
4.3. 1 CAN WIFING ottt ettt ettt sttt ee 106

4.4 U DiSK INTEITACEveeeeie ettt re e nrennas 108

4.5 EtherCAT BUS COMMUNICALION.coviiiiieeieesie sttt sre e 110
4.5.1 EtherCAT BuUS INItIaliZationcooeieiieiese e 110
4.5.2 EtherCAT Bus and Drive COmMMUNICAIONcccoverieiiieeiere e 114
4.5.3 EtherCAT Bus Connect to Expansion Module............cccceveveiiveeiniinnn e 115

4.6 RTEX BUS COMMUNICALION.cciiieieieiieeiese ettt nne e 116

Chapter V Motion Control FUNCLIONccccveiiieieeie et 120

5.1 CommoON MOION IMOE........ccuiiiiiieie ettt nee s 120
5.1.1 Single-axis JOG MOIONcocviiiiiieie e 120
5.1.2 EIECrONIC CAM ..ot 123
TN IR 1= ol 1 (0 L[l - S 125
5.LAHANAWNEET ...t 126

5.2 INterpolation IMOLIONccviiiiiciec sttt sre e nre s 128
5.2.1 Concept of INErPOIAtionccceeveiiiiiiec e 128
5.2.2 Continuous INtErPOIALION...........cecveieii e 131

5.3 LOOK-2NEad PrOCESSING. ... eeuviviitieieeiesiesteeee st stesteeteste e e sae e stesteesaestestesneeneesbesresneeneesrens 132

5.4 0rigin POINt HOMING.......ooiiiiiiciec sttt nre s 135

5.5 Related Limit POSItion INStrUCHIONS.........cccveiiiiiicic e 140

5.6 POSITION LACH ...vecvicic ettt sre e nre 142

5.7 Hardware Comparison OQULPULcceiieiieieie ettt sre e sne s 144

5.8 PreCiSION OULPUL......cviiviieieieitesieeiesie st eee ettt te st s e ntesneeneesaesreeneennenrens 146

5.9 Galvanometer CONIol SYSIEMc.viiiiieieiecc et nre 147
5.9.1 The Description of GalVanOmMELErccovvviirieeriese e 147
5.9.2 Galvanometer AppliCation PrOCESScccvevviiiierierie et 151

5.10 RODOTIC AT ...ttt bbbttt bbb bbb 157
5.10.1 Related Concept 0f RODOLccccveieiiiieieie e 157
5.10.2 Forward and Inverse Solution MOLIONcccoiiiieiiniiiice e 159
5.10.3 Functions Supported by RODOL..........ccccveriiiiiiee e 161
5.10.4 Application Cases 0f RODOL..........cccoviveiiiiiiirie e s 161

ST I O o[S ST 166

Chapter VI Description Related 10 AXIS.......couiiiieerierereseenesesieeee st ssee e se e sae e e eneeseesees 166

TN I T @0 01T o) AN L 166

6.2 AXiS NUMDET DESCIIPLION......eiiieeieiecie sttt sre e e s 167

8.3 AXIS STALUS ...ttt bbb bbb b bbb bbb 168

T AN L3S =< 169
6.4.1 SPEEA CUIMVEveveeee ettt sttt e et nteene e e sresreeneenrenrs 169
B.4.2 SP SPEEA......eeeeeeeeeie ettt ettt 173

TSR AN L3N 1Y/ - o] o 11T S 175

TG R AN L Y] oL S 176

Chapter VII MOtion INSIIUCLIONSc.veiviiiiiei ettt sre e e e 181

7.1 Single-axis Motion INSTIUCLIONSoiveieieie e 181
ADDAX -- MOtion SUPEIPOSITION......cceiveiiriiieeieiesie e sie ettt sre e see e 181
CANCEL -- Stop Single-AXiS / AXIS GIOUPvcvveierieeeeriesesieseesiesiesteseesie e sseseesaesees 187
YA U Y o o 44T USRI 191
DATUM_OFFSET - Origin Position OffSet..........ccccvvveriiiiiieeieic e 196
VMOVE - ContinUOUS MOVEMENToviiiiiiiiiieieiese e s 197
FORWARD — pOSItiVE MOVEMENL........cciiviieieieriesie e nee s 198
REVERSE - negative MOVEMENL...........ccoiviiierieierieseerese et enee e e 199
MOVEMODIFY - Modify Motion POSItION...........cccoeveriiiiiiee e 199

7.2 Multi-axis Motion INSIIUCTIONcoviiiiiiieiie e 201
RAPIDSTOP = @ll @XES SLOP .vovveveiieeieiie e sieeie e ste sttt re e nre e 201
MOVE = [INEAI MOLION......ccuiiiiiiieit ittt e e 204
MOVEABS - Linear Motion-AbSOIUtelYc.cccoviiieii i 206
MOVEMODIFY2 - MoVe t0 NEW POSILIONccvevviiiiiieic i 207
MOVECIRC — ArC at the CENTENcouieeieiieie et e 209
MOVECIRCABS - Center Based Arc - ADSOIULEccooeiriiiiiiccr e 211
MOVECIRC2 - Three-Point BaSed ArC.........ccoeiiiiiniieieise e 212
MOVECIRC2ABS --Three-Point Based Arc - ADSOIULEcccceoeriiiiiiieece e 213
MHELICAL - Central HElCalcoooiiiiiiiiice e 214
MHELICALABS - Central Helical - ADSOIULE.coooiiiiiiiie e 216
MHELICAL2 - Three-Point Based Helicalccccocoiiiiiniiiiiii e 217
MHELICAL2ABS-Three-Point Based Helical-Absolute ... 219
MECLIPSE - EHIPSE.....cutiitiiiieiesieie ettt sttt 221
MECLIPSEABS - EIIPSe - ADSOIULEcvoiviiiieiec e 223

7.3

7.4

MSPHERICAL — SPACE AICT ...viiitiiiiieciie ittt 225

MSPHERICALABS - Space Arc = ADSOIULEccoeceeriiirieeece e 229
MOVESPIRAL — INVOIUIE ATC ..ottt e 232
MOVESPLINE/MOVESPLINEABS -- Spline Interpolation.............ccoccoevveiiicnninen. 235
MOVE_TURNABS-Rotating Stage INterpolation...........ccccccveveveriiiivnieeneiinneseneneens 237
MCIRC_TURNABS-Rotating Stage Interpolation-AbSoIUteccocvevvviviiviverninnns 238
MOVESMOOTH-FIIEE ... 240
*SP-Motion Independent SPEEA..........cveveiiiiiieie s e 241
MOVESCAN - Galvanometer (SCAN) MOTION.......ccoceviiiireeiene e 243
MPULSCAN - Galvanometer MOTION 2.........ccoooeiiinenieine e 245

Special Motion INSFUCTIONcveveiicceee e 246
MOVE_PAUSE — MOUION PAUSE......ccviieiiiiisieeie e ste e nne s 246
MOVE_RESUME — MOtION RESUMEccviiiiiieerieieiiesieeie e sie e sie e sneeee e seesnaesseneens 247
MOVE_PT -Distance in UNit TIME......cccceriiiiieeiere e se et se e nee s 248
MOVE_PTABS - Absolute motion distance in unit time.cccccocvvivevenininsiennninns 251
MOVE_PVT - Unit Distance (with speed planning)..........cccovevevivrivnivereiinninsieneninns 255
MOVE_PVTABS - Unit Absolute Distance (with speed planning)ccccceevevvinne 258
MOVE_PVTPP - Distance of Unit tiMe.........cccoviviiviieerc e 260
MOVE_PVTPPABS - Distance of UNit tiMeccovvvereiiirnee e 262
MOVE_PTP = POINETO POINTcviiiiiciec s 264
MOVE_PTPABS - Point-to-Point | ADSOIULEcccoeeeriiiiieeee e 267
MOVE_OP--OUtput in BUFFET......cviiiiiciee e 270
MOVE_OP2-OUtput2 in DUTFEr.......cceieciec e 274
MOVE_TABLE - Table in BUFfErccooi i 275
MOVE_PARA-Parameters in DUTer.........cccoovvveeii e 276
MOVE_PWM-PWM in BUFFEEciiiiiee et 278
MOVE_SYNMOVE-Synchronous AXis in BUffercccccccvieveiiiiicic e 279
MOVE_SYNMOVE-Synchronous AXis in Buffer 2ccooevev i 280
MOVE_TASK-Start Task in BUFFENccoiiiiieec e 281
MOVE_AOUT-Analog Signal in BUffer...........cooviiiiiiec e 282
MOVE_DELAY-Delay in DUFFEr ..o 283
MOVE_WAIT - Wait in BUFFEr........ccocviiee e 283
MOVE_CANCEL—StOP BUFfErccoci e 285
MOVE_HWPSWITCH2 — Buffer hardware comparison output...........cccccceevrveriennnns 285
MOVE_HWTIMER - Buffer Hardware TIMercccccoveiiiiiveiese e 286
MOVE_ADDAX - MOotion SUPEIPOSITION.......cccveiiiiiierie e 287
MOVELIMIT = Speed LMtccocciiiiieie e 289

Synchronization Motion INSTFUCLION.c.ccvviiiieic e 291
CONNECT-Synchronization MOLIONcccoveiiiiiiiiec e 291
CONNPATH-Synchronization Motion 2...........cccoviiiiieieie e 292
CAM-Cam Based IMOLIONcooueiiiiiiieieiee e 293
CAMBOX- Following Motion of CAMBOXcccoieiiiiiiieiieie e 297
MOVELINK-AULO CAM.....oviiiiiiiieieieieisiee ettt sttt se st seeseseeee s 299
MOVESLINK-AUIO CAM 2 ...ttt st 305

MOVELINK_MODIFY-Link Distance Modification............c.cccccovvvvviiieeiiecnecie e 308

MOVESYNC - Sychronous MOTION..........cccoviveieriiiiieee e 312
FLEXLINK--EXCItation MOTIONcoiiiiiiiieiieieese e 317

7.5 Motion Setting INSTIUCTIONS..........cocveiiriieee e 319
CLUTCH_RATE--LINK SPEEA......cvieiiiieiieie ettt 319
ENCODER_RATIO-Gear Ratio 0f ENCOUETcceeviieciieie e 322
STEP_RATIO- Gear Ratio 0f MOtOF..........cccoiieiieii e 322
BACKLASH- Reverse Clearance COMPENSAtIONcevveverveeeresieseeriesesieseenieseens 322
PITCHSET -- Screw Pitch COMPENSALIONcveiviiiviieiesie e 324
PITCH_DIST -- Pitch Compensation DiStanCe...........cccccvvvrvrieereseseseenieseseseeneeneens 328

7.6 RODOL INSIIUCTIONS ...t e 329
CONNFRAME - Inverse Solution of RODOLIC AIMooiiiiiiiier e 329
CONNREFRAME - Forward Solution of RODOLIC ArM.........ccocoveieiiiiiiicinenenieae 331
FRAME--RODOLIC AIM TYPE....eiiiiieieee e sttt ste e ste e sre e nne e 332
FRAME_STATUS-AXis Status of RODOL............ccoviviieriii e 332
FRAME_TRANS2-Coordinate Conversion of Forward and Inverse Solutions........... 333
FRAME_ROTATE-Workpiece Coordinate CONVEISIONccccuevvereriereerieseseeeenieneens 334
FRAME_ROTATE2-Coordinate Conversion Calculationccccoevvvvevvvivnivsieninnnnns 336
WORLD_DPOS-World coordinate SYStEM........cc.covivreerereresiesieseseeee e seeseeee e 339
MOVER_L/MOVER_LABS-Joint Axis Linear Interpolation...........ccccceevvivvivrivennnnns 339
MOVER_C/MOVER_CABS-Plane Circular of JOINt AXIScveverviereerienienesienieneens 340
MOVER_C3/MOVER_C3ABS-Space Circular of Joint AXIS.........ccccovveveiivnivsinennninns 341
FRAME_CAL-Parameter COMreCtiONccccververerieieerieseseseesesieseesee e e seessaesseseens 342
Chapter VI11 Program Structure and Process INStrUCtiON..........ccccveverviieieere e 344
8.1 Procedure SYMDOL..........cooioiiiiie e e 344
oo AAd COMMENES ...ttt bbb bbb sb e 344

B O =V o T T OSSPSR 344
I 101] DT RUTTTOUR VPP 344

8.2 Data Definition INSTFUCLIONccoeiiiiiiiirie e e 344
CONST--DETING CONSANTueviiiieiisiesie et 344
DIM—DeTINE VAIADIESccuoiiiiiciie e e 345
LOCAL—DEFINE LOCAIcoeiviiiiiiicieite et e 346
GLOBAL—DEefiNe GIODAL.......coiiiiiiiii e 346

8.3 Array Operation INSLIUCTIONccveiiiiiecce e s 347
DMINS--Insert Array LINK LiSt........ccccvoieiiiiiriie s 347
DMADD - Arrays VOIUME INCIEASEcoveueieeiieieiieie et 347
DMDEL--Delete Array Link LiSt.........ccccoriiiiiiiiiiiiiesiese e 348
DMOCPY-=-AITAY COPY .eeveeiteeiiieiiieiiieiteesieesitesteesaesseesssessssssaessaesssessaesssesssesssesssesssessesnes 348
DMSET- AITaY ASSIGN ...ecvveieitecieeiese ettt e et te e st te e e sbestesre e s e s restesneensenrens 349
DMCMP- Array COMPATISONcccviieiteeeeiesteseeresiestesseessessesseseessessesseessessessesseessessens 349
DMCMP-= ATTAY SEAICH......cviiiiiieicie sttt re e ee st 350
SIZEOFARRAY — GELAITAY SPACE.....ccieiieriieitieieestee st st stee e steeste et sreesteesneens 351

8.4 Self-defined Sub Function INStrUCtioNccccooiiiiiiiiiii e 352
SUB--Self-defined SUBfUNCLION SUBccoiiiiiiiie e 352

10

SUB_PARA—SUB Transfers Parameterscccciveeieeiee i sre e 354

SUB_IFPARA --Judgement of SUB Input Parametersccocevvvvveeeeresnseeneesnnens 354
GOSUB/CALL——SUB CalliNgc.occtriiieirieirinieisiee et 355
GSUB--Self-defined Subfunction-G COdE...........ceieiiirenieineneeeese e 355
GSUB_PARA--Input Parameters 0f GSUBccocvvieviiineniere s 356
GSUB_IFPARA-- Judgement of GSUB Input Parametersccocvveveveereresvereesennnns 356
END SUB--End of Self-defined FUNCLIONccceoiiiiiiiiiii e 357
RETURN--FUNCLION ValUE RETUIM ..ottt 357
XSUB - Custom XSUB Sub-FUNCHIONccccoiiiiiiiiieeneeee e 357
RSUB - Custom RSUB SUD-FUNCHION..........ccceiiiiiiiiiesene e 358

8.5 Structural Definition INSrUCTIONcccooiiiiiiiic s 359
STRUCTURE-Definition of Structural Bodycccoeviiiiiinniieiice e 359
UNION-Definition of COMMUNILYcoveiiiiiieeic et 360

8.6 L1 0T I L3 0 Tod T o S 361
LCTO 0 @ T T o T I 11 oS 361
ON GOSUB--CoNdition JUMP ...c..oiueiieieieieseeie ettt sre e sre e e e nnes 362

ON GOTO-- CoNAItioN JUMP 2.....oviiieeieesie et nnas 362

8.7 Condition Judgement INSLIUCTIONooviviierireseee e 363
IF--Condition Judgement STTUCKUE..........covieieeiere e 363
THEN--Condition Judgement STFUCTUIE..........ccvevereiereee e 363
ENDIF--Condition Judgement StIUCTUIEc.covivrvieerere e ceese e 363
ELSEIF--Condition Judgement STFUCTUEcc.oivveieere e se e 364

8.8 CYCIE INSITUCTION ...t nee s 364
FOR = 0”7 CYCIB ittt st b 364

B IO S (0] GO [T £ (1T (1 365
STEP--FOr CYCIE SIIUCLUIEcvveieieceieee ettt 365
NEXT--FOr CYCIE SITUCLUEevveviiiecie ettt nee s 365
WHILE--While CyCle StIUCIUIEc.eiveeieic e 365
WEND--WHhIIE CYCIEocveeiieceee et 365
ol I T A O] [SRR 366
REPEAT--CONAItION CYCIE ...ocvveveiieceee ettt 366
UNTIL--CoNdition SEFUCLUIEcoiiiiiiieiite e 366

8.9 Walit EXECULION INSTFUCLIONc.viiiiiiiiiiiiie e s 366
DELAY--TIME DEIAYocveiiii ettt 366
WAIT UNTIL--Wait for Meeting Condition............ccccvvvveviiein i 367
WAIT IDLE--Wait Until AXES STOP ...ovvivieiiieiieciese et 367
WAIT LOADED--Wait Until Axes Buffer Clears...........cocevviiniiniinncnc e 368
8.10. ZINDEX Pointer INSIUCTIONSccoiiiiiieiiieiie s 369
ZINDEX _LABEL - Build Pointer INdeX.......ccoceiviiieeiiieie e 369
ZINDEX _CALL - AcCesSs SUB FUNCHION........cccooiiiiieie e 370
ZINDEX_ARRAY — ACCESS AITAY ..eeitiiitiiiiieiieeiteeiieesieesiesstesssesssesssesssesssesssssssssssssssnes 370
ZINDEX VAR — ACCESS VariabIeSccevuiiicieiise e 370
ZINDEX_STRUCT — ACCESS SIIUCIUIEovviieeeivieiiieiieesiee st siee s siee s seeesnee e 371
Chapter IX Instructions Related t0 TasKccccviieiiiiiiiiec e 373

11

9.1 Task Start and StOP INSTIUCTIONc.oviiieieieie et nee 373

RUN--Start File TaSKcccooiiiieiiiiree e 373
RUNTASK--Start SUB TASK ..ottt 373
END-=-ENG TaSK ...ttt e et 374
STOP--StOP FIle TASK ...cvveieiieeiee sttt nnas 374
STOPTASK--StOP SUB TaSK......cceiiiiiiiricerse et 375
HALT--SEOP Al TASKS ...vvevveieiieciieie ettt sttt e e nee s 375
PAUSE--PaUSE All TASKS......cveiieiiiiiieiieieisteste et 375
PAUSETASK--Pause ASSIGNE TASKS.......cccvrverierierierieiesiesieseesiesieseeseessesseseesseessessens 375
RESUMETASK--Resume ASSIGNE TaSKSeveiirieeieriesiesieseeniesiesieseesiesreseesseeseeseens 376

9.2 Three-file Task INSTUCTIONcc.oviiiiiiree s 376
FILE3_RUN--EXecute FILE3 TaSK........cccoriiirieiieerrierere e 376
FILE3_ONRUN--FILE3 Callback FUNCLION.........ccccooiieiiise e 377
FILE3_GOTO--FILE3 Process FOrces to JUMP......ccoccverieriieieene e 377
FILE3_LINE -- FILE3 1INe NO. ..ottt 377

9.3 Task Parameter INSTrUCTIONcc.ciiiiiieiees e s 378
BASE_MOVE--ASSIGN MaIN AXISecvveieiiiiiiieeiesieseseesiesesteseesee e seeeessessesseessessens 378
PROC_STATUS--TaSK SEALUSoueieierieieirieesiee ettt e e 378
PROC--Task Serial NUMDEc.ccoiiiiiiieie e 379
PROCNUMBER--Present Task NO.........cccocoiiiiiriieneniese e 379
PROC_LINE--TaSK LINE.....cietiiieiirieerieiesisieie ettt 379
PROC_PROGRESS-Progress of task iNStrUCLIONccccvviviieeriiiiieeie e 380
PROC_PRIORITY-TasK PrOMItY.....cccveriiiiisieieie et 380
ERROR_LINE--EITOF LINE....coiiiiiiieie ettt nae e 380
RUN_ERROR--Task Error COUEc.coeieriiiieieiisiesiesese e et ste e enee e 381
TICKS--Task COUNE PEFIOM..........coviiiiriiieieese e e 381
TIME_TICKUS-Task Count Period.........cccivireieriiieieee e 381
Chapter X Operator and Mathematical Function INStrUCLIONScccovvvvevenievie e 383
10.1 Arithmetic Operation INSEIUCLIONS.........cceiiieeieie e 383
S o [T O o =T = o] o S 383

B VTR @] o< 11 T o S 384

* - MURIPIY OPEIALIONoviiicieecce e 384

J B Yo S @] o =] - o] PSSR 384
\mEXACE DIVIAR ...t bbb 385

KL =S LETE e 385
S>>-=ShIftRIGNT....coiece s 386
MOD--Remainder OPErationccccveieiiiiieeie e nre s 386
ABS--ADSOIULE OPEIALIONccviivieieieite e sra e srens 387
10.2 Comparison Operation INSFUCLIONScccccviierieiirieceese e 387
= --Comparison or ASSIgN OPEratioNcccccvveviereiesieeie s 387
S T o 1 S 387

3o MO TRAN ...t bbb bbb b et b e b 388

>= --MOre Than OF EQUAT TOcoeiiiieiee et 388

L oSS THAN ettt bbb bbb bbb 389

12

<= --L.eSS Than OFr EQUAI TO ...ecveeiiicecee et 389

10.3 Logical Operation INSTIUCTIONcccvvveieieiesiee e 389
AND--Bit Operation: AND ..ot e 389
OR--Bit Operation: ORcccociiiiiisieieie ettt sresreeneesae e 390
NOT--Bit Operation: NOTcccceiiiiiiieieie et ee e 390
XOR--Bit Operation:XORcccoiiiiiieieie sttt nees 391
EQV--Bit Operation:EQVooiiiiiee et 391

10.4 TrigonOMELrY INSTIUCTIONSecvieieiecieeie ettt nes 392
SIN-- Trigonometric FUNCHON: SINE...........cooveiiiiiiriiec e 392
ASIN--Trigonometric Function: Anti-SINE............ccccoieri i 392
COS--Trigonometric FUNCLION: COSINEcccvvveieriereeeeie et 393
ACQOS -- Trigonometric FUNCLION: ANLICOSINEocvvivreerieierr e 393
TAN--Trigonometric FUNCION: TANGENTcccveierere e 393
ATAN--Trigonometric Function: Antitangent...........ccceveeveieviesienie e 393
ATAN2--Trigonometric Function: Antitangent 2.........cccevvvevenieene s 394

10.5 EXponentiation INSTIUCLIONSciviverieieseseec st 394
EXP--EXPONENL ...ttt e 394
SQR-- SUUAE ROOLviiiieiiieiee ettt sbe e sbeenree s 394
LN-- Natural Logarithm..........ccccveiiiiesieec s 394
LOG--Logarithm OF 10.......ccviiiieiie ettt nne s 395

10.6 Data Operate INSIIUCTIONveverieieieeee et nes 395
SET _BIT-=SeE Bit... ittt 395
CLEAR_BIT--Operate Bit Occooiiriieieeeriee e 396
READ_BIT--REAU Bit.......ciiioiiiiiiiieereie ettt 397
READ_BIT2--REAU BIt 2.......cuiiiiiiceeeiee et 397
FRAC--REtUN DECIMALoviiiiiiiiiieere st 397
INT=-RETUIMN INEEOET....eo e nneas 398
] €I] (1] S oS 398
IEEE_IN--Combine FIoat NUMDEKc.coiiiiieieie e 398
IEEE_OUT--SeleCt SINGIE BYLEcccccveieece st 398
$--HEXAAECIMAL ...t 399

10.7 Character String Operation INStrUCTIONcceviiiiiiieic s 399
CHR--ASCI COUE PriNt ...ttt 399
HEX--Print HEXQdeCIMalcccoiiiiiiiice e 400
STRLEN-Return String LENQcoveieiie e 400
TOSTR—FOrMat QUIPULveeiiieiiie e nnees 400
STRCOMP--String COMPAIISONccuvevieieiiesieeeese ettt sre e neas 401
STRFEIND—SIIHNG SEAICNecvviiiiiiiieciee et 401
STRCONV—ENCOAEr CONVEISIONcueviiiiiiiiiienieieiesie st 402
VAL--Convert String t0 NUMDEK...........ccoiiiiiece e 402

10.8 CONSANT INSTIUCTION ...ttt e 402
Pl--Circular CONSLANTcciiuiiiiet et bbb 402
TRUE--TIUE VAIUE ..ottt bbb bbb s 403
FALSE--FalSe ValUE........coiiiiiiiiet et 403

13

OF F--ClOSE. ...ttt bbb bbb bbbt b ettt nr e 403
10.9 Advanced Operational INStrUCTION........cc.oiiiiiierierere e s 403
CRC16 --CRC Verification CalCulationccoeoeiiineneiiniieeecse e 403
DTSMOOTH--Table SMOOtN.......ccciiiiiee e 404
B_SPLINE--B-Spline SMOOtNc..ooiiieieiieceee e 404
TURN_POSMAKE--Rotating Center Calculationccccocvrverenininereinse e 406
ZCUSTOM--Motion Parameters Calculation ..o 406
ZMATHG64-64 Bits CalCulation...........cccooeiiiiiiiiieiie s 411
MODBUS_DOUBLE- Read MODBUS..........ccoooiiiiiieensieesee e e 412
Chapter X1 Axis Parameter and AXis Status INSFUCLIONcccoviveierieiiineeie e 414
120 AXIS SEIBCHION. ...ttt ettt bbb b et b b 414
BASE-AXis Selection/AXis Group SEIECHiONccccvivveereiie e 414
AXIS-TEMPOTANY AXIS c.vvveerveiiisieeiesiesieseesiesesteeee e stesreeeestesteeseestestesseeseesaesresseensensens 415
11.2 Basic Parameter INSTIUCTIONcouoiiiiiiiieese e e 415
UNITS--PUISE AMOUNT......citiiiieiiitiiteieeesie st 415

F N I R Y oL PSS 416
AXIS_ADDRESS--Axis Address Configuration...........ccccccvcvvevneeneniesieese e 420
AXIS_ENABLE--AXIS ENGDIEcooiiiiiiieieeere e 423
11.3 Speed Parameter INSrUCTION.........ccoiviveecc e 423
SPEED--MOLION SPEEAoiveeeieie sttt 423
ACCEL--AXIS ACCEIEIALION ..ot e 424
DECEL--AXiS DECEIEIALION ..ottt e 425
CREEP--CreeP SPEEUeeieieeeee ettt sttt ste et sne e e e 426
LSPEED--INItial SPEEUccviiviiieeiice et 427
FORCE_SPEED--SP SPEEA.........ceeiiieiieietirieieisiee ettt 428
STARTMOVE_SPEED--Start Speed of SP MOLIONccovovvieviviircec e 429
ENDMOVE_SPEED--End Speed of SP MOtioN.........c.cccoovivieene e 430
FASTDEC--Fast DeCeleration...........cocoociiineiiieine e 432
MSPEED--Actual Speed FEedbacK.........ccccvvviveiiiiiieceec e 433
SPEED_RATIO--Speed PropOrtioNccceieiieieriie e et 433
SRAMP--ACCEIEIatioN CUINVEoiiiiiiirieieiete et 434
VP_MODE—Acceleration & Deceleration CUINVEccccevevveieieie e 435
VP_SPEED--Present Motion SPEEAcccvviieieriie et 438
INTERP_FACTOR--Interpolation SPEEdcccevvieiierieieie et 439
CORNER_ACCEL - Corner ACCEIErationcccceevveveienesieene e se e sie e 441

11.4 Axis Status Checking INSEIUCLIONc.ccveiiiieiieic e 441
MTYPE--Type of Present MOtiON..........cccoiiiiiiiie e 441
NTYPE--Motion Type of Next MOtiON.........cccivivieiiiiiiec e 443
AXISSTATUS--AXIS SEALUSc.veveieeeieieiesieiesiete ettt 444
IDLE--IMOLION STALUS ..ottt bbb 445
ADDAX_AXIS--Added AXIS NO ..ot 445
AXIS_STOPREASON--AXES SIOP REASON......ccviiiiiiiiiiiiisie e 446
LINK_AXIS--LinK AXIS NO......ctieiiiiiisiee ettt seee s 446

14

11.5 Motion Look-ahead INSTIUCTION..........ccuiiiiiciiiec e 446

CORNER_MODE--Corner Speed SEtliNGc.cocvivrerieereieseseese e sie e e sie e sees 446
DECEL_ANGLE--Corner Deceleration ANgle..........ccooeriiiiiieniene e 452
STOP_ANGLE--Corner Deceleration STOPS..........cvvvrvererienenieenenesieseese e seseeseesees 453
FULL_SP_RADIUS--Speed Limit RadiUScccoeeriririnieiniee e 454
SPLIMIT_RADIUS--Speed Limit ValUeccooveiiiiiineirec e 455
ZSMOOTH--Chamfer RAGIUS............ccoruiiieiiiiereieise s 455
MERGE--Continuous INtErpolatioNncccovcvvveieiiiiesiene e 455
11.6 Motion BUFFEr INSEIUCTIONoiviiiiiiieicese e e 457
LOADED--BUFTEI EMPLY...oviiiiiieieie sttt nne s 457
MOVES_BUFFERED--Present Buffer NUMDEr...........cccooviiviirneii e 457
REMAIN_BUFFER--RESt BUFFEIScviiiiiiirieeeersesse e 457
MOVE_MARK--MOVE MKcoueiiiiiiieiieessiee ettt 458
MOVE_CURMARK--RetUrn MoVe MarKccccoviiireeresieseseeseseseeseesesesaesaeseens 459
LIMIT_BUFFERED--Motion Buffer Limit...........ccooeiiiiiinninrcieee e 459
11.7 Instructions Related t0 POSITION...........ccoiiiiiiiiieere e 459
DPOS--AXiS INSLrUCION POSTHIONccuitiiciiiiiiieiicisese e 459
MPOS--Encoder Feedback POSITION...........ccoiiiiiiiiiiiee e 460
DEFPOS--POSITION OFFSELoviiiiieiiiieieeiecse e e 460
OFFPOS--OffSEt POSITIONueviviieiiitisieieee st 461
ENDMOVE--Target POSITIONcccvviveieieiiseeie st nee s 462
VECTOR_MOVED--Present Motion DiStanCeccccevvveieeiene e 462
REMAIN--Rest Target Motion DiStanCe..........cccecvvvieereneie e se e 463
VECTOR_BUFFERED--Remain Distance in Buffer..........ccccooceviviviviin i 464
VECTOR_BUFFERED2—Target Vector DiStanCeccccccvvvevereieneeie e see e 464
ENDMOVE_BUFFER--Final Position in BUFferc.cccooviieniiiiicc e 465
11.8 Instructions for Origin HOMINGcccceviiiiesiec e 466
DATUM _IN--OFigin INPUL.......ccveiiieieciese et 466
HOMEWAIT—Reversely Find Delay when HOMING.........ccocooveveniiinineic e 467
11.9 JOG MOLION INSEFUCLIONvitiitiiiieiisie st e 468
FAST_JOG--JOg INPUL MAPPINGveiieerieieiiecieeiese et sre e 468
FWD_JOG--Positive JOG INput Mapping.......cccooevviiieriieie e se e 469
REV_JOG--Negative JOG INput Mappingcccccevereereiesesieenesese e sie e e see e e 470
JOGSPEED--JOG SPEEAouveeiriieiiieeie ettt sttt sttt snene s s 471
FHOLD_IN--Hold INput Mapping.......ccccceiiiieiiiese et see s 472
FHSPEED--HOIU SPEEU........ccviiiiiiiiec ettt 473
11.10 Instructions Relate t0 ENCOUENccoerriiiiinieieise e 473
ENCODER—Original Value of ENCOUENccccovviviieiiie e 473
ENCODER_STATUS--ENCOTEr STAUS.....ccveieeierieriecieie e se et 474
ENCODER_FILTER—ENCOUEr FIltr......cciiieiiiecie e 474
PP_STEP--Encoder Internal Proportion.........c.cccoieviiieriene e 474
ENCODER_BITS - Encoder Absolute Value Setting........cccccoecvvevvvnieieiinnncieieniens 474
DRIVE_POSMIN - Encoder Transfer Original Min Value.............ccooveveiiiiniieinnnnns 475
DRIVE_POSMAN - Encoder Transfer Original Max Value...........cc.cccccevvevviivennnnnns 476

15

11.11 Instructions REIAtE t0 LALCN......cvviiiieiiie e 476

REGIST-POSItION LAICH.....cc.iiiiieiiiiiees e 476
REG_INPUTS--Latch INput Mappingcccoeoveveiereiieiese e seese e sie e see e seens 482
N g S I Lot o T o T =] USRS 482
MARKB--LAICN 2 TGO ... eitiieieiiiesie ettt nee s 482
N g S O I o 1 T I oo U PSSN 483
N g S I (ol 0 I T o - ST PSRN 483
OPEN_WIN--Coordinate Range for LatCh Starts........ccccccoevvevvienenivnnee e 483
CLOSE_WIN-- Coordinate Range for Latch ENdS.........cccccvevvieeninieneeiene e 484
REG_POS--LatCh POSITION........cccieiiieiecece e 484
REG_POSB--LatCh 2 POSITIONccoveieiieiiseeie st nee s 484
REG_POSC--LatCh 3 POSITIONciiveierieieieeiese et nee s 484
REG_POSD--LatCh 4 POSITION.cccoveierieiisieie e se et nee s 485
11.12 Position Limit Parameter INSIrUCLIONS..........ccoiviriiiriieiicse e 485
FS_LIMIT--Soft POSItiVe LIMItcccoeieiiiiceec e 485
RS_LIMIT--Soft Negative LiMit.......cccccooiviiiiieese e 486
FWD_IN--Positive Limit Mapping INPULcccooivviierene e 486
REV_IN--Negative Limit Mappingcccvivrrererirnseeese e seese st se s seens 487
ALM_IN--AIGIM INPUL et sne e nne s 487
11.13 On-Position Parameter INStrUCTIONS.covoiiiririiiiire e 488
IN_POS = On POSItION MAIK........cccoiveieieieieeie et 488
AXISINP_IN - On-position Signal INPUL.........cccooiiriiiieeriii e 488
IN_POS_DIST - On-position DiStanCeccccceveieiiieiiienesiese s 489
IN_POS_SPEED - On-poSition SPEEUecveieiirieseeiesiesie et 490
11.14 Range Limit Parameter INStrUCTIONS.........cccvvverieiiieeeec e 491
REP_OPTION--Coordinate Cycle MOE.........cccccvvviieriie e 491
REP_DIST--Coordinate Cycle POSIIONcccoeviviiieiese e 492
FE—CUrrent FOIOW=-UD EFTOF........coiiieiiie it 492
FE_RANGE-- Follow-up Error When Alarmcccceveieieiiene e 493
FE_LIMIT--Maximum FOHOW-UP EITOrccoviiiiiiee e 493
11.15 Advanced Setting INSIIUCTIONvcveieiiieciee e 493
INVERT_STEP--Pulse Mode SEttingccccviveiieiiie e 493
MAX_SPEED--Pulse Frequency LimMit..........cccccooeiiiiiiieiiiieiece e 495
AXIS_ZSET--Setting of Precision OULPUL..........cccoceiiieeii e 495
AXIS_MODE—connect Motion HOlAS............ccoeiiiiiieii e 497
MOVEOP_DELAY-Output Delay in BUFfer........c.ccoviieniie e 499
MOVEOP_ADIST—CIlose the glue in adVanCecccevvieieeieie e 500
DAC--Analog Control of Field BUS AXES.......cccveiveiiiiiiierieiese e se s eee e seens 501
ERRORMASK--Operation When EFTOrcccviiiiiiieieie e 504
ZSCAN_CORRECT—Galvanometer COrreCtion.........cccccevvveeieenesesieeiesese e 504
11.16 ReSErVed INSLIUCTIONSc.coiitiiiiieisie ettt 505
D_GAIN--Differential Gain..........ccccceiiiiieiiiiiiee e 505
I_GAIN--INEGral GaiN........ccciiieieie e 505
OV _GAIN--SPEEA GaIN......ecuieiieieiie sttt sttt sbe e e sae e 506

16

P_GAIN--Proportion GaIN..........ccoevriuerieresnseesesesieseesie e sieseesseseessesseessessessessessseseens 506

VFF_GAIN--Feedforward Gain............cccovevieiiiiic i 507
AFF_GAIN -- Acceleration Feedforward Gain...........cccccvvvevieiiiiiciic e 507
SERVO—CI0Sed-L00P SWILCNccviiiieeie e 507
TRANS DPOS ...ttt bbbttt bbbt 509
Chapter XII Instructions Related to Input and OUIPULcovivreeieriiinseee e 510
12.1 Instructions Related 10 INPUL.........cocvvieiiiie e 510
IN = INPUES bbb 510
AIN--ANGIOG INPUL.....oiiiiieiee e nre s 510
ZSIMU_IN--INpUts SIMUIEIONooveiiiieieic e 511
ZSIMU_AIN--Analog INputs SIMUIALIoNc.ccvvivieieereiesesese e 511
ZSIMU_ENCODER--Encoder Inputs Simulationccccoevevevenvieene e 511
INVERT _IN--REVEISE INPULS.....coiiiiiiiiiieiiieitie ittt 511
IN_SCAN--Scan Inputs Change Status............cerererrrieerennseseese e 512
IN_EVENT--Read INPUt Changeceeveriiieiieiese e 512
SCAN_EVENT--CheCK Changecceoueieiirieiese sttt 513
IN_BUFF--Read INPULS BUTTETcccveiee s 513
INFILTER—INPUL FIIEE ..eceeee e 514
IN_SMFILTER = St IN FIIEr.....coiviiieeeeeeierce et e 514

12.2 Instructions Related t0 QULPULcccveieiiiiseee e 514
OP-=OULPULS ..ttt sttt et bbb e sb e e s beenb e e sbeenbeesbeesbeesbeenreens 514
AOUT--ANAI0G OULPUL ..ot nre s 516
READ_OP--ReaA OULPULSecvveieieieeiesiesie et eee et a et sne e sae s seesnaenneseens 516
EXIO_DIR - Configure EXIO INtErfacec.cccoovvvieeriiiie e 517
12.3 Position Comparison OUtput INSTFUCLIONSccoveiiiveieie e 517
PSWITCH--Position Comparison by SOftWare...........cccccovcvvivrieene i 517
HW_PSWITCH—Hardware Position Comparison QUIPULcccevvvrvererienesienieninns 519
HW_TIMER--Hardware TimMiNG.........ccceeeriieiieiereseseesie e sneee s sie e e e e sseesseseens 521
HW_PSWITCH2 -- Bus Hardware Position Comparison OUTcccccceevvvvenivereninns 526
HW_MINTIME - HW Min TIiME SPACE.......cccverieriirrreeriesieseeee e steseeee e e ssaeneeseens 542
HW_PS2AXISNUM—Set PS2 AXiS NUMDEY ..ot 543
HW_PS2COUNTS—PS Comparison NUMDEIScccoveviiiiiicieic e 545

12.4 PWM Control INSrUCTIONSooviiiiiiie ettt e 546
PWM_FREQ--PWM FIEQUENCYveeiieiieie ettt ettt ettt 546
PWM_DUTY--Duty Cycle 0f PWIM ...t 546

12.5 Buzzer Control COMMEANGScveiririerierieeeie sttt bbb s 547
SPEAKOUT — BUZZEN CONLIOL ...ttt 547
Chapter X1l Instructions Related to COMMUNICALIONc.cceieieeiiieiereee e 548
13.1 Serial Communication INSrUCLIONSccueiiiririeieire e 548
SETCOM -- Serial Port Configuration............ccocceveierieeieie e 548
ADDRESS--Controller Station NO.cccociiiiiiiieieeeere e 551
COM_UNUSED—ASSIgN Serial POrtccccveiiiiiiiceee e 551
13.2 CAN Communication INSTIUCLIONccoiiriiiiiiieieire e 551
CAN -- CAN COMMUNICALION ...ttt bbb 551

17

CANIO_ADDRESS--CAN Communication SEttiNg..........ccocvevvererierieereereneseeneesienens 554

CANIO_ENABLE--CAN ENADIEoeiiiiieiiieie et 555
CANIO_STATUS--ZI0O EXPanSIiON STALUS........ccveverereerieienieseesiesiesieseeseeseesseeeeseeses 555
CANIO_INFO—CAN Expansion INTOrmation............ccoccevivrvniereninnesieene e seeee e 556
13.3 Self-defined Communication INSTrUCTIONSc.cooveiririiier e 557
LG I =T 1o S | T S 557
OPEN # -- Open Custom Ethernet CoOmmMUNICAtIONccocvvvvererivnieniene e 558
CLOSE # -- Close Self-defined Ethernet CommuniCationccccecvveneneinienenennns 559
PRINT #--Output CharaCter STHNGcccvvvrverereresiere e see et see s 560
PUTCHARZ#--OULIPUL CharaCter........cccoveieiiieeiesenie e see et nee e 561
PORT_TARGET—IP and Port NO. configurationc.ccccveverviiininniennn s 562
13.4 Print and OULPUL INSTIUCLIONSoivviieieic et 563
PRINT--Print INfOrMationccoooiiiiiiiiene e 563
ERRSWITCH--Information Output SEttiNg..........cccevrverirerinsiere e seese s 564
TRACE--Print INfOrmation 2..........cccooiiiiiiiiie s 564
WARN--AlGrm INfOrmationccoeiiiiiiiineiee e s 565
ERROR--Error INfOrMationcccooiiiiiiiiiieceese e 565
13.5 Channel Parameter INSTrUCTION ..o 565
PORT--Channel NO.ccoiiiiieiiiitenie ettt bbb 565
PORT_STATUS--Channel Status..........cccovivieereiereiiere et 567
PORT_MODE--Channel MOGE.........cccoeiiiiiieieie et nee s 568
FILE_PORT--Present Channel File NO.cccccoiiiiiiiereiece e 569
PROTOCOL--Channel Communication Protocol.............cccocvviniieiniiiieicnene s 569
ETH_MODE—Net Port Mode SettingS.........cevviererirerirern e s e e se e sae e 569
SEND_AUTOUP-—ACLIVE REPOI......ccveieieceeie ettt 570
SEND_AUTOUP2—ACLIVE REPOIM 2.....ceeieiieece et 570
IFAUTOUP_PORT—Check Active Reporting POrtccocvveevievieveee e 571
13.6 MODBUS Communication INSTrUCTION..........ccoiiuiiiiiiriencse e 571
MODBUS_BIT--Bit REGISIEN.......eieuiiieiiieeesieieieieee et 571
MODBUS_IEEE--Word Register-320its float...........ccocevvviiieeieiiinneeie e 571
MODBUS_LONG--Word Register-32 bits iNteger........ccoovvivvveieresinsieneseseseeseneens 572
MODBUS_REG--Word Register-16 bits iNteger.........cccevvviviieeieieiie e 572
MODBUS_STRING--Word RegiSter-BYLe.........cccevviiiieieii e 573
MODBUSM_DES--Modbus Communication CoNNECLioN...........ccccccvvveveeieneseeneniens 573
MODBUSM_DES2--Ethernet CommuUNICAtION..........ccccveveiiieeie e 575
MODBUSM_STATE--modbus Communication Status...........cccccevevierveieeiieseeieeseniens 577
MODBUSM_REGSET—Set Save Modbus Value............c.ccevveveiiieiieic e 578
MODBUSM_REGGET--Read Save Modbus ValUe..............cccoveveeieieiveie e 579
MODBUSM_3XGET--Read INpUt REJISLENccveiviiieieie e 580
MODBUSM_BITSET--WIite COilcueiieiiiiieiieieree et 580
MODBUSM_BITGET--Rad COll.......cccovririieiiisiiictsee et 580
MODBUSM_1XGET--Read Isolated INPULSccceevieeriieiecie e 581
13.7 Direct Command Instructions between Controllers ... 581
SEND_RESULT—Read send ReSUIL...........cccveiiiiiiieec s 581

18

SEND_CMD——5end COMMANGccceeiiieiieiieiie sttt ettt sre e sreesree 581

SEND_CMDAXIS—send COmMMAaN.........ccccceeiieiieiieiee et 582
SEND_ASSIGN-—5end COMMANG........ccceeiiiiieiie ettt 582
SEND_QUERY—5end COMMANG..........ccecoeiiieiieiieie ettt 583
SEND_QUERTSET—send COMMANGcccceeiieiieiieie e see et 584
13.8 Send Instructions bewteen File Connection of Controllers............ccccccoviieiiiinienn 584
SEND_ZAR-—USB DriVe OPEIAtiONccocviveierieiieseeiesiesieseesesiesteseeseeseesseeeeseesees 584
SEND_FALSH—DAa COPY...cveerieiieiiieiieniie ettt sttt sttt sbeesbeennee s 585
SEND_FILE—CopY USB DriVe data........cccoverieiiiinieeie e sie e 585
SEND _IFLASH—Copy flash Dataccccovoveiiiiiiiieec s 585
SEND_PERCENT—Check INStruction ProCESS.........ccevvivriereerienesnseese e seeee e 586
SEND_CONTROL—Check Controller TYPEcccvvveeereieie e ste e 586
Chapter X1V Instructions Related t0 SYSIEMcccviiiiiiieere e 588
14.1 Controller EncCryption INStrUCTIONS.cc.oiiiveiee et 588
APP_PASS-- PASSWOITecviiiiiiieiesiesiesteeie e steeee e stessaeseestestessaestessesseeneessessesseessensens 588
LOCK--LOCK CONIOIIET......ccuiiiiiiciiitesieeeee e 588
UNLOCK--UNIOCK CONEIOHEcoveiiieiiiieiieiceese et 589
14.2 System Time INSEIUCTIONScveiiieeeee e 589
DATE--SYSIEM DALcveiieiiiieitie st 589
DATES--SYSIEM DAALE 2......coeviiieieieieiririeieieee sttt nessenas 589
DAY=-SYSIEM WEEKeeeeieiirie ettt sna e nre s 590
DAY S--SYSIEM WEEK 2cviviiieieieiiei ettt 590
RTC_DATE--SYStEM DALE.......eeiieiieiieieeie ettt 590
TIME-=-SYSIEM TIME ..e.veeuieieiteceeie ettt ettt e et reena e aestesreeneesne e 591
TIMES--SYSEM TIME 2 ..ottt 591
RTC_TIME--SYStEM TIME 3....iiieiieieeiesie sttt sttt ste e ste s e snenre s 592

14.3 AXis System Parameter INStrUCTIONS.oiveieriiiiie e 592
WDOG--Total AXES ENADIE ..o s 592
DISABLE_GROUP--AXES GIOUP ...oveeiteeriiesieesiaesieesieesieesseesssesssssssesssesssesssesssesssesssesnes 592
ERROR _AXIS--ETOF AXIS....cviiiiieiieiesiesteseeiesestesseesaesiessessaessessessessesssessessessesssessens 593
MOTION_ERROR--EITOr AXES LIStccveiviiiiiieieie et 593
ERROR _SET--EIT0Or OULPULccviiiieieceee ettt 593
RADIUS_ERRSET—Circular Interpolation Checkcccceveviiiiiiiiieieiieseeeseniens 594
14.4 1P Parameter INSTIUCTIONScoviiiirieirieiee et 595
IP_ADDRESS--IP AGUIESScveieeeiieiesieie ettt ee 595
IP_ADDRESS2—IP AQAIrESS 2......ceveieiieiesieieieeieie et 596
IP_GATEWAY--IP GAEWAYc.veveuiirieieiesieieiesiee ettt ee 596
IP_NETMASK == IP MaSKctiiitiiiirieiieiesieeiestee et 596
IP_IFDHCP—Get IP Address Automaticallyc.ccceveiiiiiien e 597
IP_IFDHCP2—Get IP Address Automatically 2cccccevvvveienieiiese e 597
14.5 Controller Information INStrUCIONScc.coviiiiiiii e 597
VERSION_FPGA--System FPGA VEISION........ccoiiiiiiieie st 597
VERSION_BUILD--System Firmware Creating Datecccccevvvvvveiieie s 598
VERSION_DATE--System Firmware VEISIONcccceveieieiiieie e see e 598

19

VERSION--System SOftWare VErsioN.........cccveveiereriesieere e seseese e e s e 598

ID_HARDWARE--Controller Hardware TYPEccccvvveererrireiese e 599
CONTROL--Controller Software Modelcooeeiiiniiiiee e 599
SYSTEM_ZSET--CONtroller SELtNGcccvvvrveieseie e 600
LEDOUT--Controller INdicator Light..........cccoiveiiiiiiiiiere e 601
SERIAL_NUMBER--Unique ID of Controllercccccvvivvivnieniicieeee e 601
SERVO_PERIOD--Fieldbus Communication Period...........ccccccoveveeiiiiic i 602
SYS_ZFEATURE—System SPeCifiCation.........cccccvvivviieiiiirieseere e 602
SYS_IOSET—Special IO SWItChccccveiiiiiiee e s 604
LASER_SET -- Energy Parallel Port Output SWItChccveveveiiiiiiice e 605
ZML_DEFSHIFT - ZML Device “Shift” Time.....c.cccorrrmeierenrinerienerseseeenne 605
14.6 LOQ INSIIUCTIONSvoveeeieie ettt seesre e nrennas 605
RTLOG_COUNT - The Number of CUTENt LOGScovvrvrvreeesiesireeesieseseeeiesieneens 605
RTLOG_CLEAR -~ Clear CUITeNt LOGS.....cccververiririeeriesiesieeeesiesiesteseeseesseseesseesseseens 606
RTLOG_ADD - Add Error Message 0f LOGccccvvvererereeeene e seesie e e see e 606
RTLOG_CODE - Get Error NO. Of LOQccoveeiiiiiiee e 606
RTLOG_TIMES$ - Get Error Time 0f LOQ.......covrveeririiiee e 607
RTLOG_INFO - Get Error Message Of LOQ........cccvuverereriviiene e e seese e e e 607
RTLOG_INFO2 - Get Error Message 0f LOg (2).....cccovveviereenenesneieneseseeeenieneens 607

?7* RTLOG - Clear Current Recorded LOgS.......cccvvvrverviienenieiesesieeeese e seeee e 608
14.7 TABLE Array INSIIUCLIONSccveiiiieceeie e sie et ste ettt e e sne e neas 609
TABLE--System Default ATayccccveieiiiiieee st 609
TSIZE = TaADIE SIZE ..o s 609
TABLESTRING—Print table in String format..........cccccooviiviienien e 609
14.8 Instructions Related t0 OSCIIOSCOPE.......ccvvviieeie e 610
TRIGGER - Trigger OSCIlIOSCOPEccvevviiieiieeieie et 610
SCOPE -~ Data ACQUISITIONcoveieiieeieiese sttt ste et e sae e 611
SCOPE_POS - Point NUmMbers ACQUISITION.........cccovvvereie e 611
14.9 Instructions Related 10 VR ..o e 612
CLEAR--CIEAN VR ...ttt ettt 612
VR—POWEr FAIlUIrE StOFAJE . .cvveveiiiieeieie e 612
VR_INT--Integer Stored when POWEr FAIlUIeccccoeveiiieciecc e 612
VRSTRING--String Stored when Power Failure..........cccccooovieeiei i 613
14.10 Instructions Related t0 7XX SEIEScouiiiiriiieese e 613
CARD_INFO - Read & Write Control Card Informationccoceeeevivvieivevcvienn, 613
?*CARD - Print Control Card Informationccocoviiiiniinciee e 614
REG_CARD - Control Card LatCh..........cccccveviiiiiiiiec e 615
Chapter XV Instructions Related t0 StOragecvevveveiiiieeieiesieeese s 616
15.1 U DiSK INSEIUCTIONScvieinieiiitesie ettt bbb bbb 616
FILE--Operate Files in USB DIIVEcccoviieieie ettt 616
U_STATE--USB DIIVE StAtUS........eccveiiiiiriisieeiiese e et se et sre e sre s sre e sne e 620

U _READ--R€AA USB DIVEccuiiiiiieie ettt sttt nne s 620

U _READDBL-- Read from USB = doUbIE...........ccocveviiiieceee e 621

U READ2-- Read USB DIVE 2ocuveieiecieceee ettt 622

20

U READ2DBL-- Read from USB 2 - double........cccoveiiiiiiii e 622

U_READDSB--Ra0 DSB Filec.cviiiieiiiriiiieeee e 623
U_WRITE—OULPUL t0 USB DIVecvieieiiiciieiece et nne s 624
U_WRITEDBL—Output to USB = dOUDIEooveieiiiececeee e 625
STICK_READ—Read USB Drive t0 TabIeccocoeeiieiec e 625
STICK_WRITE--Table t0 USB DIIVEccoiiiiriiiieie e 626
STICK_READVR--USB DriVE 10 VRc.cciiiiiieiiriireit e 627
STICK_WRITEVR--VR 10 USB DIIVE.......cceiiiiiriiirietise e 627
15.2 FLASH INSIUCTIONS ...ttt et 628
FLASH_WRITE--WHrite FIashccoooiiiee e 628
FLASH_WRITEDBL--Write Flash--double.............ccocooiiiiiiniirreee e 629
FLASH_READ--Rad FIaSN.........ccoiiiieiieiree et 629
FLASH_READDBL--Read Flash--doubleccccovveriiiiiiniec e 630
LASH_READ2--Read Flash (2) -- double........c.cccoovivieeieie e 630
FLASH_READ2DBL--Read Flash (2)--double...........cccoiiiiiiiinninrinee e 631
FLASHVR--COPY RAM Daa.......ccoiieieieieieiriee ettt 632
FLASH_SECTSIZE--Variable Numbers in FIash............ccccoovvveviiiiiniieic e 633
FLASH_SECTES--Flash BIOCK NUMDETc.cccciiiiviieese e 633
15.3 File Storage Related INSTIUCLIONSccveiiiieieiiic et 634
FILE_ZOPEN = OPeN File. ..ot 634
FILE_ZCLOSE ~ ClOSE File.....cuiiieieeieees et 635
FILE_ZWRITES - Write File into Character String.........coocoeevvvivvivnieeiesinneeieseneens 635
FILE_ ZWRITE - Write File into Character...........ccooevvieiviieese s 636
FILE_ZREAD - Read Character from Filecccooveviiieiiiiiec e 636
FILE_ZREADLINE - File Line REadiNgcceovrveeririiiiriieree e 637
FILE_ZSEEK = File LOCALIONeccveieiiciecieie et 638
FILE_ZSEEKLINE - File Line LOCAtIONccveiviiiviieie e 638
FILE_ZTELL - File Reading and Writing POSItioN............ccccceveiiiiivnieeie e 639
FILE_ZTELLLINE = File LiNE NO....ccoiiiiireeee e 640
Chapter XVI Instructions Related to INtEITUPL........ccovviiriieii e 641
16.1 Three INterrupt INSIUCTIONS.oiveiieeeie et 641
INT_ENABLE--Main Switch of INterrupt.........ccccoovvviiieiiii e 641
ONPOWEROFF--Power-Failure Interrupt SUB..........cccociiiiiiiece e 642
INT_ONn—EXxternal Input INterrupt SUB.........cccoociiiiieiiiece e 643
INT_OFFn--External Input Interrupt SUBccooviiiiieiccese e 643
ONTIMERN--Timer INterrupt SUB.......c.coc it 644
INT_CYCLE—Interrupt Period EXECULIONccccvvieieeriiiise e 644
16.2 THMEE INSTIUCTIONS ...ttt bbbt b e b b 645
TIMER _IFEND-=-TIMEI STALUSeutiveierieeeieieiesieie ettt es 645
TIMER_START--OPEN TIMEL .. .cctiiiiiteeieie ettt ste e sre e aesre s 646
TIMER_COUNT - Timer Accumulation TiMe........ccccveveviieniiene e 646
TIMER_STOP--StOP TIMEI .. .ecveeiiiieitecie ittt ra e 646
Chapter XVII Instructions Related t0 BUScccveieiiiiiieeie e 648
I A L0 o= I L= Yol] oo o S 648

21

SIOEINO. L. 648

DEVICE N ...ttt b b bbb et r e 648
DIIVE NO. ..ot bbbt bbb 648
17.2 BASIC INSIIUCTIONScvetiieieiisie ittt 648
SLOT_SCAN-= BUS SCAN ..ottt 648
SLOT_START--Start FIeld BUScccoieiiieireireee e 649
SLOT_STOP--Field BUS STOPSccviveieiiriesieeiese e seesie st see ettt ee e e 650
SLOT_INFO - Get Bus INFOrmationcccceeiieiieiicie e 650
7*SLOT--Print Field DUS POITSc.ocviiiiiiiseees e 651
?7*ETHERCAT--Print EtherCAT BUS STALUScoveoveiiirieiieiecse s 651
P*RTEX--PrNt RIEX SEALUS.ooveviieiiiteiecee e 652
ZTEST—Check EtherCAT Bus INfOrmationccccoeveiniiiinenene e 653
?*ZML — Print ZML INfOrMAtion..........cooeiiiiinieise e 655
17.3 SDO Operational INSFUCLIONSccverieriieseeie et neas 655
SDO_WRITE--Write Data DICLIONArYccccverereieieeiesc e e sie e see e 655
SDO_WRITE_AXIS--Write Data DiCtiONary.........cccceeervieiiesieene e e sese e 656
SDO_READ--Read Data DIiCtIONArYcccovvverierieieseenie e seseese e sen e see e s 657
SDO_READ_AXIS--Read Data DICIONAIYc.ccoovrveriiiinsieie e sie e 657
17.4 DEVICE INSITUCTIONSoviiiieiiite ettt 658
NODE_COUNT--Connected Device NO.ccccceoeiiiiiiere e sese e 658
NODE_STATUS--DEVICE STALUS........ccveeeiiriirieeieriesieseesie e sieseesie e sseeeesessesseessessens 659
NODE_AXIS_COUNT--Connected Motor NO.........ccccovereiivrieiene e sese e 659
NODE_IO--DEVICE 1O ..ottt 660
NODE_AIO--DeViCe ANAIOYccoviiiiiieieieie ettt sre e sae e 660
NODE_INFO--Device INfOrmationcccccoooviveiieiiiisiesc e 661
NODE_PROFILE--PDO Reserved Setting.......c.cccevvivreereriereeieese e s eee e e seenie e 663
NODE_PDOBUFF--PDO Setting of Specail DeVICeS..........ccccveverieiiviieie e 663
NODE_PDO_WRBUFF - Offset Modify PDOcccoceoiiiininre e 664
NODE_PDO_RDBUFF - Offset Read PDOcccccceoiiiiiiiirre e 664
NODE_REGWRITE - ESC Register WItiNGcccoevereiierireiese e e 665
NODE_REGREAD - ESC Register Readingcccvvrveruerivriveieeieseseeseeseseseenieneens 665
NODE_PRESET--DEVICE PrESEL.....cc.eiieieiiiieiieeie ettt sne s 666
ZML_INFO - Check DeViCe XML......cccccoviviiieieiiie et 667
17.5 DriVe INSLIUCKIONS.ccuitiiiieieite sttt bbb bbb e 668
DRIVE_MODE—DFIVE MOUEoooveiiieiiiiie ettt 668
DRIVE_PROFILE--Drive PDO Settingcccccvrrriiriririeerieieiesiee e 668
DRIVE_CW_MODE--DFiVe SEHINGccveiviiiiiieieii s 673
DRIVE_CONTROLWORD--Drive Control WOrdcccccovvveieiiieneeie e 673
DRIVE_STATUS--DIIVE STALUS......cervitiireeierieieiieteceieie ettt seeee s 675
DRIVE_10--Drive 10 SEttNGcccveiiireeiee ettt nne s 676
DRIVE_TORQUE--DIIVE TOMQUEccveeeeiiiiesieeiesiesieseesiesiesteseestestessaeae e sressaesseseens 677
DRIVE _FE--DIIVE EITON....coi ittt sttt a et ne e 677
DRIVE_FE_LIMIT--Drive Error LiMit.........cccoeieiiiiiiieic e 677
DRIVE_CLEAR--AIEI CIEAIcviiiiiicieie ettt nne s 678

22

DRIVE_READ--Read Parameterscccccveiiiiiiiie e 678

DRIVE_WRITE--WErite Parameters.........cccciiiiiiiiieiie e sve e 681

Chapter XV ZHD TeaChiNg BOX......ccoicviieriireiieieie st see st se ettt see e snenees 684
18.1 Teaching BOX COMMANGSccueiiiiiiiieieiiesie ettt sre e neas 684
LCD_CONNECT - LCD NO. SEttiNg......covrveeirieirieienieie st 684
IP_CONNECT = IP CONNECLION.......cciviiiiiiiieectie ettt 684
IP_ADDRESS = P AGArESS......ccueieeieieieieieiesie ettt 684
IP_GATEWAY — IP GAEWAYcveuieeieieieieieieste ettt st 685
IP_NETMASK = [P IMASK.....ciiiitiiriiiieieiseiiee et 685

18.2 CoNtroller COMMANGSccveiiiirieieieie et 685
LCD_LEDSTATE - LED State SEttiNgcc.ccerriririririeerisieneseee e 685
LCD_WDOGTIME - Time Setting for Screen Power-Off..........cccccvvvevviiiivnienicnns 686

Chapter XVIHT MOtIONRT COMMANTScc.eeiiiieieeieiese et sre e e e 687
19.1 MOtIONRT COMMANTSeeuieiiitiiteieieie sttt bbbt 687
CARD_INFO - Read & Write Control Card INfo........ccccvvvvieeievivirne e 687

CARD - Print SUB-Card INfO.........ccoiiiiiiiieee e 688
REG_CARD - LatCh SeleCtioN.......ccccveiiiiieee et 688
SLOT_SLAVE - EtherCAT Redundancy Configuration............ccccceevevervvivivercinnnn 689

Chapter XX Commands of Local Slave INterface.........cccvovevviieiiveiereieseee e 690
ZMIO_CONFIG - Set/Get Analog Range & Channel State...........cccccecevivvvveeriennnnn, 690
ZMIO_INFO - Check ZMIO Itself EXPanSion........ccccevevieriesieeneseseeeeseseeseeee s 691

Chapter XXI SIMPIE ROULINEScveviiiiiieeieie ettt sre e nne e 692
21.1 COMMON OPEIALIONcueeiiiieiteeiesie st se et et e e sre et et e e sre et stesreeseesbestesraeseesresresreeneenrenes 692

L@ @] o =T =1 o oS 692

SP Instruction continuous INtErPOIALIONccccveiiiiiieee s 692
Conversion between String and Data...........ccccveveieienieerese e 693
HANAWRNEEI ... bbb 694

e Y] £ - V1o SRS 695

Position CompPariSON OULPUL.........ccviiveiereieieee et see s 695

0T T [T] = Vo - SRS 695

RODOL.....ce bbb bbb 695

Robotic Arm by MOVESYNC COMMANG.......ccccoiviiiiieiiieie e se e 696

REAA ENCOUET ...ttt sttt bbbt bbbt b e b bbbt b 701
Self-defiNEA G COUE ..ot bbb 703

21.2 Module COMMUNICALION.couitiiieiieite ettt bbb bbb 707
CAN COMMUNICALION ...ttt bbb e 707

HMI COMMUNICALIONoviiiiiie ettt bbb b 709
Self-defined Ethernet COmMMUNICALION...........ccoiiiiiiiiiii e 713
Communication between CONtrOIIErS...........coii i 714

String and Self-defined ComMmMUNICALION...........cccooeiiiieii i 715

21.3 BUS INITIAHZALIONveiveeeieiisee bbb bbb e 716
EtherCAT INIIAlZALIONcoveiviiiie e 716

REEX INIAIIZATION ... 717

Chapter XXIT Error and DEDUG........cviiiiiiiee et 719

23

22.1 List 0f COmMMON PrODIBMvviiiiiiiiee e eabee e 719

Problem CheCKiNgcoii et nre s 719

22.2 SOIULIONS ...ttt bbbt b e bbb bbbt bbb 722
Manual MOtion DEDUGcoiiiiieie e 722

INEEITUPT DEIOUG ...t 723

(O 1Sol || o1s{ofo] o1 @fo] | [-To! o] o S 723

REGISIET CNECKvivieeieic ettt ettt te et renteeneenae e 724

REMOtE COMIMANTSc.ooiiiiiiieieie ittt 725

Print Program INfOrMatioNoooviieiii it 725

FAST TOS TESL.....eeeeeeee e e nr e 725
AXiS Parameters Status JUAGEvoveveieeeee et st nne s 726
APPENTIX T EITOr COUE LIStiiveeeieiiiiieeie et nne s 727
AppendiX 1 Module EXPaANSION..........cccoveieieireiee s ettt sre et esaesnesresseeneeseenes 755
ZCAN EXPanSion MOAUIEoovviiiiecce sttt nne s 755
(o a1 [0 I T T RSN 755

RESOUICE MAPPEA ... ettt e et st se et e s renreeneennenreas 756

@ =] o =T S 757

N L3 = o] 0T S 760

EtherCAT EXPansion MOUUIEcveiviiiieece et 761
EXPANSION WITINGveiieieciececics ettt sttt renreeneennenre s 761

RESOUICE MAPPEA ... eeeeeeiecieeeee ettt et st ste e aesresreeneennenreas 762

@ =] o =T S 762

N L3 = o] 0T S 763

Appendix THHMI COMMUNICALIONoovviiiiecieciec st 764
Controller and HMI Communication INtroductionccoceoereiiiniieinc e 764
Connect Controller With HIMIcooiiiiiii e 764
Connect With ZHD Series HMI........c.ooiiiiiii e 765
Connect to the third-party HMI.........ccoooiiiiec e 766
Appendix IV ETHERCAT COMMUNICALION.c.cciiiiieeeiesiesieeeesie e e et sie s ste e snaenee e 772
APPENTIX V RTEX BUS....eeiiiiiieeee ettt s ta et sne e e ntesbesnaenee e e 777

24

Chapter | Introduction of Motion Control
Products

1.1 Motion Control Product Overview

Motion control achieves real-time control of position, speed, acceleration, etc. of mechanical
transmission components, so that it can complete corresponding motions according to expected

trajectory and specified motion parameters.

The control system takes the processor, detection mechanism, and actuator as the core to realize
logic control, position control, trajectory processing control, robot motion control, etc. The
processor is usually a programmable controller, a single-chip microcomputer, or a motion
controller, which is equivalent to the brain of the system. It is mainly responsible for logically
processing the received signals, and issuing commands to the actuator to coordinate the normal
operation of the system. The detection mechanism is usually composed of various sensors, which
are equivalent to the eyes of the system. The purpose is to detect condition’s changes in system
and feed them back to the controller. The actuator is usually composed of servo units and valves,
which are equivalent to the hands of the system. It is mainly for executing the commands issued

by controller.

The motion controller is the core component of the motion control system. It is responsible for
generating the control instructions of the motion path, and also it is used for the logical control of
the equipment, assigning motion parameters to the axes that need motion, and responding to

changes in the external environment of the controlled object in time.

General motion controllers usually provide a series of motion planning methods, based on the
limitation of the magnitudes such as impact, acceleration and speed that can affect the accuracy of
the dynamic trajectory, and provide the setting of motion parameters and motion-related
instructions for the motion control process, so that it completes the corresponding actions

according to the pre-specified motion parameters and the specified trajectory.

25

1.2 Motion Control Product Advantage

ZMOTION motion control products include pulse standalone motion controller, pulse network
motion control card, fieldbus standalone motion controller, fieldbus PCI motion control card, etc.
These can meet motion control requirements from all walks of life, a single controller supports

128 axes motion control.

Motion control products support multi-interpolation motions, such as, interpolation of linear,
circular, space arc, ellipse, helical, etc. A single interpolation channel support most 16 axes joint
interpolation. These products support speed look-ahead, electronic cam, electronic gear, pitch
compensation, synchronous follow, motion superposition, virtual-axis, precision output, hardware
position latch, continuous interpolation, motion pause and other functions. Some motion control
products internally set more than 30 kinds of robot motion control algorithm, such as, SCARA,
DELTA, 6-joint, etc. one controller can control several robotic arms, and it supports superpose

multi-robot. Please see “ZMotion Robotic Arm Instrction” for details of robotic arm.

Fieldbus motion control products support EtherCAT, RTEX industrial Ethernet motion control bus.
They lead in the performance and stability, and support EtherCAT bus, RTEX bus and pulse axes,

these three kinds mixed use.

The first domestically launched dual-bus PCI control card and dual-bus motion controller that
supports both EtherCAT bus and RTEX bus. The fastest EtherCAT bus cycle is 100 microseconds,

and it also supports bus axis hardware position latch and position comparison output.

ZMOTION provides powerful ZDevelop software development environment, which is easy to

learn and operate.

Motion controller supports Ethernet, U disk, CAN bus, RS485, RS232 serial port and other
communication interfaces, and controller can link to ZMOTION expansion module through CAN
bus or EtherCAT bus to expand inputs and outputs and pulse motion axes (a 120€ resistor should

be connected between CAN bus two terminals, CANL and CANH).

Advantages:

<~ The hardware composition is simple, the system can be composed by connecting the motion
controller to the PC.

<~ Except ZDevelop software, there also supports all kinds of operation systems and program

language to develop upper computer software (such as, VC, VB, C#, PYTHON, LABVIEW,

26

etc.).
<~ Motion control software has wonderful code commonality and portability.
< Itis easy to be learnt and developed, which means no need of too much training work, and it

support several persons develop at the same time.

1.3 Controller Main Function Description

Item Description

Task Execute 1/0 refresh of specified condition and user
procedure function, support multi-task run
simultaneously, they don’t interrupt each other, the
maximum task number can be checked in ZDevelop
software “Controller Status”

Debug Support interruption point debug and single-step
debug, and check task operation status

Interrupt Support three Kkinds, externally interrupt, timer
interrupt, power-off interrupt

Set Monitor Window Monitor variable, constants, input and output, axis
parameters, etc.

Program Language Type ZDevelop program (BASIC, PLC, HMI), or other
common upper computer program language

Online Command Input instruction parameters in online command bar
and then send them to controller for executing
immediately

Communication | Serial 232 serial and 485 serial ports, they support

Interface MODBUS _RTU protocol and self-defined
communication

Net Fast communication speed, convenient wiring, it

supports MODBUS_TCP protocol and self-defined
communication

U Disk Insert U disk, data interaction

CAN bus Connect to ZIO expansion module, and controllers
interconnect

EtherCAT Connect to EtherCAT drive or EtherCAT expansion
module

RTEX Connect to RTEX drive

Data Type Self-defined Array Sets elements of the same data type, default floating

point type

Self-defined Variable | Default floating point type

Self-defined Constant | It can be Boolean type, character string type, time
type, date type, integer type, etc.

Register It comes with 4 kinds of registers, TABLE,
MODBUS, VR, FLASH

27

Common
Motion Control
Functions

Point to Point

JOG point motion

Interpolation

Interpolation of linear, circular, space, arc, ellipse,
helical, support continuous interpolation

Electronic Gear

Build electronic gear connection between main axis
and slave axis.

Electronic Gam

Cam watch motion and automatic cam

Motion Superposition

Motion superposition of different axes

Path Speed Look-
ahead

Speed self-optimization according to lookahead
parameters

Position Latch

Memory axis position according to external signal
trigger situation

Position Comparison
Output

Arrive comparison point, output OP signal, and
compare continuously, respond rapidly

Precision Output

OP respond rapidly

1.4 Applications of Controller

The motion control products of Zmotion Technology have been developed and applied by many
partners for many years, and the products are widely used in 3C electronic semiconductors,
dispensing equipment, laser processing, printing and packaging, special machine tools, robots,

stage entertainment, medical equipment and other automation fields.

The electronic product processing industry includes placement machines, glue dispensers, printed
circuit board drilling machines, winding machines, welding machines, loading and unloading

robots, screw tightening machines and other equipment.

The textile and garment industry has warp knitting machines, dyeing machines, printing machines,
industrial sewing machines, embroidery machines, cloth cutting machines, combing machines,

twisting machines, shoe-making machines and other equipment.

The printing and packaging industry includes automatic blow molding machine, bag making
machine, die-cutting machine, bronzing machine, unpacking machine, packing machine, labeling
machine, automatic particle packaging machine, bag packaging machine, newspaper printing

machine, gravure printing machine, etc.

Where there is automation equipment, there is motion control. With its excellent performance and

perfect functions, Zmotion controllers can provide the best solutions for all walks of life.

28

1.5 Controller Interface

Here the example is ZMC420SCAN bus motion controller

ZMC420SCAN bus motion controller supports EtherCAT bus and RTEX bus connection, and it
supports at most 20 axes motion control, and several kinds of axes (pulse axis, EtherCAT bus axis,
RTEX bus axis, encoder axis, galvanometer axis, virtual axis) can be hybrid interpolated. And it
supports full-function motion control. For product specific parameters, please see hardware

manuals.

ZMC motion controller supports Ethernet, U disk, CAN bus, RS485, RS232 serial port and other
communication interfaces, and controller can link to ZMOTION expansion module through CAN
bus or EtherCAT bus to expand inputs and outputs and pulse motion axes (a 120Q resistor should
be connected between CAN bus two terminals, CANL and CANH). “Expansion Module” can

refer to the expansion methods.

ZMC420SCAN is like:

] ll.........‘ Il......... OIOOO
UDISK 8592292 SEERELERRT £23
$$23389333 £333333355 B3
RTEX
RX
RTEX ﬂA\ O !6 [:r)) /!Fl ;i:) \,‘ ’.\\
X g
., o - o
ool & Z Z 2 P 7 3
— o) = 3 3 Z Z 2 i
— o o
EtherCAT \O)
" of o W W o
ETHERNET
oo [~ %=} [=F=] (=]
§8esvgszer B8z222222Zf 30Z222833%F 53233
ooooqoogoll Iooooogoooql Ioooooooqol |00..l‘
Interface Function:
Specification Interface Number Description
RS232 232 serial-port 1 Use MODBUS_RTU protocol
485 485 serial-port 1 Use MODBUS_RTU protocol
CAN CAN bus 1 Connect CAN expansion module or controller
ETHERNET Net 1 Use MODBUS_TCP protocol, expand

29

interface number through switch
EtherCAT EtherCAT bus 1 Connect to EtherCAT drive or EtherCAT
expansion module
RTEX RTEX bus 1 Connect to RTEX drive
UDISK U disk 1 Insert U disk equipment
E +24V Main power 1 24V DC power supply
IN Digital input 24 NPN type, internal 24V power
ouT Digital output 12 NPN type, internal 24V power
AD Analog input 2 Precision 12-bit, 0-10V
DA Analog output 2 Precision 12-bit, 0-10V
DSCAN Galvanometer 4 Connect to laser galvanometer, support XY 2-
axis interface 100 protocol
AXis Pulse axis 4 Each interface includes pulse output and
interface encoder input

1.6 Controller’s usage

< Prepare Work
Software: install ZDevelop program software or other upper computer program software

supported by controller (VC, VB, C#, PYTHON, LABVIEW).

Equipment: select controller, computer, 24V DC power supply, drive, step motor or servo motor,
wiring terminal, 10 equipment, expansion module and other equipment according to

specific requirements.

Connecting line: the connection line for communication between computer and controller, the
connection line between drive axis interface and controller, and other connecting line

of 10 interface, power interface.

<> Procedure design

1. System Diagram Design
Select the required components and connecting lines according to functional requirements, and
please be familiar with the use of control instructions related to the function, and design the
overall composition of the system software, including variable design, task design, program

function design, etc.

2. Software Setup and Program
Use ZDevelop software to write programs according to the design in step 1. For quick use of the
software, please refer to the "New Project” section of this article, or open the ZDevelop software

menu bar "Help" - "ZDevelop Help" to view the introduction of the various functions of the

30

software, writing tasks and program module for program simulation debugging.

Parameters that need to be set for programming: BASE select the axis numebr, ATYPE axis type,
UNITS pulse equivalent, SPEED axis speed, ACCEL axis acceleration, DECEL axis deceleration

and other basic axis parameters, and then send motion commands to the axis.

If the drive is connected by using the EtherCAT bus or the RTEX bus, a bus initialization
operation is required during programming (see the “Bus initialization” routine). If expansion
modules are required, such as expansion of axes or 10 points, axis mapping needs to be performed
on the extended axis resources during programming (see "Axis Mapping"). 10 mapping is
required for extended 10 resources, and ZCAN expansion uses the DIP switch on the expansion
board to set the number of the extended 10 (refer to the chapter "ZCAN expansion module™), the
EtherCAT bus extension uses the NODE _10 instruction to set the number of the extended 10, and

the extended resources can be accessed through the 10 number.

< Install and Wiring
Install various units, and connect each unit to the controller with appropriate cables. The wiring

diagram of the controller is as follow:

EthercAT~ =RTEX_ =3

Realtime Express - digital

output 0‘:;’

expansion
module

WS U disk =
power E'

RTEX

ikbus drive
bl

supply

O : 3 drive ik'
EthercAT~ { ench . a‘
ik,'bus drive- /
- v TP - other
; control
online - S - :
- control —

interchanger ’
remote —l ’%HMI -

control
_71 teach
pendant

ZMC460N ‘ digital ; z

mput

» Wiring between computer and controller:
Serial or network port can be used to communicate. When using the serial port
communication, RS232 serial port of the controller should be connected. When using the
network port communication, the EtherNET network port of the controller should be

connected.

31

» Wiring between drive and controller:
The driver can link to the pulse axis interface, EtherCAT bus interface, and RTEX bus
interface of the controller. Refer to the figure below when the driver is connected to the pulse
port. To use the bus to connect the driver, just use the network cable to directly insert the

corresponding EtherCAT or RTEX interface.

pulse axis and encoder interface (DB26 female head) Panasonic A6 servo drive
PINNO Signal PIN NO Signal
1 EGND 36 ALM-
2 ALM(IN24-29) 37 ALM+
3 S/ON(OUT12-17) 29 S/ON
4 EA- 22 OA-
5 EB- 49 OB-
6 EZ- 24 oz-
74 +5V 5 SIGN
8 reserved 4 /PULS
9 DIR+ 41 COM-
10 GND 7 COM+
1 PUL- 21 OA+
12 reserved 48 OB+
13 GND 23 0z+
14 +24V 6 /SIGN
15 reserved 3 PULS
16 reserved 13 GND
17 EA+ 25 GND
18 EB+
19 EZ+
20 GND
21 GND
22 DIR-
23 PUL+
24 GND
25 reserved
26 reserved

» Power wiring:
Connect the positive pole of the +24V DC power supply to the 24V interface of the power
supply module of the controller, the negative pole to the GND interface, the motor to the
220V AC power supply, and the 10 device to the corresponding 1O interface of the controller.
Some models of the controller 10 need to be powered by a 24V DC, and 10 power is

supplied separately, then can be used later.

» Expansion wiring:
Support expand 10 or pulse axis through CAN bus or EtherCAT bus. For details, please refer

to the "Module Extension" chapter.

» Configuration reference:

32

serial'net port

contr

bus/pulse port

motor conntring line

computer

L]

< Trail Running

After confirming that the wiring is correct, then power on, download the debugged program to the

controller, and start trial operation. Use the oscilloscope window or other parameter monitoring

oller

I

Enco | electric motor 17

der

encoder connecting line

windows to confirm that the action is as desired.

33

workbench

Chapter 11 ZDevelop Software Program

2.1 Program Software Introduction

ZDevelop is a PC-side program development debugging and diagnosis software for ZMoiton
series motion controllers. Through it, users can easily edit and configure the controller program,
quickly develop applications, monitor the axis running parameters in real time, and real-time
debug the running program of controller. And it supports Chinese and English bilingual

environment.

ZDevelop programming software supports ZBasic, ZPLC ladder diagram, ZHMI configuration
programming. ZBasic is the Basic programming language used by ZMotion motion controller, and
provides all standard program grammar, variables, arrays, conditional judgments, loops and
mathematical operations. This extended Basic instruction and function provides a wide range of
motion control functions, such as single-axis motion, multi-axis synchronization and interpolation

motions, as well as digital, analog and 10 control.

ZBasic supports below functions:

» Self-define the SUB procedure, some general functions can be written as a self-defined SUB
procedure, which is convenient for program writing and modification.

» SUB procedure with G code form, which supports GO0, G01, G02, G03, G04, G90, G92 and
other common instructions.

» Support global variables (GLOBAL), array and SUB procedure. Support file module
variables, array and SUB procedure. Support local variables (LOCAL).

» Interruption procedure (power-off interruption, external interruption, timer interruption), such
as, power-off interruption, save data through power off interruption, which can recover the

power-off status.

ZBasic has the real-time multi-task property, multi ZBasic procedures can build at the same time

and multi-task real-time operation, which makes the complex application simpler.

PC online send Basic commands also can realize the same effect, the inner Basic program of

controller and PC online Basic commands can multi-task run simultaneously.

34

2.2 New Project

Please build a new folder to save the project that is to be built. Open ZDevelop programming
software, here shows ZDevelop V3.10. Please visit ZMOTION website (www.zmotionglobal.com)

to update software version.

1. New build item: “File” in “Menu” — “New Project”.

[z0eveco V31008

|file | Cortroler Edt View Project Debug Wirdow Help.
M ile: culsM || [y (7 | JER=1=1k:-3¢c 2 (2 3 » @ @ emeos s
Opan Fla oo | = . T
B Ml | PP a@E " NN 2 §o|DWEE

Opan Prsject
Close Project

Srit e

1 CAUsers_\single move5]
2 CaUserstingle. move.tpi
it

e

e I send Copture | _ Gear

2. Click “New Project”, then “Save as...” will be jumped, select one folder and open it. Input

folder’s name and save the project, pay attention to the suffix should be “.zpj”.

(4 y
T [v O ExSE" y-]
cLaig Rt =- ©
~ B .
3 HEEE Administrator s RS
W =E - R ==
TE - -_ = & mm
w e &
= - M (0825) Hardware Manual ¥ private
[202208228524 * taskl 2021.07.26 r
|| Zbasic 3.3.0
Dl FrRREE } use k; YouTube
] B
= e k_f i T FuEmE
. H
“ie Win 10 Pro x64 F h
- RS (D) v T = (beforel ~ srms .
Em: || -
BEEAD: |ZMC Project Files (“zpj) | -
- 4= [[(#ee || ==

35

3. New build a file: “File” — “New File”.

[20eveicp V31004 - B %
File Cortroller Edit View Project Debug Window Help

Mew Project
Open Project

Close Project

1 CAUserst\ingle move.2p}
]
Exit

Eror 0, Wiarn: O Meseage: 0 CAP NUM SCRL

After clicking “New Project”, below jumping window will appear, which supports

Basic/PLC/Hmi hybrid programming. Here selects the “Basic” file type and click “OK”.

MewFile o4
Mew File Type: Filename:
Basic
c
Hrmi

4. Set file as automatic operation: please see the below picture, double click the right position

“AutoRun” of “File”, and input task number is “0”.

FileMame AutoRun
Basic1.bas [

5. Program the procedure: when procedure is programmed, click “save” the file. New built Basic

file will be saved automatically into the file in Project zpj.

36

6. Connect to Controller: program the procedure well in the input window, click “Controller” -

“Connect”.

If there is no “Controller”, select connect to simulation, click “Connect” — “Connect to Simulator”.
In this way, it can be connected to simulator, and there is hint showing simulator is connected

successfully.

B Sosict o - ZDvelop V31004 - Glzeriacis
Fle | Gonkrotir | Edt Yiew Project Dobug

o e G . .
s

m - -
L] Ao select Parameter seect
[Basct iz s

e —

e :

e

P

=

[

e

=

- =

e

oo

o

e

s

ey

nrcs

e

—

i

e

e

e

i

el

eron sernes

=

etmns

i

e

e e

e

e
Oumut s O
E— = |
s

Click “Connect”, then “Connect to Controller” window will jump. And select serial port
parameters or net port IP address, click “Connect”. When it is connected well, print information in

Command and Output window: Connect to Controller: ZMC432 Version: 4.64-20170623.

Connect to Controller e

Com |1 jl L”N“ Parity L”u ;I Connect AutoConnect

iz |1z?.n.u. 1 ;| | 500 ;| Connect IF Scan
PO I | Connect Disconnect
Native IP: |192.168.0.57 -] oK Cancel

For the detailed method of serial port connection and network port connection, please refer to the

"Help" — "ZDevelop Help" document in the menu bar of ZDevelop software.

37

7. Download Program: click “Download RAM” or “Download ROM”. When it is downloaded

successfully, Command and Output window will give a hint. Program is downloaded into

controller and will run automatically.

v Download RAM:

Output

[Dosns to Controller Fam Success, 2022-05-10 13:45:37, Elapssd tine: &7ns.

nnnnnnnnn

v Download ROM:

Downs to Cantroller Ram Success, 2022-05-10 13:47:15, Elapsed tine: 3lms.

The program will not be saved after the RAM download is powered off, but the program will be

saved after the ROM download is powered off. After the program downloaded to the ROM is

connected to the controller next time, the program will automatically run according to the task

number.

Precautions:

» When open the project item, select the item zpj file. If only the Bas file is opened, program

can’t be downloaded into controller.
» ZMCO0O0x series controller don’t support Download RAM.

» When project is not built, only Bas file can’t be downloaded into controller.

» AutoRun 0 means the task number, task number O runs the procedure. Task number doesn’t

have priority.

> If all files of whole project are not set the task number, when downloading into controller,

system will give the indication: WARN: no program set autorun.

Qutput

Connected to Controller:VPLCExx-5imu Version:4. 99-20180511.

Down to Controller Rom Success, 2022-05-10 14:01:59, Flapsed time: 3lms.

Command: |

| OQutput | Find Results

38

2.3 Online Command and Output

The online command and output window can see and output various parameters of the controller,
print program running results and program error information. The print output function given by
the software developer in the program (output by commands such as, ?, PRINT, WARN, ERROR,
TRACE, etc.).

Note: English symbols are used for question marks, and Chinese symbols are invalid.
ERRSWITCH is the control switch of TRACE, WARN, and ERROR commands. Different
parameter values correspond to different output effects:

0: TRACK, WARN, ERROR instructions all don’t output.

1: only output ERROR instruction.

2: output WARN, ERROR instructions.

3: TRACE, WARN, ERROR instructions all output.

The online command and output window is shown below, “>>" represents the command input by
ZDevelop online command, and the online command input “print 1+2” window will print the

calculation result.

This function is valid when connecting to controller or simulator, it is not limited by program

running status.

Output % |

srprint 1 + 2
3

Command: |priml+2 Send | Capture Clear

VOu[pu[Find Result:

Use online command to see status of all axes, please see the below picture. Input “?*mpo”,

window will print measurement positions of several axes mpos.

Output % |

»rTHIpos
0000000000000 00000000000000000000000000000020

Command: [**mpos | gand | Capture Clear

| output [Find Resule

Common print and check commands:

39

?*SET: print all parameters’ values

?*TASK: print task information
Normal Only print task status
Error Print task status, error task number, error line

?7*MAX: print all specifications and parameters

?*FILE: print program file information

?*SETCOM: print the present serial port configuration information
?*BASE: print the present task BASE list

?7*#14A % print all elements of array, the array length can’t be so long.
%5 $7 4 print single parameter of all axes

?7*ETHERCAT: print EtherCAT bus connection setting status
?7*RTEX: print Rtex bus connection setting status

?7”*FRAME: print robot parameter, which needs 161022 or above firmware.
?*SLOT: print slot information of controller (RTEX, EtherCAT)
?*PORT: print all PORT communication ports

After connection to controller, use ?*max to print all specifications and parameters results of

controller:

Output

[mas_movebutt 14096
max_in:27, 4096
max_out: 15, 4096
max_ain:0, 520
max_aout:Z, 520
max_pum: 4
max_slot:l
max_comport:d
max_ethport:3
max_ethcustom:2
max_ethiport:l
max_flashrnum: 9399
max_flashsize:20480
max_nand:262144KB
max_nandremain:262144K8
max_softhwout:4, 8
max_pswitchifd
max_file:61
max_3file:2
max_task:22
max_timer:1024
max_loopnest:8
max_callstack:10
max_local of one sub:l6
max_vr:8000
max_table:320000
max_modbusbit:8000
max_modbusreg : 8000
max_var:20480
array:4096

max_
max_arrayspace: 2560000

max_sub: 4096

max_edgescan: 1024

max_lablelength:25

max_hmi:2, x:1920 ¥:1080

mazx_zvlatch:4

max_zvtask:3

SERVO_PERIOD: 1000 min:1000 max:1000

function support:Coder Cam MultiMove Circ Merge Frame Robot Zvision

Command: [2*max

Modify the value of a variable. The setting and modification of VR variables, TABLE variables,
MODBUS variables, global variables, system settings, axis parameters, and axis state variables
can be realized through “Online Commands”. The following figure is an example of modifying

the VR variable value.

40

Output

>>9VR0)

0
SYWR(0)=123
>>VR(0)
173

Command: |?VR(D] Send

Capture

Clear

2.4 How to Use Oscilloscope

2.4.1 Scope Interface

Oscilloscope is extremely important of program debugging and running. It is used to transfer

signals that can’t be seen by naked eyes into graphics, so it is convenient to analyze change

processes of all kinds of signals. Oscilloscope shows controller internal data in graph, it can

display different signals, like, axis parameter, axis status, etc., click “Tool” —

“Scope” to open the

scope window.
Scope x
Channel Configz Accessibility Help
O Manual-trigger ~ Marmal—trigzer <
Min:0.00 Max:0.00 Scale:0.01
¥ Seale: 1s Display: YT mode
Channel=: 2 - 3D wiew: |Oblique view
Continmous Follow Magnifier

Channel | Cursor Statistics

Show Index Source Offzet Scale
0 P03 200 auto (200)
vl 1 DFOS i auto 0. 01}

Please see above SCOPE main interface, horizontal line means time, its time unit depends on

horizontal scale, controller period, and space size, the corresponding calculation formular is “unit

time = horizontal scale * space * controller period” (unit time: the time of each horizontal span),

for example, if the horizontal scale is 1000, the space is 2, and period is 1000us, then each grid’s

time will be 2000ms. For vertical line, unit depends on specific selected data source.

41

--How to Operate--

After editing the program in RTSys, and connecting to controller / simulator, then open the scope,

now you can set needed data source and corresponding No., select auto-trigger / manual trigger,

next, click “®” open button, and download the program into RAM/ROM again. At this time, if

you use auto-trigger, it will sample after clicking ON, if you use manual trigger, after clicking ON,

you need to click “Manual-trigger” to sample, then download to RAM/ROM, or download directly

after clicking ON, then waiting for Basic to trigger (note, when waiting Basic trigger, “TRIGGER”

command should be added in program).

--Scope Basic Buttons--

Buttons Functions

Channel Selected channel and superposition channel, comparison channel isn’t
shown.

Config Open oscilloscope configuration window, set parameters.

Accessibility Assist in observing waveforms, including searching waveforms,
comparing waveforms, and importing and exporting waveforms.

Help Display the mouse operation guide interface to prompt the mouse shortcut
operations in each mode.

O Switch of oscilloscope. ON state, it is ©, but it will not trigger the
oscilloscope.

Trigger Mode In the drop-down menu, you can select auto-trigger or manual-trigger.

When auto-trigger is selected, the manual-trigger button is unavailable.

® Auto-trigger: it will be triggered immediately after clicking the ON
button.

® Manual-trigger: it is necessary to download to RAM/ROM after
clicking ON button, then click the "Manual-trigger" button, or
download directly to RAM/ROM after clicking “ON” button and
wait for the Basic program to trigger (Note: when waiting for the
Basic program to trigger, the "TRIGGER" instruction must be added
to the program).

Manual-trigger | Trigger manually oscilloscope to sample.

<< Press to hide the channel name and peak value, and display only the
channel No.
X Scale The scale of the horizontal axis. Select from the drop-down menu to

manually enter the value and unit. The default input unit is ms, which is
automatically converted to s after input. Place the mouse in the value box
and scroll the mouse to zoom in and out of the horizontal scale. It is
effective in YT mode, but becomes sensitivity in XYZ mode and XYZD
mode, indicating the sensitivity of the left mouse button operation.

Display There are four modes to switch, including YT mode, XY mode, XYZ
mode and XYZD mode. When the number of channels is less than 2, the
XY/IXYZ/IXYZD mode is not available, when the number of channels is
less than 3, the XYZ/XYZD mode is not available, when the number of

42

channels is less than 4, the XYZD mode is not available.

YT Mode

The curves of different data sources changing over time, with each
channel showing a waveform.

XY Mode

The XY plane displays the interpolated synthetic trajectory of the two
axes, and two consecutive channels of the same type are grouped together
to display a waveform.

XYZ Mode

XYZ 3D space displays the synthetic trajectory. Select the channel as the
X, Y, and Z axis in turn. Three channels of the same type are grouped
together to display a waveform (channel types include regular channel,
overlay channel, contrast regular channel, and contrast overlay channel).
Each type can display at most one waveform.

Note: When using this mode, the OpenGL version of the display card
must be 1.5 or above.

XYZD Mode

XYZD four-channel visualization display trajectory, where XYZ is the
3D space synthetic trajectory display, and D is the data source displayed
in the form of dots.

The calculation method is: dot diameter size = current D value =+ D
reference value < D reference size. Parameter modification is located in
the "Observer Config" window. Select channels as X, Y, Z axis and D
value channels in turn. Four channels of the same type are grouped to
display a waveform (channel types include: regular channel, overlay
channel, contrast regular channel and contrast overlay channel), and each
type can display at most one waveform.

Current D value: the size of the data source value at the current position.
Note: When using this mode, the OpenGL version of the display card
must be 1.5 or above.

Channels

Set the total number of regular channels to be sampled. It cannot be
modified when ON. When the set number of channels is greater than the
number of channels supported by the controller, a prompt message will
pop up: Exceeding the maximum number of channels supported by the
controller.

3D View

You can choose oblique angle, front angle, left angle and top angle. The
default is oblique angle. XYZ mode and XYZD mode are valid.

Continuous

When continuous acquisition is not enabled, sampling stops after reaching
the maximum acquisition cycle number, when continuous acquisition is
enabled, the oscilloscope will continue sampling, and will continue
sampling after reaching the maximum acquisition cycle number, that is, it
will not stop sampling until the stop button is pressed. The acquired data
will automatically overwrite the previous data. what’s more, all waveform
sampling data acquired continuously can be exported (the continuous
acquisition function is automatically canceled when using the serial port).

Follow

After turning on the follow, the horizontal axis automatically moves to the
real-time sampling position and follows the waveform display.

Magnifier

When this is checked, and the magnified view will be automatically
displayed at the lower right of the mouse when the mouse moves to the

43

display area. The magnified view will follow the mouse movement and
refresh. The magnifying glass parameters can be modified in the
"Observer Config" window. YT mode is valid.

Show

Select whether to display the current channel curve. The oscilloscope has
four types of channels, including regular channels 1 to 8, superimposed
channels 1 to 4, regular channels 1 to 8 for comparison waveforms, and
superimposed channels 1 to 4 for comparison waveforms.

Index

Select the data source No. to be collected, such as axis No., digital 10
No., analog 10 No., TABLE No., VR No., MODBUS No., etc. The
number setting range is from 0 to the maximum number of axes of the
controller, and the number can be entered manually.

Source

Select the data type to be collected. Click the left mouse button to
manually enter the data type, or click % the drop-down menu to select
the type parameter. You can set the required parameter type in the "Data
Source Design" window.

Offset

To set the waveform vertical axis offset, select the offset from the drop-
down menu or enter it manually.

Scale

The scale of one grid on the vertical axis. When auto is selected, it
indicates automatic scale, which is available when the oscilloscope is
stopped. The scale value changes automatically according to currently
acquired waveform, so that the waveform can be fully displayed on the
current oscilloscope interface.

It indicates loss may occur here, which is related to the maximum
acquisition cycle number. After the oscilloscope starts continuous
acquisition, it will re-trigger the acquisition at 80% of the maximum
acquisition cycle. At this time, the TABLE data begins to be rewritten,
and point loss may occur during this process. The "TRIGGER" command
is effective in manual trigger mode, and it appears at about 80% of the
maximum acquisition cycle number.

Note: to set the oscilloscope parameters, such as axis No., data source, and oscilloscope
"Parameter Config" window, you must stop the oscilloscope first and then set them.

2.4.2. How to Configure Scope

(1) Scope Config Window

Click menu above “Config” button, then click “parameter configuration”.

44

Basic parameters

Interval period number 1

Max sampling periods 5000
Auto use end of table True
Export parameters True

Overlay channel parameters

Channels 0
Statistics parameters

Show maximum True
Show maximum at True
Show minimum True
Show minimum at True
Show magnitude True
Show average True
Show Std.Deviation True

Defanlt 0K Cancel

Parameter

Description

Basic parameters

Sampling period (us)

Time interval between twice sampling by SCOPE, it can’t be
modified.

Interval period number

The sampling time interval, the unit is system cycles, which is
related to the controller firmware version. The default value is 1ms.
You can view it by SERVO_PERIOD. (For example, if the interval
cycle number is set to 1, it means sampling once in 1 cycle. If the
interval cycle number is set to 5, it means sampling once in 5 cycles,
the cycle time depends on the controller firmware version.)
Generally, the smaller the interval cycle, the more accurate the
sampling data, and the larger the data volume per unit time.

Max sampling periods

The total number of sampled data. The larger the value, the larger
the sampling range. (That is, the size of the table required for the
data collected by one channel)

Auto use end of table

The position where saves the data, default is True.

Table pos

Set the location where the captured data is stored. Generally, the
default is to automatically use the space at the end of the TABLE
data. When "Auto use end of TABLE array" is set to False, you can

45

customize the setting, but be careful not to overlap with the TABLE
data area used by the program.
There are three ways to check the size of the controller TABLE
space:
a. use the TSIZE instruction to read.
b. view in the "Controller Status" window.
C. printand view the online command? *max.
Export parameters Select when you need to export oscilloscope channel parameter
information. After checking, oscilloscope parameters are exported
when exporting waveforms, including: basic parameters, overlay
parameters, and channel configuration parameters (No., data source,
offset, vertical scale). The default is True.

Overlay channel parameters

Channels Select how many channels that are overlayed, select from the drop-
down menu.
Overlay channel 1/2 | You can select the channel number for superimposition.
Overlay method The overlay method between two channels, add or subtract.

Statistics parameters
Statistics parameters | Set the parameter information displayed on the oscilloscope statistics
page. The default value is True.

(2) Observer Configuration Window

Click menu above “Config” button, then click “obverse config”, then corresponding window will

appear, after configured, click “use” to preview how it is after modified, then click “OK”.

46

Observer config
Basic parameters
Back color Il co1040
Grid color B 585800
Grid line type Solid
Cursor color FFFFFF
Cursor line type Solid
Channel line type Solid
Line quality High
Font Roboto
Font size 10
Normal channel
Overlay channel
Contrast channel
Contrast overlay channel
3D view
X-coordinate color FFFFOO
Y-coordinate color . O0FFDO
Z-coordinate color QOFFFF
D reference value 5.000000
D reference size 5
D points per group 100
D value selection Maximum value
Magnifier

inle | ([E oo

Parameter

Description

Back / Grid / Grid line

/ Cursor color

Set corresponding needed color.

Grid line type

Set the grid line type, there are solid or dashed lines.

Cursor line type

Set cursor line type, there are solid or dashed lines.

Channel line type

Set channel line type, there are point, solid, dashed lines.

For “point”, scope will show data that are sampled by SCOPE in
fixed period, “point size” parameter can be set.

For “solid / dashed lines”, sampled points will become one smooth
lines, then abnormal data can be easily checked, also, “line width”
parameter can be set.

Line quality

Set channel waveform’s line quality, when there are many data,
recommend to use standard mode, which can accelerate scope
performance.

Font / Font size

Set the font and font size of the channel No., channel name and peak
value on the waveform display interface.

Normal / Overlay /
Contrast / Contrast
overlay channel

Set corresponding channel’s line width, point size, and channel
color.

D reference value /
size

Used to calculate the dot diameter size in XYZD mode. The
diameter size is related to the ratio of D reference size/D reference

47

value. The larger the ratio, the larger the dot diameter. The
calculation formula is: Dot diameter size = current D value =D
reference value <D reference size. (The current D value is the value
of "D value selection™)

D points per group

Display a dot for every N sampling points. (For example, if "D
points per group" is set to 100, a dot will be displayed for every 100
sampling points according to the value of "D value selection")

D value selection

The value of the current display dot size in N sampling points can be
selected as the maximum value, minimum value and average value.
(For example, if "D value selection" is set to the maximum value and
"D points per group" is set to 100, the maximum value of every 100
sampling points will be used as the basis for calculating the current
display dot diameter)

Magnifier

Set the width, height and magnification of the magnifier.

Search

Set the line width, point size, and channel color of the search results
displayed when searching a waveform.

(3) Data Source Design Window

Click menu above “Config” button, then click “data source design”.

First level menu

il
TFFe

Data source design

% L Second level menu #a x| ¥

DPOS
MPOS

VP_SPEED
MSPEED

FE

AXISSTATUS
MOVE_MARK
MOVE_CURMARK,
VECTOR_BUFFERED
VECTOR_MOVED
MTYPE

MARK

MARKB

MARKC

MARKD
REG_POS
REG_POSB
REG_POSC
REG_POSD
DRIVE_FE
DRIVE_STATUS
DRIVE_TORGQUE
DAC_OUT
SERVO
ENCODER

Defanlt Rearrange “ Cancel

Parameter

Description

48

First / Second | Set corresponding needed color. When there is information in second level

level menu | menu, the first level menu text is the type, the second level content is data
source. When there is no information in second level menu, the first level
menu is data source.

“add” button, add information in first level or second level.

“delete” button, deleted selected information. Note: axis parameter and
register in first level can’t be modified.
L Up / down, used to sort.

Rerrange Sort items of first level and second level according to characters from A to Z.

2.4.3. How to Import & Export Scope Data

a. Import Configuration

Import parameters related to scope, including parameter configuration, observer configuration,
data source design, channel parameter configuration (show, No., data source, offset, vertical scale).

And the file format of the imported data is .ini.

You only need to click “config” — “import config”, then select which file, when imported, new file

data will cover before parameters.
b. Export Configuration

Export parameters related to scope, including parameter configuration, observer configuration,
data source design, channel parameter configuration (show, No., data source, offset, vertical scale).

And the file format of the imported data is .ini.

You only need to click “config” — “export config”, then select folder to save it.

2.4.4. How to Sample by SCOPE

A. Open project, connect to controller or simulator, then open the oscilloscope window (note:

first, connect to controller or simulator, then operate the oscilloscope window).

B. Click “Scope Config” in oscilloscope window, select sampling period, max sampling period,
sampling space, whether use END table, table position and show type, etc. Then, click “OK”

for saving this configuration.

C. Select sampling Index and Source, then select auto-trigger or manual-trigger, click © button.

49

D. Download program into controller. When it is auto-trigger, sampling immediately after
clicking ® button. When it is manual-trigger, click © button first, then click “manual-trigger”,
at last, download RAM/ROM, or if there is “TRIGGER” command in the program, you can
click © and download directly to wait for BASIC to trigger sampling.

E. If the waveform accuracy is not high or the display is incomplete, click the "®" button and
then open the "Scope Config", adjusting the sampling space and sampling depth, and perform

the above sampling process again.

If the sampling time is long, start “Continuous acquisition” function. At this time, no relation

between sampling time and max sampling period.

2.4.5. Scope Needs

® How to Calculate Scope Sampling Time:

For example, max period: 1000, space: 5

If system cycle SERVO_PERIOD=1000, which means it is 1ms trajectory planning cycle. Space 5
means sampling one data point per 5ms. Total sampling data number is 10000, so sampling time

length is 50s.

® How to Calculate TABLE End Space:

Set the position where the captured data is stored. Generally, the space at the end of the TABLE
data is automatically used by default, now starting space address is calculated automatically

according to captured data space.
Calculation method: captured data space = channel numbers * max sampling periods

For example, if TABLE space of controller is 320000, there are 4 sampling channels, max
sampling periods is 30000, each sampling point occupies one TABLE, so it will occupy
4*30000=120000 TABLE positions. 320000-120000=200000, which means starting position of
TABLE is 200000.

If you don’t use TABLE end space, you also can self-define. Same condition as above, starting
TABLE position can’t be more than 200000, because this space can’t be same as TABLE spaced

used in program, otherwise, no way to run.

® How to Solve “Point Loss” Problem:

50

Generally, the “max sampling periods” is too low, “point loss” may appear. Then, you can set a

bigger value.

® How to Solve “Polyline” under “Continuous Acquisition”:

Related to “max sampling periods”. Actually, the problem is “point loss”.

® How to Use “Continuous Acquisition” Function;

When continuous acquisition is not selected, the oscilloscope automatically stops sampling when

the sampling depth is reached.

First select “Continuous acquisition” in “Scope Config”, then start oscilloscope, it will continue to
sampling after triggered, and sampling even if it reached the depth. It will stop until press “Stop”

button manually.

All waveforms and captured data from continuous acquisition can be exported.

2.4.6. Scope Usage Routine

Example 1: Continuous trajectory look-ahead application
RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)
DP0OS=0,0
ATYPE=1,1
UNITS=100,100
SPEED=100,100
ACCEL=1000,1000
DECEL=1000,1000
SRAMP=100,100

MERGE=ON

CORNER_MODE=2 'start corner deceleration
DECEL_ANGLE =15 * (P1/180) 'set angle of starting deceleration
STOP_ANGLE = 45 * (P1/180) 'set angle of ending deceleration
FORCE_SPEED=100 it is valid when in equal deceleration

51

TRIGGER
MOVE(100,100)

"trigger oscilloscope automatically

MOVECIRC(200,0,100,0,1) 'Radius 100 draw a semi-circle clockwise, end coordinates (300,100)

Speed and position curve of sampling axis 0 and axis 1:

K [0 R <
Fohgs | T HR = st

2T RS HigR e FHIE
PR dpe db

A O | | =

M o -][mseem E [100

L2 PO | === ~[w [100

Al | =T |

e | = | o

M g Fwsem Yo [1000

¥ 7 esee o [1000

Example 2: PSO position synchronization output, output OP signal when arriving comparison

point

or

52

RAPIDSTOP(2)

WAIT IDLE(0)
BASE(0)
DPOS=0
MPOS=0
ATYPE=1
UNITS=100
SPEED=100
ACCEL=1000
DECEL=1000
OP(0,0FF)
TABLE(0,50,100,150,200) 'coordinate of comparison point
HW_PSWITCH2(2) 'stop and delete incomplete comparison points
HW_PSWITCH2(1, 0, 1, 0, 3,1) ‘compare 4 points, operate output 0
TRIGGER "trigger oscilloscope automatically
MOVE(300)
& it |
Kmzie: (000 st <<
_Fingx | © R SA| sd|
BF Re £ R
A O | = |
Pl e ~llo |2
S OIS | === = f100
L T | =3 =0 f100

|2 A
|2 JF
A R | | |
gl o | = | o 2

Example 3: Electronic Cam Application
RAPIDSTOP(2)

WAIT IDLE(0)
BASE(0) 'select axis 0
ATYPE=1 'pulse directional step or servo

53

DPOS =0

UNITS =100 "pulse equivalent
SPEED =200

ACCEL = 2000

DECEL = 2000

'Calculate TABLE data
DIM deg, rad, x, stepdeg

stepdeg =2 ‘use this to modify line number, line is more, speed is more stable
FOR deg = 0 TO 360 STEP stepdeg
rad = deg * 2 * P1/360 ‘convert to radian
X =deg * 25 + 10000 * (1-COS (rad)) ‘calculate offset of each small segment
TABLE (deg/stepdeg, X) 'store TABEL
TRACE deg/stepdeg, X
NEXT deg
TRIGGER "trigger oscilloscope sampling
WHILE 1 'cycle motion
CAM (0, 360/stepdeg, 0.1, 300) "the virtual follow length is 300
WAIT UNTIL IDLE ‘wait until motion stops
END

Motion trajectory: total time of each cam instruction = distance / speed = 300/200 = 1.5s

KEarE: [0 I xvigs, <<| @ MSPEED(C
Fopws | @ 0 A s

BT FS HHEE wE BEIE

N s [e o 2

A e | === | o =7

M o <[wse ~|fo Jso

2 [1] [mspeen ~||o |100

v Jo | |ve_speeD =~l[o |100

A | e | o

2 s o= | o

L P | == I | [1000

54

2.5 Program Debug

2.5.1 Enter Program Debug

YA Pay attention to safety when debug the machine! Be sure to design effective safety
devices in the machine, and add the error handling procedures in software. Zmotion has no

obligation or responsibility for the loss.

Debug function means it can debug the program rapidly, and check the running situation of all
tasks in the program.

After ZDevelop connecting to controller, select “Debug” — “Start/Stop Debug”, then it will jump
below window:

Debug Window Help

Compile All
Start/Stop Debug Ctrl+F5
Go F5
Step Into F11
Enter Debug %
Step Over F10
Step Out Shift+F11 Select enter mode
Run to Cursor Ctrl+F10 D]
Toggle Breakpoint FQ =
Kill All Breakpoints " No download, Reset
Edit Breakpoints f« ;5\
Troubleshooting
Bus state diagnosis

There are 4 kinds of debugging way when enters debug:

» Down ram again: it means the program is downloaded into RAM again, RAM fails to store
when power-off.

» Down rom again: it means the program is downloaded into ROM again, RAM stores when
power-off.

> No download, Reset: it means not to download the program, and run the program
downloaded before, and open task window to see current running status.

» Attach to current: it means this time the program is not to be downloaded, only showing

current running status when opened task window.

55

2.5.2 Task and Watch Windows

After selecting debug method, task and watch windows can be opened.

Watch £ | Task x|
Watch MName Value | Task | State | File Line
[t} Stopped WARNINFORMA
< >
Stack Sub File Line
a - WARNINFORM:
< >
Local Name Value ~
GC_WARNLENGTH 0.0000
GC_WARNLENGTH 0.0000
GC_WARNLENGTH 0.0000
GC_WARNLENGTH 0.0000 W

Task window is used to see running status of task, file and task running line number.

Valid expressions such as global variables and file module variables can be added into the “Watch”
window. Local variables are not supported, and its parameter values are automatically obtained
and displayed when the program is running. Also, under the debugging state, you can select
variables in the program editing area and right-click "Add to Watch", or double-click the content

name of the watch window to modify or add watch items.

2.5.3 Usage of Debug Tool Bar

After starting debugging, debug tool bar becomes valid.

=m @ @

-;
]

From the left to the right:

> Reset: run from the starting position

» Run(F5): start to run automatically, pause the scan when encountering a breakpoint, and then
click to resume the scan.

Pause: pause the running

Step Into(F11): run into program, press once, it will scan the next line

Step Over(F10): run into next program

Step Out: jump out of SUB subroutine to run

Run to: run to the line specified by the cursor

YV V V V V VY

Toggle breakpoint: click to set, click to cancel again in the original position

56

» Emerge Stop: force stop all programs from running

When the program is inconsistent with the controller or the program is not downloaded in time
after re-modification, it will cause the line number specified by debugging to be offset. Motions

that are currently submitted when paused are not paused.

2.5.4 Breakpoint Debug

Program can be obtained and paused through adding breakpoints

Breakpoint debugging can view the specific running process of program, which is mainly used to
judge program logic errors. With watch content and axis parameter changes, you can view the

impact of each step of the program execution on registers, variables, arrays, etc.

Breakpoint shortcut key F9 add, add or delete breakpoint button or menu bar "Debug" — "Toggle
Breakpoint", multiple breakpoints can be added, menu bar "Debug" — "Kill All Breakpoint” is
used to clear the project file at one time all breakpoints. “Edit Breakpoint” window can quickly

remove the target breakpoint or navigate to the breakpoint to edit the code.

Debug Window Help

Compile All
Start/Stop Debug Ctrl+F3 Edit Breakpoints >
Go F5

Step Into F11 | L

Step Ower F10 Cancel
Step Out Shift+F11
Run to Cursor Ctrl+F10
Toggle Breakpoint Fa

] . Remove
Kill All Breakpoints
Edit Breakpoints Remave Al

Troubleshooting

Bus state diagnosis

After the program stops at the breakpoint, you can perform step-by-step debugging, press the

shortcut key F11, and press the program once to execute one step down.

As shown in the figure below, the debugging cursor stops at line 17. At this time, the statement on
line 17 is not executed, and the statement on line 16 has been executed. Press F11 once to execute

line 17.

57

Basici.bas 3 v i 18 &%]

1 RAPIDSTOP(Z P [f& [#5 [&a | itz e
2 ¥AIT IDLE (0, DPDS(0) 100 0 Runring BASIC 1.BAS fire: 17
3 WAIT IDLE(1) DPDS(1) 100
4
5 BASE (0,1) T RIS
6 ATYPE=1,1 g i
7 URITS=100, 100 : ﬂ@:f{%;i; % 2
8 SPEED=100, 100 PENRE JBE S 112
5 ACCEL=1000,1000 & ;ﬁ e I;Stia;z —
10 DECEL=1000, 1000 | BhEE - S
11 SRAEP=100, 100 * SH%E
12 EERCE=0OR T FTHE SRS
12 DP0S=0,0
14 RS T < >
15 TRIGGER ' A TR e R e
16 EOVE(100,100) ' 8 2kl | BEpxEs |8 &
»17 @ NOVECIRC(Z200,0,100,0,1) ~F{Z100/[T8 0.0090
18 ERD 0.0000
19 0.0000
20 0.0000
< > 0.0000 v

If the breakpoint is set in the loop, the next time the loop runs to the breakpoint, the program will

still be stopped.

After the program is debugged, all breakpoints should be cleared first, then download the program
to the controller. Otherwise, print information prompting Warn file: "Basic1.BAS" line: 17 task: 0,

Paused. The program after the breakpoint will not be scanned for the time being.

When the program is running, a warn warning appears, still it can continue to run. After the

program is downloaded, it will stop running if it prints an ERROR error.

2.6 the View Window

ZDevelop software has a variety of view windows, users can easily edit and configure the
controller program, develop applications quickly, monitor the axis running parameters in real time,

and debug the running program of the motion controller in real time.

For example, the axis parameter window can monitor common parameters in motion control, and
the readable and writable axis parameters can be directly modified after double-clicking in the
window, the read-only parameters do not support modification. The input and output window
monitors the status of 10, and the manual motion window quickly debugs the running status of the

axis.

For more view windows and their function descriptions, please refer to the help menu of

ZDevelop software, and open the "ZDevelop User Manual" to view.

58

sinnxes

S

EEEEEE

Pl iel e (&

L
EEEEEE
EEEEE

W]

Do to Centraller Ram Succeas,
’uﬂ mave

3
%
._M
=i
i=
&4
wE
m.w

i
i

vy

CE T TS

i Bﬁ-.i h7

FLM L FEE

59

Chapter 111 Basis of Basic Programming

This manual takes the Basic programming language as an example for detailed description. For
customers who use PC host computer programming, please refer to Zmotion "Zmotion PC

Function Library Programming Manual” for more information.

3.1 Programming Basic Knowledge

3.1.1 Program

Procedure consists of code sequence, telling computer how to execute a specific task. A program
is a sequence of instructions (statements) developed by software developers according to user

needs and described in a programming language that is suitable for computer execution.

ZBasic is not case sensitive, all punctuation marks of instructions in the program should be in

English format.

Two aspects should be included in one procedure as follow:

1. To describe the data properly. In the procedure, the data type and organization form should be
defined well, namely, the data structure. (For Reference: DIM, Global, Const)

2. To describe the operation procedure well. That is, the operation steps, or the algorithm,

combined with the motion control is the process of motion and action.

B Common Program Structure

To write an algorithm, we generally use the following program structure description methods:
sequence, selection, loop, delay, wait, and sub-procedure calling. See the next section for sub-

procedure calling.

€ Sequence

In the absence of conditions and loops, the program always moves from top to bottom. When set
to run automatically, the files are executed sequentially from the beginning of the file down by

default.

Function 1

60

Function 2
Like above, execute function 1 firstly, then execute function 2.
Under BASIC programming, the program scans once from top to bottom.

Under PLC programming, the program scans periodically from top to bottom.

61

@ Selection

Select different commands to execute according to execution conditions. There includes; IF THEN,
ON GOTO, ON GOSUB, etc.

Routine 1:
DIM aa
aa=1
IF aa=0 THEN
Command 1
ELSELF aa=1 THEN
Command 2
ELSE
Command 3
ENDIF
END

Routine 2:

DIM a

a=100

ON a>10 GOTO labell
a=1000

END ‘'main program ends

Lablel:
PRINT a

END 'goto jump can’t return

€ Loop

Program is executed repeatedly, which means loop. There are main loop commands, FOR NEXT,
WHILE WEND, REPERAT UNTIL, etc.

Routine 1:

DIM a

62

a=0
FORi=1TO10STEP1
a=za+1l
PRINT a
NEXT
END

Routine 2:

DIM a

a=0

WHILE IN(1) = OFF ‘wait until input 1 is valid, exit loop
a=a+1l
PRINT a
DELAY (1000)

WEND

END

€ Delay

When program encounters DELAY command, it will stop for a relative time, then continue to

executing.

Routine:

PRINT 1

DELAY (2000) ‘delay 2000ms

PRINT2 ‘print 1, after delaying 2000ms, print 2
END

¢ WAIT

When program encounters WAIT command, it will stop here, then execute until meeting WAIT

conditions.

Routine:
BASE(0,1)
MOVE(100,100)

63

WAIT IDLE 'wait until the current interpolation motion ends

PRINT 'motion finishes

Except the WAIT and the DELAY commands, the program will block. When the motion
instruction is scanned, if the motion buffer of the axis is full, the program will stop at the current
motion command line until the current motion is completed. When the buffer has one black space,

the program will continue to execute. See Motion Buffer Instructions for buffers.

64

B Sub-procedure

Subprograms are often used in the programming process (subprograms are defined by the SUB
instruction in Basic). Using subprograms can modularize programming. The relationship between
each module is as simple as possible, and the functions are relatively independent, which is
equivalent to simplifying the main program, so programming becomes more efficient and easier to
read, and it can effectively decompose a complex program system design task into many
subroutines and subtasks that are easy to control and process, which is convenient for
development and maintenance.

— Main program and subprogram execution logic:

Main Program

i W

« bprogram 1 Yol subprogram 1-1
Subprogram 1 calling "‘x_ subprogt *"*m Prog
x___x“ ""-\-\.\

P

Subprogram 2 calling i{/ subprogram 2
g
END

The SUB subprogram can be opened as a subprogram, it returns to the main program after running
END SUB. It can also be opened by using RUNTASK instruction to run independently as a task.
After the task is opened, it has no relation with the main program. After the operation is completed,

the subprogram task ends. Not return to the main program.

The main program calls subprograms nested up to 8 levels.
There are Global SUB, File Module SUB. Global SUB can be applied in all files, but File Module

SUB only can be used in the current file. Subprogram also can pass parameters and returns

parameters.

Example:

SUB subl() ‘define process SUB1, which is only used in the current file.
?1

END SUB ‘self-define SUB process ends

GLOBAL SUBg_sub2() 'define global process g_sub2, which can be used in any file.
22

65

END SUB ‘self-define SUB process ends

GLOBAL SUBg_sub3(paral,para2) ‘define global process g_sub3, passing 2 parameters

?paral, para2

RETURN paral + para 2 ‘parameter return functions add
END SUB ‘self-define SUB process ends
3.1.2 Data

B Data Definition

€ Variable Definition

Variable is the parameter that can be self-defined by users. It is used to temporarily save
communication data with external equipment or data that’s processed by task inside. Namely, it
saves data that is with property, like, name or data type, etc. There is no need to assign address

allocation between variables and memory addresses.

Variable definition instruction: global variable (GLOBAL), file module variable (DIM), local
variable (LOCAL).

Global variable (GLOBAL): it can be used in any file of project.

File module variable (DIM): it only can be used in file inside project.

Local variable (LOCAL): it is mainly used in the SUB, which means it is invalid in other files.

Variable can be assigned without definition, now variable is the DIM by default.

Example:
GLOBAL g_var2 'define the global variable g_var2
DIM VAR1 'define file module variable VAR1

SUB aaa()
LOCAL vi 'define local variable V1
v1=100

END SUB

66

€ Constant Definition

The value of a variable varies depending on the data that is substituted for that variable. The
relative fixed value is a constant. Once the value of the constant is defined, it cannot be modified,

which means it can only be read.

CONST defines a constant once time, and the definition and assignment must be the same line.
Constant can be defined as global constant GLOBAL CONST. GLOBAL is used in any file, but
there is no way to write LOCAL CONST. Constant is different from variable, it doesn’t save the
information in memories. There are many common constants, such as, Boolean type, Character

String type, Time type, Date type, Integer type, etc.

Example:
CONST MAX_VALUE =100000 ‘define file constant
GLOBAL CONST MAX_AXIS =6 'define global constant

€ Array Definition

Array assignment means that the data of the same attribute are collectively defined, and the

number of data is designated. The pieces of data that make up the array are called "elements".
GLOBAL and DIM are relative instructions, but LOCAL definition is not supported.

Pay attention to array space designation, it can’t be over definition range. Otherwise, program will

appear error that indicates the array space limits.

Example:
DIM array(15) ‘define file array, valid 15 arrays, number 0~14
GLOBAL array2(10) 'define global array, valid 10 arrays, number 0~9

?*max can check the max array size parameter “max_arrayspace”, and it equals to the value that is
gained by adding self-defined array and TABLE. However, the space except TABLE is real max
space can be used by self-defined array, the max number of arrays to be self-defined is determined

by max_array parameter.

67

Data Type

Inside a computer, data is stored and operated in binary form, and a bit in binary data is the
smallest unit in which a computer stores data.

A binary bit can only represent two states of 0 or 1. To represent more information, it is
necessary to combine multiple bits into a whole, generally 8-bit binary constitutes a basic
unit byte (Byte).

Byte is the most basic unit of computer data processing, and mainly interprets information in
bytes. In general, one ASCII code occupies one byte, and one Chinese character international
code occupies two bytes. Different computer models have different word lengths. Commonly
used word lengths are 8, 16, 32 and 64 bits.

Unit conversion: 1Byte=8bit, 1IKB=1024B, 1MB=1024KB, 1GB=1024MB.

Common bases are binary, octal, decimal, and hexadecimal. The parameters of various

motion instructions are decimal data by default.

Name Description
Bit Bit is the most basic unit of binary value, its state is 0/1.
) It consists of 4 consecutive bits (such as bit3 ~ bit0), one bit represents
Nibble decimal numbers 0 ~ 15 or hexadecimal 0 ~ F
It consists of 2 consecutive nibbles (8 bits, bit7 ~ bit0). Represent
Byte decimal numbers 0 ~ 255 or hexadecimal 00 ~ FF
It consists of 2 consecutive bytes (16 bits, bit15 ~ bit0). Represent
Word decimal numbers 0 ~ 65535 or 4 bits hexadecimal 0000 ~ FFFF
It consists of 2 consecutive words (32 bits, bit31 ~ bit0). Represent
Double Word decimal numbers 0 ~ 2%2-1 or 8 bits hexadecimal 00000000 ~ FFFFFFFF

The data type refers to the specific provisions on the form and range of the value represented
by the variable. When the variable is declared, the size of the data type is determined
according to the size of the data range in the memory. The larger the data range in the

memory, the larger the range of values that can be represented.

Data Type Description
Boolean Value is 0/1
Integer Value is integer
Real number Value is real number
Date In date form, DD: MM: YYYY
Time In time form, hh: mm: ss
Character Value is character string

The data types of variables input or output by instructions are determined by instruction.

68

<~ The data type of self-defined variable belongs to dynamic type. When integer is assigned to
variable, the variable is integer type. When floating type is assigned to variable, the variable
is floating point type.

< Self-defined array’s data types are single-precision floating point and double-precision

floating point. Please refer to below floating point introduction.

Single-precision floating point 32-bit:
Single-precision floating point data format: VR, MODBUS_IEEE, TABLE and self-defined array

and variable (ZMC3XX series controller and former series)

Sign Exponent ([8hit) Fraction (23bit)

31 30 23 22 Q

Double-precision floating point 64-bit:
Double-precision floating point data format: TABLE and self-defined array and variable

(ZMC4XX series controller and following series)

Exponent Fraction

SIEN (1 1pit) (52bit)

1 1
LT T L LT T LT
63 52 0

Common register data type form:

Register Type Data Value Range

Type
MODBUS_BIT Boolean Oor1l
MODBUS_REG 16 bits -32768 to 32767

integer
MODBUS_LONG 32 bits

. -2147483648 to 2147483647
VR_INT integer
MODBUS_IEEE
VR 32 bits

. -3.4028235E+38 to -1.401298E-45
TABLE and array floating
(ZMC3XX series and its former)
TABLE and 64 bit
andarey 'S 1.7E-308 to 1.7E+308

(ZMC4XXseries and its after) floating
VRSTRING character | one character occupies one VR address
MODBUS_STRING character One character occupies 8 bits

<~ The memory capacity required for all data does not match the total data size (capacity value)

of each data because the head position of the data allocated to the memory is automatically

69

allocated to the multiple position of the "calibration value (boundary value)" for each
whitespace occurs between data types. Even if the kinds of data types are the same, the

overall occupied data size still varies depending on the order of the data types.

B Data Operation

Pay attention the data type when operating data of different types. Below problems will appear if

types are not matched:

& Data Loss

Decimal part will loss when data type is from floating to integer.
Routine:

VR(0)=10.314

MODBUS_REG(0)=0

MODBUS_REG(0)=VR(0)

?MODBUS_REG(0) 'the result is 10

€ Force Conversion

After the integer type is stored in the floating-point type register, it will become a floating-point

type, and then using the integer type to manipulate the data may be incorrect.

4 Common Usage Problem

When obtaining the date, do not use single-precision floating-point storage, because the date
format is 8-bit, and the single-precision floating-point number has only 6 valid bits. It is

recommended to directly use the 32-bit integer MODBUS_LONG to store.

Some parameters must use string type constants or variables, various strings can be combined by

"+", and the operation of a single byte of a string needs to be performed using an array.

Instructions related to character string:

Instruction Description

DI Defined array can be used as character string directly, each
element represents a byte.

70

“ Use “” to define constant type character string directly.

CHR Convert ASCII to a character string, it only occupies one byte.

MODBUS_STRING Standard MODBUS protocol defines character string, each 16-
bit register stores 2 bytes.

VRSTRING VR list acts as character string, 1 VR stores 1 byte.

+ Operational character, which is used to combine two characters.

VAL Convert Number character string to numerical.

TOSTR Convert numerical to number character string.

STRCOMP Compare different character strings

DMCPY Array copy function, also can copy character string.

HEX Return hexadecimal value, only for print purpose.

DATES$ Return date in “dd: mm: yyyy” format.

DAYS Return the English name of today's week

TIMES$ Return the current time of 24 hours type in “hh:mm:ss” format.

€ Parameter

<~ There are axis parameters, task parameters, system parameters, etc. Parameters can be read or
be written (except a little parameter only be read).
<~ Configure axis parameters (axis type, pulse equivalent, axis speed, etc.) well before motion.

Relative safety configuration (positive and negative hardware/software position limitation,

alarm signal, emergency stop, deceleration, etc.) should also be set well.

<~ There are two types, auto-save and nonauto-save.

— For auto-save parameter, it will be saved after modification, and won’t recover the default
value when powers on again. Relative instructions: axis parameter instruction,
IP_ADDRESS, APP_PASS and LOCK these kinds of password instructions,
CANIO_ADDRESS, etc.

— For nonauto-save parameter, it will recover default value when it powers on again, which
means it needs to be modified. For example, use SETCOM instruction to set serial port
parameters, needing to set again after power-on each time, so SETCOM instruction

should be put the beginning of program.

€ Power Failure Storage

<~ The controller has protection on register VR and multiple sector storage FLASH blocks when
power-down.
< Check FLASH sector amounts through ZDevelop online command “?FLASH _SECTES”.

Command “?FLASH_SECTSIZE can see the size of sector, and can save power-down data.

71

< ONPOWEROFF when power-down interrupting, written program can be used to record the
position of power-off to VR. When system powers on again, use program for recovering VR
data into current position, because executing time is very short when power-down, it is
recommended to only save several data.

< Use SETCOM instruction to match VR with MODBUS_REG registers, and set instruction

parameter “variable”. Please see SETCOME instruction for details.

Routine:
Set variable = 3, and one VR_INT should be mapped into two MODBUS_REG addresses.
Conversion Relation: VR_INT(num) =MODBUS_REG(num)*2/16+MODBUS_REG(num+1)

SETCOM(38400,8,1,0,0,0,3) ‘configure as power failure storage
VR_INT(0)=0

MODBUS_REG(0)=1 ‘low 16-bit value is 1
MODBUS_REG(1)=2 ‘high 16-bit value is 2

2VR_INT(0) 'result: 131073

END

< VR is not easily to lose when power down, it can be read and written infinite times. The data
storage time is 10 years. It is recommended to store the key parameters of the machine and
equipment in FLASH. The FLASH space is larger. When the power is turned on, the data is
read from the FLASH and written to each variable.

<~ FLASH has a write life limit and cannot be erased and written indefinitely. It is

recommended to write to VR for frequently rewritten data.

3.2 Three Programming Methods of Zdevelop

3.2.1 Hybrid Programming

<~ ZDevelop software supports 3 kinds of programming methods, they are ZBASIC, ZPLC
ladder diagram and ZHMI configuration. It also supports these 3 languages hybrid
programming. The programmed procedure through ZDevelop can be downloaded to
ZMOTION motion controller.

<~ ZBSIC, ZPLC and ZHMI can run multi-task among them. ZBASIC can run multi-task, ZPLC
and ZHMI both only can run one task.

< For example, see the below, two different BASIC files in one project can set different task

72

numbers to run separately. PLC/HMI file in the same project only can have one task number.

FileView R |
FileName | AutoRun |
Basic2.bas i}

Basic3.bas

FileView L |
FileMame | AutoRun |
Plc1.plc 0

Plc2.plc

Both ZPLC programming and ZBASIC programming are easy to understand and clear in

logic structure, which can meet various programming requirements and are widely used at

present. The HMI configuration programming is suitable for ZMOTION ZHD series teaching

box, and teach pendant of other companies can also be connected to the controller, please use

the teaching box programming software provided by the company.

Relation of PLC and BASIC registers:

3.2.2 PLC and BASIC Call Each Other

PLC BASIC
X0-X7 out bort IN IN(0)-IN(7)
X10-X17 AUt por IN(8)-IN(15)
Input relay X X20X2T MODBU_BIT IN(L6) ING3)
(10000-10527)
X1770-X1777 IN(1016)-IN(1023)
Y0-Y7 OP(0)-OP(7)
Y10-Y17 Output port OP OP(8)-OP(15
Output relay Y pup (8)-OP(15)
Y20-Y27 (20000-20527) OP(16)-OP(23)
Y1770-Y1777 OP(1016)-OP(1023)
MO MODBUS_BIT(0)
- MODBUS_BIT (0-
Auxiliary relay M M1 4095) MODBUS_BIT(1)
M1023 MODBUS_BIT(1023)
DO MODBUS_REG MODBUS_REG(0)
Special relay D D1 MODBUS_LONG MODBUS_REG(1)
D1023 MODBUS_IEEE | MODBUS_REG(1023)
DTO TABLE(0)
Floating register DT DT1 TABLE (0-5999) TABLE(1)
DT1023 TABLE(1023)
State register S S0 ~ S999 MODBUS_BIT
d (30000-30999)
Analog output MODBUS_REG
. D13000 ~ D13127
register (13000-13127)
. . MODBUS_REG
Analog input register | D14000 ~ D14255
(14000-14255)

PLC Command

EXE @BASIC Command

< Input Relay X is related to IN, under PLC programming, X is octal system (X0~X7,
X10~X17, ...), but controller’s input port IN is decimal system, so decimal conversion is
needed when programming. For example, IN2 is relative to X24, IN8 is relative to X10.

< Output Relay Y is related to OP, under PLC programming, Y is octal system (YO~Y?7,
Y10~Y17, ...), but controller’s output port OUT is decimal system, so decimal conversion is
needed when programming. For example, OUT2 is relative to Y24, OUT8 is relative to Y10.

<~ Auxiliary Relay M is related to MODBUS_BIT.

Special Relay D is related to MODBUS_REG.

<>

<~ Floating Register DT is related to TABLE, which can be used to transfer data between
ZBASIC.
< “EXE@BASIC instruction expression” in PLC can be used to call BASIC instructions.

<>

Basic can use command “RUN “xxx.plc”, task number” to start PLC task.
< “CALL SUB _FUNC” or “RUNTASK RUNC” can be used to call PLC subprogram LBL.

Please see “ZMotion PLC Programming Manual” for more details.

- | ‘ — SR

2 ’BasicHBESEAPLCXHF [18 HLBL @SUB_A |
3 run “Plcl.plc’ 6 P ‘ H3000

4 'BasicHBHESBERAPLCTERHE 1o — —EXE @
5 runtask 2, SUB & ‘

& END 21 LBRET l

3.3 Register

There are several main registers of controller, such as, TABLE, FLASH, VR, MODBUS, etc. After
connecting ZDevelop software to controller, size of each register on this controller can be checked
through ZDevelop software "Controller” — “State the controller”. Also it can input “?*max” in
online and output window to see the amount of each register. Different controllers have different

store space.

3.3.1 Table

TABLE is a very large array that comes with the controller, the data type is 32-bit floating point (4
series and above are 64-bit floating point), and it will not be saved when power off. When writing
a program, the TABLE array does not need to be defined again and can be used directly. The index

subscript starts from 0.

Some instructions of ZBasic can directly read the values in TABLE as parameters, such as CAM,
CAMBOX, CONNFRAME, CONNREFRAME, MOVE_TURNABS, B_SPLINE, CAN, CRC1S6,
DTSMOOTH, PITCHSET, HW_PSWITCH, etc.

74

Parameters sampled by the oscilloscope are also stored in TABLE. Therefore, in the development
and application, pay attention to the allocation and use of multiple TABLE areas, and do not

overlap with the data storage area sampled by the oscilloscope.

1) TABLE instruction reads and writes data:

TABLE(0) = 10 "TABLE(0) assigns 10

TABLE(10,100,200,300) 'Mass assignment, assign TABLE(10) as 100, assign TABLE(11)
as 200, assign TABLE(12) as 300

2) TABLE size can be read by TSIZE instruction, and can be modified (can’t be over TABLE max

space).
PRINT TSIZE 'print controller TABLE size
TSIZE = 10000 'set TABLE size, which can’t be over max controller TABLE size

3) TABLESTRING instruction prints data in TABLE according to character string format.
TABEL(100,68,58,92)

PRINT TABLESTRING(100,3) 'print data in string form, then convert to ASCII code.
PTINT RESULT: D:\

When TABLE is used as parameter to pass, uses are basically same. Next take CAM as the
example:
CAM(start point, end point, table multiplier, distance)
start point: the starting point TABLE number, where the first point is stored
end point: the end point TABLE number
table multiplier: the position is multiplied by this ratio, generally set to the pulse equivalent
distance: the distance of the reference movement
Example of usage:
TABLE(10,0,80,75,40,50,20,50,0) ‘TABLE starts to store data from 10, assign TABLE (10) as
0, assign TABLE (11) as 80
CAM(10,17,100,500) '‘Motion track is from TABLE(10) to TABLE(17)

There are two ways to view the data in TABLE:
— enter “?*TABLE(10,8)” on the online command, starting from TABLE(10), 8 data in turn.

75

Output % |

>>7+TABLE (10, 8)
0oooo0O0OO0O0D

Command: |?*TABLE(1U,8] ‘Sendl Capture | Clear |
[Output | Find Results
— Check the DT (TABLE) data in the register, starting from 10, and there are 8 numbers.
Register a
Register Ma. .. | Value | Import Export
DT(10) 0.000 —
DT(11) 0.000
DT(12) 0.000 DT(TABLE) -
DT(13) 0.000 StartNum:
DT(14) 0.000
oT(15) 0.000 10
DT(16) 0,000 MNumes:
DT(17) 0.000 I —
DT(18) 0.000
oT(19) 0.000

[V Auto update

3.2.2 FLASH

< Strictly speaking, FLASH is closely related to the register, but is is not a register, so it is
described in this chapter.

<~ FLASH has a power-down storage function, and the number of reading and writing limit is
100,000 times, and data will not be lost if it is not powered on for a long time. It is generally
used to store large data that does not require frequent reading and writing, such as processing
files.

<~ When reading and writing, pay attention to ensure that the names and order of variables,
arrays, etc. to be operated are highly consistent. If they are inconsistent, data will be cluttered.

<~ When FLASH is used, it is viewed according to the block number, and the number of blocks
is checked through FLASH_SECTES instruction. The number of FLASH blocks and block
data sizes of different controllers are different, and the data size of each block is checked
through FLASH_SECTSIZE instruction.

< Also view it on the online command line, as shown below.

76

Output x|

>

max_ethcustom: 2
max_ethiport:l
max_flashnum: 9959
max_flashsize:20480
max_nand: 262144KB
max_nandremain:262144KB
max softhwout:4. 8
Command: ‘?*max Send | Capture ‘ Clear |

| Output | Find Result
<~ Parameters set by CAN communication, IP address, APP_PASS, LOCK password and other

v

system parameters are stored in FLASH.
<~ Note: FLASH must be written before reading, otherwise an alarm WARN will be prompted.
< How to use FLASH:
GLOBAL VAR ‘variable definition
GLOBAL ARRAY1(200) ‘array definition
DIM ARRAY2(100)
'data is stored in FLASH block: Write VAR, ARRAY1,
ARRAY?2 data into FLASH block 1 in turn
FLASH_WRITE 1, VAR, ARRAY1, ARRAY?2
'FLASH block data read: read the data of FLASH block 1 into
VAR, ARRAY1, ARRAY?2 in sequence
FLASH_READ 1, VAR, ARRAY1, ARRAY?2

‘The reading order is consistent with the writing order

3.3.3VR

<~ The VR register has a power-down storage function and can be read and written infinitely,
but the data space is small, generally only 1024 or less. The VR space of the latest series of
controllers is 8000, which is used to save data that needs to be modified continuously, such as
axis parameters, coordinates, etc., the data type is 32-bit floating point (4 series and above are
64-bit floating point).

< Use VR_INT to force an integer, and VRSTRING to force a string. VR, VR _INT,
VRSTRING share a space, and the address space is overlapping. VR and VR_INT have the
same read and write methods. VRSTRING saves ASCII code, and one character occupies one
VR.

<~ The principle of VR's power-off storage is that the controller has a power shortage memory
inside, but the data capacity is small, so the data with a large amount of data or data that
needs to be saved for a long time is best to be written into the FLASH block or exported to a

U disk.

77

<~ The VR register can also be used for the RTEX controller to transmit reading and writing
data, write the DRIVE_WRITE parameter, and read the DRIVE_READ parameter. For
details, see Chapter 16 RTEX instruction.

< Use CLEAR instruction to clear all data in VR, CLEAR_BIT instruction will set a certain
position of VR to 0, READ_BIT instruction will read a certain bit data of VR register,
SET_BIT instruction will set a certain position of VR to 1.

Example 1: VR usage method

VR(0) 'assign

aaa = VR(0) ‘read

Example 2: data conversion in VR register

VR(100)=10.12

VR_INT(100) = VR(100) ‘data conversion

?VR_INT(100) ‘print result: 10, from floating to integer type

Example 3: VRSTRING stores character string

VRSTRING(0,4) = “abc” 'save character string, starting from VR(0)
PRINT VRSTRING(0,4) "print result: abc

Register a8

Register Ma... | Walue | Import Export

VR(0) 0.000 S

VR(1) 0.000

VR(2) 0.000 VR ~

VR(3) 0.000 Starthum:

VR(4) 0.000

VR(5) 0.000 0

VR(8) 0,000 Mumes:

VR(7) 0.000 m

VR(E) 0.000

VR(3) 0.000

¥ Auto update

3.3.4 MODBUS

< MODBUS register conforms to MODBUS standard communication protocol, there are bit
register and word register. MODBUS register doesn’t support power failure storage.

<~ Bitregister: MODBUS_BIT, for touch screen, it is called MODBUS_0X, Boolean type.
Word register: MODBUS_REG, MODBUS_LONG, MODBUS_IEEE, MODBUS_STRING.
For touch screen, it is called MODBUS_4X, see the below:

78

MODBUS_REG 16-bit INT
MODBUS_LONG 32-bit INT
MODBUS_4X shared
——— MODBUS_|EEE 32-bit FLOAT
MODBUS_STRING 1 byte character string

<~ The MODBUS word register in the controller occupies the same variable space, one LONG
occupies two REG addresses, and one IEEE also occupies two REG addresses. When using,

pay attention to stagger the word register number address.

— MODBUS_LONG(0) occupies two REG addresses, MODBUS _REG(0) and
MODBUS_REG(1).
— MODBUS LONG(1) occupies two REG addresses, MODBUS REG(1) and
MODBUS_REG(2).
—MODBUS_IEEE(0) occupies two REG addresses, MODBUS_REG(0) and MODBUS_REG(1).
—MODBUS_IEEE(1) occupies two REG addresses, MODBUS_REG(1) and MODBUS_REG(2).

<~ So pay attention not to overlap MODBUS REG, MODBUS LONG, MODBUS_IEEE
addresses in users application programs.

<~ Calculation method: MORBUS_REG(1) is high bit, MODBUS REG(0) is low bhit,
MODBUS_LONG (0) = MODBUS_REG(1) * 216 + MODBUS_REG(0).

< 4X space diagram:

LONG/ | EEE 1
32BIT

STRING O STRING 1 STRING 2 STRING 3 | STRING 4 | STRING 5 | STRING 6 | STRING 7

8BIT 8BIT 8BIT 8BIT 8BIT BBIT BBIT BBIT
REG 0 - REG 1 | REG 2 | REG 3
16817 16B1T 16BIT 16817
4 -) i »

Routine:
MODBUS_REG(0)=0 ‘initialize as 0
MODBUS_REG(1)=0 ‘initialize as 0
MODBUS_LONG(0)=70000 ‘assign modbus_long as 70000, range of modbus_reg is

79

32768~32767

?MODBUS_REG(0),MODBUS_REG(L)
'print reg(0) is 4464, reg(1) is 1, long(0)=reg(1)“2"16+reg(0)

EODBUS_REG (0) =0 | BHAE |8
lODBUS_REG 1)=0 MODBUS_LONG(0) 70000
modbus_long]! fﬂE MODBUS_REG(0) 4464
 modbus_reg G E-32768"3 MODBUS_REG(1) 1
NODBUS_LORG(0)- 70000 =

7HODBUS_REG (0}, IODBUS REG (1)
ﬂfﬂtﬂ 1»m' h44u4)1

<~ In the process of serial port setting (SETCOM parameter), when the register is selected as VR,
a VR is mapped to a MODBUS_REG at this time, where VR is a 32-bit floating point type,
and MODBUS_REG is a 16-bit integer type with signs. The data transmitted from VR to
MODBUS_REG will lose the fractional part. When VR data exceeds plus or minus 15 digits,
the MODBUS_REG data will be changed. MODBUS_REG transmits data to VR without
problems, see the following routines, and see the SETCOM instruction for more information.

Routine:

VR(0)=0 ‘initialize VR(0) and MODBUS_REG(0) as 0

MODBUS_REG(0)=0

SETCOM(38400, 8,1,0,0,4,0) "VR is mapped into MODBUS_REG

VR(0)=100.345 'set VR(0) = 100.345

?MODBUS_REG(0) ‘print result is 100, VR had been mapped to REG, but REG

is integer type, which means fractional part will lose

MODBUS_REG(0)=200 'set REG(0) as 200

?VR(0) "print result is 200, REG changes, VR also changes.

< When using the MODBUS protocol to communicate with other devices, it is necessary to

transfer data in the MODBUS register, such as communication with a touch screen. When
MODBUS communication is not performed, the MODBUS register can also be used as a
local array of the controller.

The controller directly corresponds to the input IN port from the MODBUS_BIT address
10000, 20000 corresponds to the output OUT port (note that the read 10O is the original state,
the INVERT _IN inversion input instruction does not work), 30000 corresponds to the S
register programmed by the PLC.

MODBUS_IEEE addresses starting from 10000 correspond to the axis DPOS range, starting
from 11000 correspond to the axis MPOS range, starting from 12000 correspond to the axis
VP_SPEED range, MODBUS_REG addresses starting from 13000 correspond to the analog
DA output range, and starting from 14000 correspond to the analog AD input range.

80

MODBUS_BIT Address Meaning
0~7999 Customized use for users

8000~8099 special M register programmed by PLC

8400~8199 IDLE signs of axis 0-99

8200~8299 BUFFER reminding signs of axis 0-99
10000~14095 Relative input IN port
20000~24095 Relative output OUT port
30000~34095 Relative S register programmed by PLC

MODBUS Word .
Meaning

Register Address

0~7999

Customized use for users, MODBUS_REG, MODBUS_IEEE and
MODBUS_LONG can be used together

8000~8099

special D register programmed by PLC

10000~10198

Corresponds to DPOS of each axis, use MODBUS_IEEE to write and read

11000~11198

Corresponds to MPOS of each axis, use MODBUS_IEEE to write and read

12000~12198

Corresponds to VPSPEED of each axis, use MODBUS_IEEE to read

13000~13127

Analog output AOUT, use MODBUS_REG to read and write

14000~14255

Analog input AIN, use MODBUS_REG to read

3.4 Multi-task Program

3.4.1 Concept of Muti-task

<>

Task is the function to execute a series of instructions processing, such as, 1/O refresh, user
program, etc. One task means one program that is running.

If multiple program modules can run at the same time without interruption, which is called
multi-task. And multi-task program can be achieved in the ZDevelop software.

Multi-task takes a complex program apart several parts, which means it starts task separately
and tasks are executed simultaneously, each task is in independent. In this way, the
complicated motion process of equipment will be simpler, programming is more flexible.
Program only can be executed in sequence when there is no multi-task, the executing
efficiency is extremely low.

ZMC motion controller supports multi-task programming, every task has own unique number.
These numbers don’t have priority, they are just identification that the task of the current
program.

Different models support different task amounts. After connecting to controller, “State the
controller” in ZDevelop menu bar can check the exact task amounts. Also, it can be known

through sending “?*max” in “command”. As shown in the figure below, the controller

81

supports 22 tasks, and the task number range is 0-21.

B’ Controller State

max_softhwout:d, 3

VirtualAxizes: 64 max_powitch:fd

RealAxises: a4 max_file:6l
EC—. e 3tile:2

Modbusx Bits: 2000 [@

Modbus4x Regs: 8000 max_timer:1024

VR Regs: 8000 max loopnest:8

TABLE Regs: 320000 Command: |?==max

<~ Each motion control cycle (Servo Period) of the motion controller includes the operation of

MC, SS, and user multi-task program, as shown in the following figure:

’i MC_. SS TASK1 ‘ TASK2 ‘ ------ ‘ TASKn ‘

| Servo_Period I

— MC: achieve Motion Control, EtherCAT communication and interruption. Motion Control
includes: single-axis motion control, multi-axis interpolation motion, robot positive and
negative algorithm. EtherCAT communication includes PDO and SDO.

— SS: System Service includes RS232, RS485 serial communication, CAN, EtherNET
(MODBUS master and slave communication and ZDevelop service of corresponding
software).

— TASK1, ..., TASKn: this relates to operation of each task, from task 1 to task n.

— In one control period, if tasks execute different instructions currently, then occupied time
also is different, it is not totally the same. There is no priority of task in default situation, but

one certain task can be set the priority through PROC_PRIORITY instruction.

<~ All tasks in Basic are scanned to run once (unless there is an endless loop in the program). A
Basic file under one project supports multiple auto-run tasks at the same time.

<> The PLC main task is executed cyclically, and the PLC subprogram task only runs once. It is
recommended to set only one Auto-run task number in the PLC file under one project.

<~ The HMI program needs to set the auto-run task number, and the initialization function only
scans and executes once, and the periodic function scans cyclically. One HMI file is
supported under one project, and the configuration program can run only by setting the auto-

run task number for the HMI file.

Basicl.bas 0

Basic2.bas 0 Stopped BASIC1.BAS line:31
Basic3.bas 1 Stopped BASIC2,BAS line: 18
Plc1.plc 2 2 Running PLC1.PLC line:1
Hmi 1. hmi 3 3 Running HMI1.HMI line: 1

<~ The controller processed 4 tasks at the same time, like the above figure. Among task 0, 1, 2, 3,

82

they don’t disturb each other. After controller downloaded the program, 4 tasks start

simultaneously, and when file task executing, SUB subprogram task or marking task will

start by using task instruction. Once SUB subprogram task or marking task are opened, they

become no relation with main program. Tasks can be triggered to execute again after task

stopped.

Advantages of controller multi-task:

— Program modular: user can write several small and specific programs to achieve assigned
functions that are consistent with customer’s equipment.

— Concurrency: every task can run independently. When task starts, it won’t be influenced
by
other tasks.

— Simplify the error process: Error handling becomes simple after dividing the multitasking
operation, and only the task with error is processed.

— Command interaction: when program is running, users can do command interaction in any
time, such as, online modify motion parameters, send commands in

online command bar, etc. And other programs don’t be affected.

3.4.2 Check Multi-task Status

Task has three states, they are Running, Stopped and Paused. Followings are 3 ways to see the

state.

>

Task instruction

PROC_STATUS: which means checking the task status, parameter only can be read. Return value:

0-task stops, 1-task is running, 3-task pauses.

Example:

PRINT PROC_STATUS(0) ‘print status of task 0

?7*PROC_STATUS "print status of all tasks supported by controller
» Task window

Open task window through “Debug” — “Start/Stop Debug”, like the below figure.

Task number and running status of started task, current file and operation line number can be

viewed through this window, but tasks that don’t start can’t be known.

83

&5 * B

|75 |5 | XiHnfTe

0 Stopped BASIC1.BAS,line: 15
i1 Running BASIC2.BAS line: 107
2 Paused BASIC1.BAS line:26
{3 Stopped PLC1.PLC line:13
;6 Running PLC1.PLC line: 1
\

When Basic tasks finished scanning in the program, the task will become Stopped state. But PLC

main task is always the Running state because it scans round.

» Open menu bar “Debug” — “Bus state diagnosis” window
Status of all task numbers, current file and running line number all can be checked.

This window also shows all tasks error information.

THELE Bus state diagnosis X
15#Ik7s Controller State 5HR{E8 Controllerinfor

Power: Run: Alm: P2 Mc432 RN e
. . . Ipddlt: 192.168.0.36 TEfE I 432-0

fpigo: [1ms01s
TR
Task:0 Running. file:”BASICL.BAS” line:ll:
Task:1 Ruming. file:"BASICZ2.BAS” line:94:
Task:2 Stopped.
Task:3 Stopped.
Task:4 Stopped.
Task:5 Stopped.
Task:6 Rumning. file:”"PLC1.PLC” lins:4:
Task:7 Stopped.
Task:8 Stopped.

Tamle+ O C4mvmnad

3.4.3 Multi-task Start and Stop

> First, multi-task operation instructions

END: the current task ends normally.

STOP: stop the running task of assigned file.

STOPTASK: stop assigned task.

HALT: stop all tasks.

RUN: start a new task and run a file.

RUNTASK: start a new task and run one SUB or one program with labels.
PAUSETASK: pause assigned task.

RESUMETASK: resume assigned task, then task will execute from that pause position.

Task operations in Basic and PLC both use above instructions.

84

“State the controller” and “?*MAX": check task total amounts and file total amounts supported by

controller.
Output
1’ Controller State ax_pewi teh: ba
file:61

VirtualAxises: 64 xz_aiiie-z
RealAxises: 54 - _éz
Taskes: 22 mx‘t?Sk' oot
Files,/3Files: 61/2 ik _timer: 1e

PR e max_loopnest:d
Modbus4x Regs: 8000 max CalllStiCk'm
VR Regs: 3000 Command: |? max
TABLE Regs: 320000 | Output [Find Results

» Second, start multi-task

There are 3 methods, they are auto-running task number configuration, RUN instruction and
RUNTASK instruction. When using instructions to start task, task will be opened after this
instruction is scanned by program.

Pay attention to the task number writing when starts task, tasks can’t be opened repeatedly.

1) Auto-running task number:

set auto-running task number through "FileView" window. After the controller is powered on, the
file with the auto-running task number will be executed first. Basic file can set several AutoRun
task numbers, but only one PLC file and HMI file are supported. The auto-run files are run in
parallel, and they are turned on at the same time after power-on.

2) The file as one task is turned on through RUN instruction:

Example:

RUN "TuXing_001.bas",2 ‘'set the file TuXing_001.bas as task 2, and start

3) SUB subprogram or signed program are set as one task and are turned on through RUNTASK
instruction. Start global SUB subprogram through cross-file, and the label program that needs to
start task only can exist in this file.

Example:

RUNTASK 1,task_home 'set as task 1 to start the task_home subprogram

> Stop multi-task

Instructions to stop multi-task: STOPTASK, STOP, HALT.

Task stops, then restarts it, it will execute from the beginning.

When starts task, usually use STOPTASK to stop the task firstly. Then start through RUNTASK

for avoiding errors caused by start repeatedly.

1) STOPTASK supports stop file taskm SUB subprogram task and labelled task.
Example:
STOPTASK?2 'stop task 2

85

2) STOP instruction supports stop Basic file task. It is recommended to use STOPTASK
instruction, because the operation is simpler.

3) HALT instruction stops all tasks.

Example:

HALT 'stop all tasks in project

Also “Emerge Stop” button can be used to stop all tasks rapidly.
Example:

There are 2 tasks in project, after they are downloaded, task 0 and task 1 are running.

XE 183 &5 x|
Tt [@emers | |35 IS | ZitdniTe
Basic1l.bas 0 0 Running BASIC11.BAS,line:45

1 Running BASIC11.BAS,line:82

Send online command: STOPTASK 0

Output x|
»»>8TOPTASE 0

Command: |STOPTASK 0 Send Capture Clear
Stop task 0
XA 13 €5 L x |
TR [z | |55 [| xitHofr e
Basic11.bas 0 0 Stopped BASIC11.BAS line:57
1 Running BASIC11.BAS line:82

When restarts the task, program can be downloaded again.

The above program cannot use the RUN command to start the auto-running file task 0, because
the automatically opened task 1 in task O is still running. If the command is used to start task O
again, it will cause task 1 to be opened repeatedly. If task 1 is stopped, start task 1 independently

through RUNTASK instruction.

3.4.4 Pause and Resume of Task

Use PAUSETASK command to pause task, and use RESUMETASK command to resume task.

After resuming, the task continues to execute from where it was suspended. And paused tasks

86

support stopping.

1) PAUSETASK: pause assigned task
Example:
PAUSETASK 1 ‘pause task 1

2)RESUMETASK: resume assigned task
Example:
RESUMENTASK ‘continue to running task 1

Example: there are 2 tasks in project, after they are downloaded, task 0 and task 1 are running.

XA @ #% s @
TR [@emzm | |55 [#s | itiniTe
Basic1l.bas 0 0 Running BASIC11.BAS line:45
& Running BASIC11.BAS line:82

Send online command to control task is paused or resumed.

Output B

>>PAUSETASE 0
>>RESUMETASE 0

Command: IRESUMEI’ASK 0 Send Capture Clear

Send: PAUSETASK 0
Task 0 is paused.

XEHE 1 B &5 » B8
| it [aen | s i3S | xitiniTe
Basiclibos 0 0 Paused BASIC11.BAS line:53 J

1 Running BASIC11.BAS line:82

Send: RESUMETASK 0

Task 0 resumes the operation state.

XA T B &% n B3
it (g | |55 ¥ | xitiniTe
Basic11.bas 0 0 Running BASIC11.BAS line:60
Running BASIC11.BAS,line:82

3.4.5 Basic and PLC Task Call Each Other

» First, Basic calls PLC task.
1) Basic file uses RUN instruction to call PLC file.

87

Xi9E L x | Basicibas EJ Plc2plc Basic3bas
iR | BEhET l
Basic1.bas 0

Basic2.bas

Basic3.bas

{Pic1.plc G
Plc2.plc

'BasicHBESAAPLCIf+
run ‘Plcl.plc”, 6

=1 P N = 0O DD

2) Basic file uses RUNTASK instruction to call subprogram defined by LBL instruction in PLC.

é
g 2 Basicﬂ%ﬁ?%ﬂﬁﬁ%ﬂc%/ IHLBL @SUB_PLC_A | \

runtask 3, SUB_PLC_4 HBO00
9 ——EXE @print “1°
10
11 BasicHBESEAbasiclE SRET

12 runtask 2, taskl

i3

» Second, PLC calls Basic task.
For PLC, using EXE or EXEP (pulse execution) instructions to call Basic task, then calling Basic

file task or subprogram task.

XitiE L] Basiclbas E1 Plc2plc v Plcl.plc E3
BT M| e IFLCFHRIE SN Toasic Xt
Bascl.bas o 25 EFD
Basc2 has 2? B Qs X?
Basc3 bas o R % HEE [—— —F3E @RUN "Basicz. bas’,5
Ple.ple 25 &GLOBAL SUB SUE B1()]\ l//FurﬁEff%}.ﬁffsa;ic—?m_%ﬂ
PlcZ.plc SN print "S0E T1
31 EFD SUB il
32 5 L FIE @RUNTASK 4, SUE_E1
22

3.4.6 Multi-task Routine

The following routine, there are 4 tasks, one main file task 0 and 3 module files 123. Start
single-step debugging, check effects of multi-task running, and observe the direction of the cursor
on the left. After the program scans to RUNTASKY, it starts the task taskA. After it starts, it
continues to scan the next line, RUNTASK2, task B also starts, RUNTASKS starts task taskC, and
it will stop scanning until meeting END main task 0. taskA, taskB, and taskC are executed

separately as independent tasks. The program execution can be seen in the program debug window.

88

OO N |

I
NHEO

* g

RUNTASK 2, taskB
RUNTASK 3, taskC
ERD

©taskA:
PRI “atask”, TICKS
DELAY (1000)
GOTO taskA
StaskB:
PRIRT “btask”, TICKS
DELAY (1000)
GOTO taskB
©taskC:
PRINT “ctask”, TICKS
DELAY (1000}
GOTO taskC

>

| ptinize

BASIC1.BAS line: 1

| oS

BASIC1.BAS line: 1

| &

0.0000
0.0000
0.0000
0.0000

0.0000

There is only auto-task 0 when power-on

T A

RUNTASK 1 taskh
RI [: i sy
RURTASK 3, taskC
END
StaskA:
PRINT “atask’, TICKS
DELAY (1000)
GOTO taskA
StaskB:
PRINT “btask’, TICKS
DELAY (1000}
GOTO taskB

©taskC:

PRINT “ctask”, TICKS
DELAY (1000)

GOTO taskC

>

| xtHnfre

BASIC1.BAS line:2
BASIC1.BAS, line:7

| xi4indTe

BASIC1.BAS,line:2

| &

0.0000
0.0000
0.0000
0.0000

0.0000

Task O starts task 1 to run

O 00 =1 O = LI

x |

r B

RUNTASK 1, taskh
RUNTASK 2, taskB

o T

END
StaskA:
PRINRT “atask”, TICKS

DELAY (1000)
GOTO taskA

StaskB:
PRIRT “btask”, TICKS
DELAY (1000)
GOTO taskB
©taskC:
PRINT “ctask”, TICKS
DELAY (1000)
GOTO taskC

| itiniz e

BASIC1,BAS line:3
BASIC1.BAS,line:8
BASIC1.BAS line: 12

| itaniTs

BASIC1.BAS line:3

| &

0.0000
0.0000
0.0000
0.0000

89

0.0000

Task O starts task 1 and task 2 to run

Basict.bas 3 v | &% o B
1 RUNTASK 1, taskA 15 | #s | xftinie
2 RUNTASK 2, ta] = 0 Stopped BASIC1.BAS line:6
» 3 RUNTASK 3, taskC 1 Running BASIC1.BAS,line:8

g END 2 Running BASIC1.BAS line: 13
6 OtaskA: 3 Running BASIC1.BAS line: 18
7 PRINT “atask”, TICKS < >
8 DELAY (1000) e —o
9 GOTO taskA CENES | xtnfrS

10 "

11 ©&+taskB:

12 PRINT “btask”, TICKS

13 DELAY (1000)

14 GOTO taskB < >

15 .

16 ©taskC: | &

17 PRINT “ctask”, TICKS

18 DELAY (1000)

19 GOTO taskC

20 :

< >

Task O starts task 1, task 2 and task 3 to run

3.5 Three Kinds of Interruption

<>

There are 3 types of ZBasic interruption, power failure interruption, external interruption and
timer interruption.

Main switch of interruption must be turned on before using interruption, in this way, entering
interruption when program has initialized well. And the interruption switch is closed state by
default when controller powers on.

When these three kinds of interruptions are running, the interruption function independently

occupies one task number, which means there isn’t push stack situation.

Precautions of interruption usage

— There is no priority among these interruptions.

— Interrupt nesting is supported, multiple interrupts can be executed at the same time, but
too many interrupt functions should not be processed at the same time.

— There is only one task inside the controller that processes all interrupt signal responses,
and there is a fixed interruption task number. If interruptions handle too many functions and
the code of the interrupt handling function is too long, all interrupt responses will be slowed

down, or even interruption blocked, affecting execution of other interruptions.

Solutions:
— Decrease the number of interruption in a way, actually many applications can be achieved
through cyclic scan.

— If the interruption processes an extremely long function, it is recommended to call one

90

independent task to handle the complex task in interruption, then other interruption responses

won’t be blocked.

91

3.5.1 Power Failure Interruption

< It must be a global SUB function. The controller has only one power failure interruption. The
execution time of power failure is very limited, and only a few commands can be written to
store the data in the VR.

< Relative function: INT_ENABLE, ONPOWEROFF.

Example:

INT_ENABLE=1
DPOS(0)=VR(0) 'read saved value when power-on, recover coordinate
DPOS(1)=VR (1)
DPOS(2)=VR(2)

END ‘'main program ends

GLOBAL SUB ONPOWEROFF() 'power failure interruption
VR(0) = DPOS(0) ‘save coordinate into VR
VR(1) = DPOS(1)

VR(2) = DPOS(2)

END SUB

3.5.2 External Interruption

< Rising edge trigger or falling edge trigger can be set, it must be a global SUB function,
currently only interrupt IN ports 0-31 can be used. Only firmware that supports PLC function
can be used. For details, please consult ZMOTION technicians.

< Relative function: IN_ONn, INT_OFFn.

Example:

INT_ENABLE=1 '‘Open interruption

END 'main program ends

GLOBAL SUB INT_ONO() ‘external rising edge interrupt program

PRINT "triggered when meeting rising edge of INO"
END SUB

GLOBAL SUB INT_OFFO0() ‘external falling edge interrupt program
PRINT " triggered when meeting falling edge of INO"
END SUB

92

2.5.3 Timer Interruption

<~ The function to be executed after reaching the set time must be a global SUB function. Timer
interruptions can start several functions simultaneously. And the number is determined by the
number of timers. The number of timers depends on the controller model. Use ?*max to print
and view.

< Relative function: ONTIMERnN.

Example:

INT_ENABLE=1 'start interruption

TIMER_START(0,100) ‘timer 0 open, cycle time is 100ms

END ‘'main program ends

GLOBAL SUB ONTIMERO() ‘interruption program

PRINT "ontimer0 enter"
"TIMER_START(0,100) 'execute interruption periodically, open timer again in SUB

END SUB

3.6 Motion Buffer

3.6.1 The Concept of Motion Buffer

<> When running the motion instruction, in order to prevent the program from being blocked,
the controller provides a buffer to save the motion buffer queue entering the motion buffer.
This function is called motion buffer, so that the program can scan down normally without
blocking.

<~ ZMotion motion controller has multilevel motion buffer. When the motion buffer is turned on,
and when the program scans and recognizes the first motion instruction of the program task,
it will assign the motion instruction to the motion buffer of the specified axis, and the motor
starts to move. At this time, the program continues to scan down to the second motion, then it
is stored in the motion buffer, and while the motion instructions are continuously scanned and
stored, the motion commands are sequentially taken out from the motion buffer and executed.

< MTYPE is the current running motion instruction and NTYPE is the first buffer motion
instruction.

<~ Motion instructions of any program can enter motion buffer of any axis, which is assigned by
axis number.

<~ Motion buffer areas of each axis are independent, they don’t bother each other.

93

Program Task [ASK O TASK1 | ... TASK n

. v v

Motion Command Motion Motion Motion
in Task Command Command Command
—

/\XI(O) AXIS(T) AXIS(n)

Motion Buffer i Buffer n Buffer n Buffer n

Eactiiuda Buffer 3 Buffer3 | Buffer 3
Buffer 2 Buffer 2 Buffer 2
NTYPE NTYPE NTYPE
MTYPE MTYPE MTYPE

3.6.2 Motion Buffer

<>

<>

During the program scanning, the scanned motion instructions are stored in the motion buffer
of the corresponding axis, and the motion instructions are fetched and executed from the
motion buffer in the order of first-in, first-out. In addition, it also includes a series of output
instructions in motion buffer.

MOVEMODIFY and MOVEMODIFY?2 are special, they will not enter the motion buffer.
Interpolation motion buffer is in the motion buffer of main axis.

When buffering multiple motion instructions, in order to judge the current executing motion
instruction, there are MOVE_MARK motion label and MOVE_CURMARK current motion
label instructions to check. MOVE_MARK motion label will add one when scanned one
motion instruction; MOVE_CURMARK instruction is the current motion label, indicating
which motion instruction the current motion reaches, and -1 after all motions are completed.
When the current motion finished, it will automatically execute the next motion of motion
buffer. When all instructions are executed, the motion buffer is blank, or use

CANCEL/RAPIDSTORP instruction to clear motion buffer.

94

MOVE_MARK: set mark

CORNER_MODE: set auto-corner speed limit

ENDMOVE_SPEED: set end speed limit NTYPE: next MTYPE: current motion command
FORCE_SPEED: set speed limit motion command MOVE_CURMARK: current motion mark

>{ Set Max Buffer: LIMIT_BUFFERED = NTYPE MTYPE }

L REMAIN_BUFFER: remain buffer >

Motion

\
Commands

Commands complete -- Exit
Commands with MOVE, -- CANCEL commands
Commands with SP speed, ect.

<~ SP instruction is also called SP motion instruction, when using SP motion instructions
(MOVESP, MOVECIRCSP, etc. Only add SP behind the motion instruction directly.), the
motion of SP instruction moves as the SP speed, not the SPEED speed. SP speed includes
FORCE_SPEED, ENDMOVE_SPEED and STARTMOVW_SPEED, they will follow SP
motion instructions to be written into motion buffer.

<~ The operation effect of SP instruction and non-SP instruction is as follows, the speed of

MOVE(L00) is SPEED=100, and the speed of MOVESP(100) is FFORCE_SPEED=150.

i DPOS[D) | Min:0.00 Max:200.00 : RAPIDSTOP (2
> MSPEED(D] | Min:0.00 Max:150.01] FAIT IDLE(O
' : : : BASE (0)
' ; : ‘ DPOS=0
ATYPE=1
UNITS=100
SPEED=100 RE
FORCE_SPEED=150 ’SPIE4#E
ACCEL=1000
DECEL=1000
SRANP=100

5 : : 5 EERGE=-OR
500 1000 1500 20

: ; ; : HOVE (100
: : : : EOVESP (100)

<~ Each axis of the ZMC4 series motion controller can support up to 4096 motion buffers (the

number of buffers varies for different models of controllers, see the controller hardware
manual for details or use ?*max to print to view the max_movebuff parameter). And

LIMIT_BUFFERED motion buffer limit can be set manually.

Output % |

>

P THmax

max_axis:64

max_motor:6d

||max_movebuff:4096 |

max_in:27, 4006

max out:15, 4095 e
Command: |?*max Send | Capture| Clear |

| Output | Find Results

< Each axis’ motion buffer is independent, they won’t disturb each other, and the size of axis’

motion buffer are the same. The number of remain buffer of one certain axis can be checked

through REMAIN_BUFFER(MTYPE) AXIS(N).

95

>>7REMAIN_BUFFER(0) AXIS(0)
4096
>>?REMAIN_BUFFER(1) AXIS(0)
4096
>>7REMAIN_BUFFER(4) AXIS(0)
376

<~ The buffer space occupied by different motion commands is different, and the more complex
motion occupies, the more motion buffer space is occupied. For example, ZMC432 controller,
the size of the motion buffer is 4096, and the number of MOVE linear interpolation
instructions and MOVECIRC circular interpolation instructions that can be buffered at one

time in the buffer is different.

3.6.3 Motion Buffer Blocked

< Since the motion buffer space of each axis is limited, when too many motion instructions are
scanned into the motion buffer, the multi-level motion buffer will be full. If the program
continues to scan more motion instructions, the program will also be blocked. Until the
motion commands are completed and exited in sequence, and the motion buffer has a vacancy,

the motion command will continue to enter the motion buffer.

Example:

Take V3.10 version simulator as an example, the default is 4096 motion buffers, the routine in the
following figure shows that the motion buffer of the controller can store up to 459 circular
interpolation instructions, and the value of i is 485 after downloading the program, which means

that the current FOR loop has not been executed and the program is blocked.

96

OO W]

RAPIDSTOP (2)
¥AIT IDLE(0)
¥AIT IDLE (1)

BASE (0, 1) RIS
ATYPE=1,1 N ki
URITS=100, 100 RS E
SPEED=100, 100 DERRE
ACCEL=1000, 1000 " InEE
DECEL=1000, 1000 | R
SRANP=100, 100 ’ SHAZE .
NERGE=OR T E SRR
DP0S=0, 0 i "
TRIGGER TR TRIBEREE

FOR i=0 TO 1000 ‘
NOVECIRC (200, 0,100,0,1)

REXT

ERD

Motion Buffer Block Effect — Circular Interpolation

s BaikiE

| $h0 [41 [~
LOADED 0 0
|MSPEED 96,8600 24,8500
MTYPE 4 4
NTYPE 4 4
REMAIN 171.8500 0
VECTOR_BUFFERED 144050.3500 144050.3500
VP_SPEED 100 9.5100
AXISSTATUS oh oh
MOVE_MARK 459 6
MOVE_CURMARK 0 0
AXIS_STOPREASON 800h oh
MOVES_BUFFERED 458 458 v

< >

1 APIDSTOP (2) ; ;
2 ¥WAIT IDLE(0) ek BaisR
3 WAIT IDLE(1) [0 | 1 [
4 LOADED 0 0
5 BASE (0, 1) LS MSPEED 70.7100 70.7100
6 ATYPE=1,1 | B REHE R Rasas 1 1
7 UNITS=100,100 RS E
8 SPEED=100, 100 EIR R sl ; 1
9 ACCEL=1000, 1000 > ik [REMAIN 1287400 0
10 DECEL=1000, 1000 Y R VECTOR _BUFFERED 579099.0200 579099.0200
11 SRANP=100, 100 ' SHRZ% ’ VP_SPEED 100 70.7100
ig ;gggngog T ES R AXISSTATUS oh oh
et — oo s se TMOVE_MARK 4096 6
14 TRIGGER "METRERE lwove cormare 1 1
15 ©FOR i=0 TO 5000 ey piett ey %
$16 - EOVE(100,100) P B =
i NEXT MOVES_BUFFERED 4094 4094 v
18 ERD < >

Motion Buffer Block Effect — Linear Interpolation

<~ As shown in the figure below, when some arc motion commands are taken out from the
motion buffer and are executed, the buffer has space, FOR loop continues to execute, and
saves the motion command into the motion buffer. After the instruction is executed and exits
the motion buffer, as long as there is enough space in the motion buffer, new motion

instructions will be stored in the motion buffer one by one.

i Axis Parameter

<>

it} SH%E |
| 40 | g1 ~
LOADED 0 0
MSPEED 56,5100 -82,5100
MTYPE 4 Bl
NTYPE 4 4
|REMAIN 147.5000 0
VECTOR_BUFFERED 144025.2000 144025.200/
VP_SPEED 100 15.7600
AXISSTATUS Oh oh
MOVE_MARK 499 0
MOVE_CURMARK 40 40
AXIS_STOPREASON Oh oh
MOVES_BUFFERED 458 458 v
< >

97

In order to prevent the program from being unable to continue to scan down due to the

blockage of the motion buffer, we can add a judgment processing program when scanning
motion instructions to confirm that there is space in the buffer before scanning motion

instructions.

3.6.4 Output in Motion Buffer

<~ The output command in the motion buffer can enter the motion buffer. In the motion buffer, it
can start the OP port, delay, output parameters, output PWM, start tasks, etc. For detailed
instructions, please refer to the Chapter Motion Instruction.

<~ The difference between normal output and output in motion buffer:
— Ordinary output instruction program scans this line of instructions and executes the output.
— The output instruction in the motion buffer is stored in the motion buffer after the program
is scanned, and the motion buffer is fetched and executed in the order of first-in, first-out, and
the output will not be executed until the output instruction is fetched.

Example:

RAPIDSTOP(2)

WAIT IDELE(0)

BASE(0) 'select axis 0
DPOS=0

UNITS=100 ‘pulse equivalent
SPEED=100 'speed

ACCEL=1000 ‘acceleration
DECEL=1000 'deceleration
SRAMP=100 'S curve

TRIGGER "Trigger oscilloscope sampling
OP(0,3, $0) ‘close output port 0-3
DELAY (1000) ‘delay

MOVE(100)

MOVE_OP (0,0N) ‘output in motion buffer
OP(0,0N) ‘output normally

END

Running effect of the example:
After delaying 1s, program scans OP instruction, then output 0 is executed to output immediately.
MOVE_ORP fills the 10 operation command into the motion buffer, so after MOVE(100) is

executed, the output port 1 will be output.

98

TR X

A »
_#E | [| | i"rl)bb'sm] 5 Minz0.00 Max100.00 .
kPzE: [0 g <<| 2 OP(D) i Min:0.00 Max1.00 ;
Fopugs | e sh | o | o MR Hecti
T RS HIEE s mEAR /
¥ o CrOS 1ol [100 i ;
S| [[2 [s g . ' .
Pl =lp Is imuu Gat0hooo "54‘0000
W i =l | : ; ’ :
2 =lo [
) =] |
v | S [[U R R
G| ~lp [

Chapter IV Communication Method
4.1 Serial Port Communication

4.1.1 The Serial Port Type

Controller includes 3 types of serial ports, RS232, RS485 and RS422. And all controllers have
RS232, most controllers have RS485, only a few controllers have RS422.

Controller’s serial port protocols are MODBUS RTU, they are as slave station by default. RS232
and RS485 can be set as master station through SETCOM instruction, and communication rate

and other parameters are configured through SETCOM instruction.

Controller serial port default parameter: Baud rate 38400, data-bit 8, stop-bit 1, no parity bit, not

support power failure storage.

» RS232

The RS232 interface of the controller can be used as a MODBUS master station or a slave station,
supporting 1 master station to send data and 1 slave station to receive data. When used as the
master station, it can be connected to a driver, inverter, temperature controller, etc. to control data
read and write. When used as a slave station, it can be connected to the HMI to monitor the

running status, and is often used to connect to a PC or HMI.

RS232 controller uses DB-9 interface, below is the pin signal description:

Pin Number Name Description

99

(‘.-o;,f

2 RXD Receive data pin
RS232 only needs 3 XD Send data pin
. S EGND Power ground
to wire 3 cables, 2 9 E5V External power 5V output

data signal TXD
and RXD, 1 ground cable GND. Data signal RXD and TXD are cross connected, then connecting
with GND together.

Wiring reference:

Master Slave

GnD [} [lenp
ol L Jmo
R0 1~ H_]RxD

» RS485

It mainly provides the connection of multiple communication devices of the master/slave station,
and theoretically supports 128 nodes, one master and multiple slaves. When it is used as a master
station, it can be connected to drives, converters, temperature controllers, etc. to control data read
and write; when used as a slave station, it can communicate with PLC, and can be connected to a

HMI to monitor the running status.

RS485 interface uses differential transfer method, and judges the high-level electricity or low-

level through voltage difference between A and B.

Pin Name Description
485B 485-
485A 485+

EGND Power ground

The RS485 interface of the controller adopts a simple wiring method. As shown in the figure
below, 485A, 485B, and GND ground wires of the controller are respectively connected to the A,
B, and ground wires of the first slave station, and then connected to the second slave station. A, B,

ground wire (A to A, B to B, signals share ground), and 485A and 485B of the controller and the

100

last slave station should be connected in parallel with 120Q resistance to prevent signal reflection,
the cable needs to use shielded twisted pair, to avoid signal interference, the distance of each node

branch line should be less than 3m.

Master Slave 1 Slave n

EGND B A EGND 8

aiajul s ol]

/ ' / /" / ‘ / / / /
1200 . [|/ 1200

GND

r/‘

> RS422
Some model controllers of ZMC3XX series have RS422.

RS422 data transmission characteristics are the same as 485. RS422 adopts a four-wire system,
marked as RX+/RX- (receive signal), RT+/RT- (send signal), one signal ground wire, a total of 5
wires. The four-wire interface uses separate sending and receiving channels, therefore it is not

necessary to control the data direction.

Pin Name Description
422TX- Send data -
422TX+ Send data +
422RX- Receive data -
422RX+ Receive data +

EGND Power ground

The RS422 interface of the controller adopts a simple wiring method, but compared with RS485
and RS232, the wiring cost is high, and the wiring is easy to make mistakes. The RS422 interface

of the controller only supports access to one device.

4.1.2 Serial Connection Method

The serial port supports the MODBUS communication protocol RTU mode, which is often used to
connect to a computer or touch screen. When communicating, pay attention to the matching of the
serial port parameters. No matter which serial port, except for the port number and wiring method,

the default parameters and operation instructions are the same.

Below is the way for PC to use serial connect and control:

— Connect the cable first, click "Controller" — "Connect" in the ZDevelop menu bar, open the

101

following window to connect to the controller, it will automatically list the serial port numbers
available on this computer, select the serial port number to be connected, and set the baud rate,
parity bit and stop bit, click connect, and the connection status and the corresponding information

will be print out automatically in the software output window.

Connect to Controller *
coM (B «||384900 ~|[NoParity ~|fo »| Connect ‘ AutoConnect
P [127.0.0.1 _||s00 _»| Connect ‘ IP Scan |
Pcr | | Connect ‘ Disconnect |
Native IP: |192.168.0.57 | oK | Cancel |

The default parameters of the serial port of the controller: Baud rate 38400, data bit 8, stop bit 1,
no parity bit. If the serial port connection fails, check whether the serial port number is correct,
and modify the configuration of the communication port COM of the computer to make it match

the default parameters of the controller.

The serial port parameters are set through SETCOM instruction. The serial port parameters don’t
support power failure storage. After the controller is powered on again, the SETCOM parameters
will recover their default values, so please write SETCOM configuration at the beginning of the

program.

The serial port is MODBUS slave by default. It can be set as master station by modifing the
MODE=14 of the SETCOM instruction, or set MODE=0 to open the serial port custom
communication, namely, no protocol mode. In the serial port custom communication mode, use
the GET # command to read data from the customized serial channel. PRITNT # command
outputs strings from the customized serial channel, PUTCHAR # command outputs characters

(ASCII code) from the customized serial channel.

SETCOM instruction mode parameters configuration protocol:

Mode Value Description

0 RAW data mode, no protocol, at this time, data can be read through GET#.
Send data through PRINT#. PUTCHAR# instructions.

4 (default) MODBUS master station (16-bit integer)

14 MODBUS slave station (16-bit integer)

15 Direct command execution mode, now input character string command from
serial port directly (newline ends)

If the connection fails, check the following methods:

— Check whether the serial port cable is a crossover cable.

102

— Whether the COM port number and parameters in "Connect to Controller” are correct.
— Open the computer "Device Manager" - "Port" - "Communication Port (COM)" - "Port Setting"
to check whether the COM port setting is correct. The default parameters of the controller serial

port: Baud rate 38400, data bit 8, stop bit 1, no parity bit.

B (COMY) M= x Freemn
B0 -
|k N ROEN gREY $ERE W
3
@/eE) |30
amE0) 8
=ere £
ke 1
REWE: X
ERA.. SRR
i FE. SR
) RSHACEER
¥ EFsTRRRNE
F PSSR
I BEEH
Sk
o AR
Az Lo

The com port humber can be changed in the "Port Settings” - "Advanced" option, which can be

selected through the drop-down list.

CONMT MRS ¥

[A FIFOC S 16550 & UART)L)

BE
RS EE LS EE ., -
BV
EEETRSLIEEEEE
BEAED)
SMFEAHER): {EE(1] ' =ilg (4
EEAET): {EE(1} . =ilg (16)

— When connecting to the controller through the serial port, the corresponding serial port of the
controller must be configured as MODBUS slave protocol mode (default mode), which can be

restored after power off and restart.
— Whether the COM port is occupied by other programs, such as serial debugging assistant, etc.

— Whether there is enough serial port hardware on the PC side.

— Replace the serial cable/computer test.

4.2 Net Port Communication

Controller network port is EtherNET interface, which supports MODBUS_TCP communication

103

protocol, and it is usually used to connect to computer or touch screen. Generally, the controller
has one EtherNET interface, but there are at least 2 network port channels at the bottom. When net
port is needed to connect to multiple equipment, the switch can be used. The number of net port

channel can be viewed through ?*PORT instruction.

ETHERNET

It is recommended to use twisted pair cable with shield layer for good quality of communication.
In ZDevelop menu bar, click “Controller” — “Connect”, open the window like the below figure,
and IP address is selected from the list. It will automatically find valid IP address within the

current LAN, then select correct IP and click “Connect”.

When using network port, controller IP address and computer IP address must be the same
network segment, which means first three segments are the same and the last segment is different.

Otherwise, it will fail to connect, for this situation, modifying controller IP or computer IP.

The controller factory IP is 192.168.0.11, and if IP address is modified, it will be stored forever.

Connect to Cantroller »

com |1 ~|fss400 ~|[moParity][0 +| Commect ‘

AutoConnect ‘

P [127001 ~|[s00 ~] Connect ‘ IP Scan ‘
PCI | j Connect ‘ Disconnect ‘
Native IP: |192.168.0.57 | OK | Cancel |

Controller network port also supports self-defined communication, using OPEN # instruction to
open the self-defined network port communication, using GET # instruction to read data from the
channel, using PRINT # instruction to output character string from the channel, using PUTCHAR

#instruction to output character string (AACII code) from self-defined net port channel.

Item Trouble Description

Solutions

1 When the controller connected
with power, POWER and RUN
indicator lights don’t light.

#+ Check the power supply.
+ If the power is normal, check whether the
controller is burned out or not.

2 | When the controller powered on
and connected cable, but the net
port indicator light doesn’t work.

+ Check whether the two sides of net segment
are plugged well or not.
+ Check whether the net cable is damaged or

104

not.

Check whether the cable insert slot is
damaged.

Note: the cable is connected to EtherNET, not
EtherCAT.

3 Fail to connect to the controller.

Check whether controller IP address is the
same as PC IP address, they must be at the
same net segment, see next for details of
modification.

If controller net port channels are occupied, it
is recommended to close some channels that
are not used now, trying to connect again.

If the computer is stuck seriously, please try
several times to connect with software.

Restart the controller, then do above
connection steps again.

4 | Succeed in connecting, but
sometimes it loses connection
when using.

It is recommended to use metal interface with
shielded cable. In the case of serious
interference, using a crystal head network
cable with no shielding layer will cause
unstable communication and occasional
disconnection.

< Modify controller IP address:

Use serial port to connect with controller firstly, then obtain controller IP address, modifying it

NOW.
— Method 1:

“Controller” — “Modify IP address” window can modify controller IP address directly.

Modify IP address

IP of current controller: | 127.0.0.1

New IP: |192.133.0.23|

x
Cancel

— Method 2: send online command to modify through IP_ADDRESS command.

After modifying successfully through instruction, it will disconnect automatically. Then online

command print controller connection error information, using net port connection and selecting

new IP address 192.168.0.23 to connect with controller again. Modified IP address is valid forever.

Output

Error:3402, Operate Failed
ontroller disconnect because error:3402.

Command: |IP_ADDRESS5=192.168.0.23)

Connected to Controller:ZMC432 Version:4. 64-20170623.

Send

Capture | ‘ Clear

Output

105

<~ Modify computer IP address

First, see the address 4 of computer native IP protocol is 192.168.0.xxx or not, the first three
segments are the same as controller and the last segment can’t be the same, the controller factory
default IP address is 192.168.0.11. If the third address is different, relative subnet mask should be
modified as 0.

Then, open “Connect to controller” window to connect again.

] A g W EtE Internet BRVKEZ: 4 (TCP/IPVA) E1% X
5 (k] =18
== | EERtEE: MR, WAL SR 10 38, TN, FESWA
= EEGEERATHSIENA D 88,
1Pv4 =i B Realtek P
IPv6 Ei&:
RARES: O EFEHE IP #5310
senny | WEEREATE o et p ko).
: = T
== ¥l 75 Qos 2 1P 5 (): 192.168. 0 .11
| ¥ g Internet
FEMEE | [0, Microso FRIERE (U 255.255.255. 0
1 Microso N
EOARIR(D): 192.168. 0 . 1|

Wl 4 Internet

o BEIREIR
& o _
v 4 sEEEE SFER B
< @ EETER DNS EEEFRHEhHE):

smn. EEONSEEEE: : w a

=
GEEe) | CiRHHRERED =B

b
4.3 CAN Bus Communication

4.3.1 CAN Wiring

Controller CAN bus interface is used to connect with ZCAN expansion module or controller. And
their connection method is the same, the difference is the board doesn’t integer a 120Q resistor, so
CANH and CAHL two sides both need one 120Q resistor. For wiring reference of CAN bus and

expansion module, please see “Chapter ZCAN Expansion Module”.

106

Controller Slave station
Master station

CANL CANL
CANH CANH
GND GND

When controller uses CAN bus connection, now communication between controllers can be

achieved through CAN instruction, and data is transferred through TABLE.

Controller is the master station of CAN communication by default. When controllers are doing
CAN communication, one controller should be configured as slave station, using
CANIO_ADDRESS command to configure the master station and slave station,
CANIO_ADDRESS=32 means master station, when CANIO_ADDRESS=other values, which

means slave station.

Command Grammar: CAN (channel, function, tablenum)

—> channel: CAN channel, 0 means the first channel, -1 means the default channel.

— function: function number (see the below form, mode 6/7 suits to standard frame, mode 16/17
suits to expand frame)

— tablenum: TABLE position of saving data

Value Description

6 Receive, when there is no data, identifier <0

7 Send

16 (needs to upgrade | Support receive with expansion, when there is no data,
firmware) identifier <0

17 (needs to upgrade | Send expanded data, use 7 to send normal data
firmware)

Example:

'send station: the first controller

TABLE(0,1,8,1,2,3,4,5,6,7,8) 'send cobid = 1, 8 bytes (1-8)

CAN(0,7,0) ‘'send data

‘receive station: the second controller

CANIO_ADDRESS =1 ‘set as CAN slave station, and this only is set once
CAN(0,6,0) ‘receive data

?TABLE(0)

107

4.4 U Disk Interface

< Most ZMOTION motion controllers have one standard U disk interface.
<~ When there is no controller, new build one udisk folder in ZDevelop root directory for
simulating U disk, then connect to simulator, debug U disk instruction.
< U disk interface has three aspects usage:
1. Program Update
Download packaged zar program package through U disk interface, which is convenient for
customer to update system program.
Before program updating, zar program package should be downloaded into program. To load

U disk file through FILE instruction successfully, then zar program will operate automatically.

Example:
DIM result "define variable
IF U_STATE=TRUE THEN 'U disk plug and judge
result = FILE “find_first”,“zar”,10 'scan the first zar file, and the fie name is saved VR
IF result=TRUE THEN 'scan file and judge successfully
File”load_zar”, VRSTRING(10,20) 'download the same filename file as zar file stored in
VR
ENDIF
ENDIF
END

2. Upload three file

Use FILE command to upload the three file that is saved in U disk and execute it.

Example:
IF U _STATE=TRUE THEN ‘judge U disk is plugged or not
FILE “FIND_FIRST”,“Z3P”,800 'find Z3P file
?”file name: "VRSTRING(800,20), “wait to downloading”
FILE “COPY_TO”, VRSTRING(800,20), VRSTRING(800,20) 'download Z3P file
?“complete to download Z3P file”
ENDIF

3. U disk and register data interaction
The U disk supports reading and writing variables and arrays.

FLASH data copy: The data stored in FLASH in multiple controllers can be transferred to

108

each other through U disk.

Data in VR register, TABLE register and U disk can be transferred to each other.

The read-write file type is SD(filenum).BIN or SD(filenum).CSV, and the file types that can
be operated by different commands are different.

Different types of controllers have the same usage of the U-disk interface. Just insert the U-
disk into the UDISK port on the controller. After the controller is powered on, when a U-disk is
inserted, the U-disk indicator will light up.

Before operating U disk, first to judge U disk status through U_STATE instruction for

ensuring successful communication, then use U disk relative instructions to operate.

Example:

DIM a,arrayl1(2) ‘variable, array definition
a=123

array1(0)=10

array1(1)=20

IF U _STATE = TRUE THEN 'judge U disk is plugged or not
U _WRITE 0,a,arrayl ‘write variable and array into U disk SDO file
a=456
array1(0)=11
U_READ 0,a,arrayl 'read U disk file SDO data
PRINT a,array1(0) 'result: 123, 10
IFa<>123 THEN ‘judge U disk is written and read successfully
PRINT "U disk read wrongly"
ELSE
PRINT "U disk succeeds in reading"
ENDIF
ELSE
PRINT "U disk isn’t inserted"
ENDIF
END

For more operations of U disk, please refer to “chapter U disk relative instructions”

109

4.5 EtherCAT Bus communication

4.5.1 EtherCAT Bus Initialization

The EtherCAT bus interface can be used to connect the EtherCAT servo drive and the
EtherCAT expansion module. No matter what module is connected, the EtherCAT bus needs to
write an EtherCAT bus initialization program to enable the motor and the EtherCAT expansion
module. The application after enabling is the same as that of the pulse motor, and the motion
instructions are the same.

Normal process of initialization program:

1. Use SLOT_SCAN to scan the device to determine whether the RETURN is correct, and no
error will be reported when the device is not connected.

2. The device type and information are judged by NODE_INFO/ NODE_AXIS_COUNT, etc.

3. Set AIXS_ADDRESS, ATYPE, DRIVE_PROFILE, DRIVE_IO, etc. in turn.

4, Start the device through SLOT_START.

5. Set AXIS_ENABLE=1 for each axis to enable the axis, and set WDOG=1 to enable all
axes. (some drives need use DRIVE_CONTROLWORD instruction to clear drive alarms)

6. After building connection, master station and slave station can exchange data periodically.

The general process of EtherCAT initialization program: refer to routine.

110

clear current setting

»

RETURN 0 ¥
check wiring) I
L SLOT SCAN bus scan 2

RETURN 1

AXIS ADDRESS map axis number

v
Set ATYPE type

h 4

|
Set DRIVE_PROFILE axis PD0 communication configuration
|

¥
Set DRIVE 10 axis device starting number

¥ RETURN 0

| heek configurati
SLOT START start bus }7 check configuration

RETURN 1

DRIVE_CONTROLWORD clear drive alarm

| some drives need
| this operation

Y
Set DATUM(0) clear controller errors

Y

Axis enable

A
EtherCAT initialization is done

Basic concepts involved:

1. NODE node number: arranged according to the wiring sequence of EtherCAT devices, the
number starts from 0 and decreases by 1 for the number of devices.

2. drive number: according to the wiring sequence of EtherCAT devices, the number starts
from O to the number of EtherCAT drives minus 1. It only works when AXIS_ADDRESS is
configured, that is, only the drive device is counted, other extended 10 and other devices are not
counted in the drive number.

3. axis number: the number set by the controller to the drive motor device connected to the
controller. The number starts from O to the total number of connected devices minus 1. The axis
number can be mapped to any connected drive device through the AXIS_ADDRESS command

(pulse type controllers do not support local axis number mapping).

Precautions when setting:

1. The device number is sequentially incremented according to the connection sequence
followed by the number 0, which needs to support the EtherCAT bus.

2. The axis number of the pulse axis on the bus controller is fixed. The bus can also call the

axis number of the pulse axis. When ATYPE=65, the bus is called. Note that DPOS will change

111

when switching, so it is best not to make the axis number conflict.

3. After clearing the drive alarm through DRIVE_CONTROLWORD (axis number), a delay
of 200ms is required, and then DATUM(O0) is used to clear the controller alarm. Without the delay,
it may be necessary to download the program twice to clear the alarm.

4. If DRIVE_CONTROLWORD (axis humber) is used to operate a drive, then all drives after
this drive will inherit this setting. So it's better to set it once for each drive.

5. Connecting or disconnecting a device during operation requires rescanning to update the
status. For example, NODE_COUNT(0) returns the number of currently connected devices, and
the number returned will change after rescanning.

6. AXIS_ADDRESS(i)=1, the first drive is selected, not the first device. For example, after
connecting two expansion boards and then connecting two drives, the device numbers are
expansion board A: 0, expansion board B: 1, drive A: 2, and drive B: 3. At this time,
AXIS_ADDRESS(i)=1 selects drive A, and AXIS_ADDRESS(i)=2 selects drive B.

Please do continuous selection in order, don’t choose 2 first and then choose 1, don’t choose

1 skip 2 and choose 3.

The controller must support EtherCAT to use related commands. It uses a set of program
instructions with the RTEX bus, but the functions are different. For details, please refer to the
description of the bus instructions chapter.

Related EtherCAT instructions:

Instruction Meaning
SLOT_SCAN Scan the devices
SLOT START Start the EtherCAT connection
SLOT STOP Stop the EtherCAT connection
ATYPE Axis Type, when value is 65, it stands for EtherCAT period

position control

AXIS ADDRESS Axis address configuration
WDOG Total enable control of axes
SERVO _PERIOD Refresh rate
AXIS ENABLE Axis enable
SDO_WRITE SDO writing
SDO_READ SDO reading
SDO_WRITE_AXIS SDO writing of drives
SDO_READ_AXIS SDO reading of drives
?7*ETHERCAT Bus information output
NODE_COUNT Devices quantity
NODE_STATUS Devices status
NODE_AXIS_COUNT Drive quantity the devices contain
NODE_10 10 serial number setting of devices

112

NODE_AIO AIlO serial number setting of devices
NODE_INFO Get devices information

NODE PROFILE Set profile of device, choose PDO message.
DRIVE FE Error of drive

DRIVE_FE _LIMIT Set error of drive

DRIVE_STATUS Status of drive

DRIVE TORQUE feedback of drive torque

DRIVE _MODE motion mode of the drive

DRIVE PROFILE Set profile of drive, choose PDO message.
DRIVE _CONTROLWORD | Control word of drive
DRIVE_CW_MODE operation mode of drive control word.
DRIVE 10 serial number setting of remote 10
AXISSTATUS Axis status

The EtherCAT configuration matches the actual connection mechanism:

After the master station initialized the slave station, no matter whether the number of slave
stations configured in the software is consistent with the actual connection of the EtherCAT
communication port, the successfully configured slave station can be controlled by the master
station. If two EtherCAT slave stations are configured in the software, and one is actually
connected, the connected one can be controlled by motion commands. After the master station and
the slave station are connected, even if another slave station configured in the software is
connected to the network, the master station also does not establish a connection with the slave

station that is later connected to the network.

EtherCAT slave disconnection and recovery mechanism:

After the EtherCAT slave station is connected to the master station, if the communication of
some EtherCAT slave stations is dropped due to external reasons such as the unplugging of the
communication cable, the master station will not re-establish the connection with the dropped
slave station, and the dropped slave station can’t be controlled through motion instructions. Still
connected EtherCAT slaves are not affected. If it is unable to communicate with the bus due to
internal reasons such as drive error, check whether the error can be cleared. After clearing, re-
enable it and use it. If it cannot be cleared, power off and re-execute the bus initialization process.

If the disconnected slave needs to reconnect to the master, unplug the EtherCAT cable
between the controller and the first servo drive and plug it in again, or power on the controller
again. If the above operation is performed, the normal running of slave station will be affected.
And normal running slave station will re-establish the connection with the master station. If any

axis is running, it will cause the axis to stop immediately.

113

4.5.2 EtherCAT Bus and Drive Communication

The rule for wiring of servo drive is the same as the controller or the EtherCAT expansion
module, using a network cable to connect the EtherCAT bus port of the controller to the EtherCAT
port of other devices.

Note that there are two EtherCAT ports on the servo drive. Some drives can be connected to
these two ports at will, and some are divided into EtherCAT IN and EtherCAT OUT. The IN port
is connected to the upper-level device and the OUT port is connected to the next-level device. The
two cannot be mixed. Pay attention to the connection order.

In multi-axis control, the EtherCAT OUT port of the servo drive is connected to the
EtherCAT IN port of the next-level drive device, and so on.

The wiring configuration of the EtherCAT bus is as follows:

axis number 8 axis number 5 axis number 1

P YW P
|

34)

B

EI024088

ZMC432

axis number 9 axis number 10 axis number 11

EtherCAT bus slot number is 0 by default.

The device number (node), also known as the node, refers to the number of all devices
connected to a slot, starting from 0, and automatically numbered according to the connection order
of the devices on the bus.

The controller will identify the drive on the slot, starting from 0, and it makes number
automatically according to connection sequence of drive on the bus. The drive number is different
from device number, it only makes number for device on the slots, ignoring others.

The rule for making numbers of EtherCAT bus and RTEX bus are the same.

The motor connected to EtherCAT bus needs to write one EtherCAT bus initialization
program to enable. After enabled, if it is ATYPE=65 position mode, the usage is the same as pulse
motor, including motion instructions. If it is ATYPE=66 speed mode or ATYPE=67 torque mode,

now motion instructions can’t be used, but DAC command can be used to control axis continuous

114

motion, when DAC=0, it will stop.

4.5.3 EtherCAT Bus Connect to Expansion Module

EtherCAT expansion module can expand 10 and pulse axis. And the wiring rule is the same
as EtherCAT Drive, wiring refers to the former content. Please note that EtherCAT IN and
EtherCAT OUT on expansion module can’t be mixed when wiring.

After the wiring is completed as required, first initialize the EtherCAT expansion module.
During the initialization process, it is necessary to map the extended 10 and extended pulse axis
resources before they can be used. The extended resource mapping is performed after the bus scan
and before the bus is turned on according to the following method.

The 10 mapping on the EtherCAT bus is set through NODE_I10 instruction (digital quantity)
and NODE_AIO instruction (analog quantity), and the axis mapping uses the AXIS_ADDRESS

instruction to map the axis number.

Expanded resource mapping method:
1. 10 mapping

The slot number and node device number are automatically numbered from 0 according to
the sequence of connection with the controller.

The NODE_IO instruction sets the starting number of the digital 10 of the device, and the
starting number of the input and output of a single device is the same. It is set after bus scan, and
the NODE_AIO instruction is basically the same as the NODE_IO instruction.

Grammar:

NODE_IO(slot, node)=iobase
slot: the slot number, 0 means default number.
node: the device number, starts from O

i0BASE: the starting number of mapping 10, and the result is only the multiple of 8.

NODE_AIO(slot, nodel[,idir])=aiobase

slot: the slot number, 0 means default number.

node: the device number, starts from 0

idir: AD/DA selection. O means default, AIN and AOUT are set simultaneously, only AIN is
read. 3-AlIN, 4-AOUT.

10 mapping example:
SLOT_SCAN(0) ‘scan bus
IF NODEZ-COUNT(0)>0 THEN 'judge whether the slot number 0 has device

115

NODE_10(0,0)=32 ‘set 10 starting number of interface device 0 slot 0 is 32
NODE_AIO(0,1,3)=8 ‘set AlO starting number of interface device 1 slot 0 is 8
ENDIF

2. Axis mapping

The bus axis needs to perform axis mapping operation through AXIS_ADDRESS command.
The operation method is as follows:

AXIS_ADDRESS(axis number)=(slot number<<16)+drive number+1

The axis map is written in the bus initialization routine, after scanning the bus and before

turning on the bus.

Example:

AXIS_ADDRESS (0)=(0<<16)+0+1 'The first ECAT drive, drive number 0, bound as axis 0
AXIS_ADDRESS (2)=(0<<16)+1+1 'The second ECAT drive, drive number 1, bound as axis 2
AXIS_ADDRESS (1)=(0<<16)+2+1 'The third ECAT drive, drive number 2, bound as axis 1
ATYPE(0)=65 ‘Set to ECAT axis type, 65-position 66-speed 67-torque ATYPE(1)=65
ATYPE(2)=65

4.6 RTEX Bus Communication

RTEX is a high-end bus technology independently developed by Panasonic to meet the high-
speed real-time requirements of motion control. By simplifying data communication packets,
high-speed communication can be achieved with a speed of 100Mbps. Only supports connecting
to Panasonic drives. Before using it, a bus initialization program should be written to enable it.

The controller RTEX bus communication has two interfaces, namely RX and TX. When
wiring, controller RX——driver TX, controller TX——driver RX.

RTEX wiring method refers to below figure:

116

node 2 node 1 node 0

- RTEX

=slot 1

EtherCAT
slot 0

¢« & @

axisnumber 2 axjs number I drive axis number 0 : 3 TR
axis number 8 axis number 5 drive axis number 1

¢ e ©

14 3

node 0

node 3 node 4

node 2

drive axis number 0

| |

axis number 9 axis number 10 axis number 11

The control word of the RTEX driver will be set automatically, please set DRIVE_CW_MODE

first if needs to set it manually.

The initialization process is completed by the controller, which means users don’t need to operate,

and the program starts to execute after power-on.

The general process of the initialization program: see the routine for the initialization program

clear current seefing
Return 0 J

Return 1

Y
|AX[57ADDRESS map axis No.|

set DRIVE_PROFILE select drive has IO map or not

Lo

ithout [0 [y T ; &
:0 n::‘d to ’::ﬁg;lui jset DIRVE IO axis device's starting IO number
this parameter L !

Return 0
check the
SLOT_START start bus configuration

Return 1

A J
‘ set DATUM(0) clear controller errors ‘

RTEX initializtion is done

117

1. Use SLOT_SCAN to scan the device to determine whether the RETURN is correct, and an
error will be reported when the device is not connected.

2. The device type and information are judged by NODE_INFO/ NODE_AXIS_COUNT, etc.

3. Set AIXS_ADDRESS, ATYPE, DRIVE_PROFILE, DRIVE_IO, etc. in turn.

4. SLOT_START start the device.

5. After the connection is established, the master and slave can exchange cyclic data.

Basic concepts involved:

1. NODE node number: arranged according to the wiring sequence of RTEX devices, the
number starts from 0 and decreases by 1 for the number of devices.

2. drive number: according to the wiring sequence of RTEX devices, the number starts from
0 to the number of RTEX drives minus 1. It only works when AXIS_ADDRESS is configured,
that is, only the drive device is counted, other extended 10 and other devices are not counted in the
drive number.

3. axis number: the number set by the controller to the drive motor device connected to the
controller. The number starts from O to the total number of connected devices minus 1. The axis
number can be mapped to any connected drive device through the AXIS_ADDRESS command

(pulse type controllers do not support local axis number mapping).

The controller must support RTEX to use related commands. It uses a set of program
instructions with the EtherCAT bus, but the functions are different. For details, please refer to the
description of the bus instructions chapter.

Related RTEX instructions:

Instruction Meaning
SLOT_SCAN Scan the devices
SLOT START Start the EtherCAT connection;
SLOT STOP Stop the EtherCAT connection;
ATYPE Axis Type, when value is 50, it stands for position control in

period(RTEX)

AXIS_ADDRESS Axis address configuration
WDOG Total enable control of axes
SERVO_PERIOD Refresh rate
AXIS ENABLE Axis enable
?*Rtex RTEX information output
NODE_COUNT Devices quantity
NODE_STATUS Devices status
NODE_AXIS_COUNT Drive quantity the devices contain
NODE 10 10 serial number setting of devices
NODE_AIO AIO serial number setting of devices

118

NODE_INFO Get devices information
DRIVE_STATUS Status of drive

DRIVE TORQUE feedback of drive torque
DRIVE_PROFILE Set profile of drive, choose PDO message.
DRIVE _CONTROLWORD | Drive control word

DRIVE_CW_MODE Control mode of drive control word
DRIVE_10 serial number setting of remote 10
DRIVE CLEAR Alarm of drive error clear, if no error, the controller will warn.
DRIVE _READ parameters of drive writing

DRIVE WRITE parameters of drive reading
AXISSTATUS Axis status

RTEX slave drop and recovery mechanism is the same as EtherCAT, please refer to the last
description about EtherCAT.

119

Chapter V Motion Control Function

5.1 Common Motion Mode

There are three common motion modes:

>

1. Jog motion: only the end position is required, and it has nothing to do with the
intermediate process of the movement, that is, the movement trajectory. The positioning
speed is required to be fast, and different acceleration and deceleration control strategies are
used in the acceleration section and deceleration section of the movement, which are divided
into three categories: JOG jogging, MOVE inching motion and VMOVE continuous motion.
2. Continuous trajectory motion: this control is also called interpolation. In the case of high-
speed mation, the system must not only ensure the contour accuracy of the system processing,
but also ensure that the movement speed of the axis is not affected. When processing small
line segments, there is a preprocessing function of trajectory look-ahead. For the description
of interpolation motion, please refer to the next section.

3. Synchronous motion: it refers to the coordinated motion control of multiple axes, which
can be synchronized during the entire motion of multiple axes, or local speed synchronization
during the motion process. It is mainly used in system control with electronic gear and
electronic cam functions. In the industry, there are printing and dyeing, printing, papermaking,

steel rolling, synchronous shearing and other industries.

5.1.1 Single-axis Jog Motion

Related instructions:

Instruction Description Usage

VMOVE | Continuous motion, positive or negative direction | VMOVE(motion direction)
CANCEL Single-axis stops, 4 kins of stop mode CANCEL (mode)
JOGSPEED The motion speed when JOG JOGSPEED=speed value
FWD_JOG Positive JOG input relative input number FWD_JOG=input number
REV_JOG Negative JOG input relative input number REV_JOG=input number
FHSPEED Keep the speed when FHOLD _IN is buttoned FHSPEED=speed value
FHOLD_IN Keep inputting relative number FHOLD_IN=input number
FAST _JOG Jog fast, input number FAST_JOG=input number

VMOVE is a single-axis continuous motion command. After VMOVE is executed, it will

keep running unless CANCEL or RAPIDSTORP is used to clear the motion buffer. Otherwise, it

will operate all the time.

120

When the preceding VMOVE motion does not stop, the following VMOVE instruction will
automatically replace the preceding VMOVE instruction and modify the direction, so there is no
need to CANCEL the preceding VMOVE instruction.

In JOG motion mode, each axis can independently set target speed, acceleration, deceleration,

speed smoothing and other motion parameters, and can move or stop independently.

The JOG movement is controlled by the switch signal, and it can move in the positive and
negative directions. The FWD_JOG command maps the positive jog switch, and the REV_JOG
command maps the negative jog switch. When the controller receives the signal input, the relative
axis will move slowly according to the JOGSPEED speed. The axis decelerates and stops when
the signal input is interrupted. When continuous JOG movement is required, keep the input state
of the switch.

The controller also supports fast jog. The FAST_JOG instruction sets the fast jog switch.
When the fast jog switch is pressed, the axis moves with SPEED. When the switch is not pressed,
the axis moves with JOGSPEED.

The FHOLD_IN mapping keeps the input setting. When there is an input signal, the speed of
the motion axis continues to execute the current motion according to the speed parameter of
FHSPEED. When FHOLD _IN cancels the input, the axis continues to move, but the motion speed
changes back to the SPEED speed.

When REV_JOG and FWD_JOG both have signal input at the same time, the axis runs in the
forward direction according to FWD_JOG.

The MOVE instruction controls the inching motion of the axis, sets the distance of inching
motion, and sends a limited number of pulses to the target axis. It can be used in single-axis or
multi-axis motion occasions. It can send pulses to multiple axes at one time. The controller for jog

motion only can control each axis to move independently, cannot interpolate jointly.

Single axis jog example 1: VMOVE continuous motion

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0) ‘select axis number

ATYPE=1 ‘axis type configuration
UNITS=100 'pulse equivalent configuration
SPEED=100 'speed configuration
ACCEL=1000 ‘acceleration configuration
DECEL=1000 ‘deceleration configuration

121

SRAMP=100 'S curve

DPOS=0 ‘the current position clear out
TRIGGER
WHILE 1 ‘cycle motion
IF MODBUS_BIT(0)=ONTHEN 'MODBUS_BIT(0) valid motion to left
VMOVE(-1)
ELSEIF MODBUS_BIT(1) = ON THEN 'MODBUS_BIT(1) valid motion to right
VMOVE(1)
ELSEIF MODBUS_BIT(0) = OFF OR MODBUS_BIT(1) = OFF THEN
CANCEL 'MODBUS_BIT is invalid, stop motion ENDIF
WEND

Single axis jog example 2: JOG jog motion
Note that after mapping the JOG switch, the level of INVERT_IN must be reversed, because
the OFF signal is valid for the ZMC series controller. If it is not reversed, the signal will be OFF

when it is connected. The controller judges that there is an input and immediately controls the axis

movement.
BASE(0) ‘select axis 0
ATYPE=1 ‘pulse axis type
DPOS=0 ‘the coordinate clears out
UNITS=100 'pulse equivalent
SPEED=100 "main axis speed
ACCEL=1000 ‘acceleration
DECEL=1000 ‘deceleration
SRAMP=100 'S curve
TRIGGER ‘trigger oscilloscope automatically
JOGSPEED=50 'JOG speed is 50
FWD_JOG=0 ‘INO is the positive JOG switch
REV_JOG=1 ‘IN1 is the negative JOG switch
INVERT_IN(0,0ON) ‘input 0 signal invert
INVERT_IN(1,0N) ‘input 1 signal invert

Operation effect:
— When input 0 has signal input, axis 0 moves in positive direction, the speed is 50.
— When input 1 has signal input, axis 0 moves in negative direction, the speed is 50.

— When input 0 and input 1 both have signal input, axis 0 moves in positive direction.

122

Scope « | ’

1 MSPEED(0) Min:-50.00 Max:50.00
[s | [stortscope] st 2IN) | Min:0.00 Max:1.00 |
XScale: 1000 [~ XYMode :j aIN) Min:0.00 Max:1.00 | :
Trigger I~ Follow Import | Export | B s e s O D R e
show Index Source Offset YScale é
M] [MspeED ~1Jo [100 r ; \ 7
L G | [[s : / \ i) |
S | | 5 N LT - uuuﬁ‘\quuufuou
N e | == | o _ A :
A e | = | O L —f
o S | e | | :
P B || el
A e | == | o
5.1.2 Electronic CAM
Related instructions:
Instruction Description Usage
CAM Cam watch moves CAM(start and end position of CAM watch,
proportion, motion distance)
CAMBOX Follow cam watch Refer to instruction chapter
TABLE Save cam watch data TABLE((data starting address, data area)
MOVELINK Automatic cam Define reference axis, follow axis and
MOVESLINK Automatic cam 2 synchronous motion mode

The mechanical cam is mainly composed of an active part and a driven part, which converts
the rotary motion into a linear motion. The basic structure is as shown in the left figure below. The
active part is the contour curve processed on the metal plate, which generally rotates at a uniform
speed; the driven part is generally in contact with the contour of the cam. When the active part is

in motion, the driven part reciprocates, and the motion trajectory is determined by the cam contour.

A

Cam Shape Y Position CAM curve

»

0 180 360 Cam Angle

Because the mechanical cam mechanism is a high-level mechanism, there is point or line
contact between the cam and the driven part, which is inconvenient for lubrication, easy to wear,
and noisy, and the processing and manufacturing requirements of the disc are relatively high, the

maintenance is complicated. Therefore, in many applications, mechanical cams are replaced by

123

electronic cams.

The electronic cam means users construct the cam curve, as shown in the right figure above,
then the mechanical cam can obtain a rotation angle and the movement trajectory of the
processing position according to the contour of the cam. This trajectory is an arc, and the arc is
decomposed into countless linear or circular trajectory. The arc trajectory can be combined to
obtain a series of motion trajectories that are close to the arc. Then electronic cam directly loads
the motion parameters of this trajectory into the motion command, and can control the axis to
walk out of the target trajectory to reach the relationship between the driving part and the driven
part. The cam motion can be completed without the assistance of additional mechanical structure.
The software is used to control the signal, and the motion curve can be changed by changing the
relevant motion parameters of the program. This application is extremely flexible, reliable and

easy to operate.

ZMation controller provides multiple electronic cam motion form for users:

CAM: cam watch motion

CAMBOX: follow cam watch motion

MOVELINK, MOVESLINK: Specific track cam motion, also known as flying shearing
motion, which is generally used in flying shearing applications.

FLEXLINK: Specific track cam motion, also known as chasing shear motion, is generally
used in chasing shear applications.

Motion pause is not supported during the cam motion, and the cam instruction will stop after
the execution of the cam instruction. Use the CANCEL or RAPIDSTOP instruction to forcibly

cancel it.

After the multi-segment cam command is stored in the motion buffer, the next cam will start

immediately after the previous cam is completed to ensure synchronization.

A the speed of cam axis

<« ——thefirstcam —— >« thesecond cam |
ending point of the
second segment
§ »
starting point of the first segment \ / keep synchronization ! distance of reference axis

| within multi-cam, there
/[is no wait.

If the cam command is not stored in the motion buffer, there will be a waiting time between multi-

124

segment cams, and the motion will not be continuous. See: CAM, CAMBOX.

5.1.3 Electronic Gear

Related instructions:

Instruction Description Usage

CONNECT | connection axis motion | CONNECT (rate, axis number of connection axis)

CONNPATH | connection axis motion | CONNPATH (rate, axis number of connection axis)

CANCEL Cancel connection It can be used directly without parameters

Gear is different from the cam, the connection of the electronic gear is linear. And the
electronic gear function is used for the connection of two axes. The master axis and the slave axis
are connected according to a constant gear ratio. No physical gear is required. Set electronic gear
ratio directly through the instruction. Since it is implemented in software, the electronic gear ratio
can be changed at any time, and one master can drive multiple slave axes.

The electronic gear function is realized by the commands CONNECT and CONNPATH. One
axis is connected to the other axis according to a certain ratio for follow-up motion. One motion
command can drive the operation of two motors, then test these two motor-axis’ movement
numbers. Feedback the displacement deviation to the controller and obtain synchronous
compensation, so that the displacement deviation between the two axes can be controlled within
the allowable range of accuracy.

The electronic gear is connected to the number of pulses. For example, the master-slave axis
connection ratio is 1:5, and one pulse is sent to the master axis. At this time, 5 pulses are sent to

the slave axis.

The role of electronic gear:

1. Pulse compensation to reduce the burden on the upper computer (because the components
currently used to send pulses have limitations on the frequency of sending pulses).

2. Matching the number of pulses sent by the motor and the minimum movement of the
machine, the movement of the workpiece (or motor) corresponding to one pulse of command
input can be set to any value. It can realize the stepless speed change of the motor. When the
motor starts and stops, it can prevent the motor from losing step and overshooting, so that the
potential of the motor can be fully utilized.

3. It transmits synchronous motion information, realizes the linkage of coordinates, the
transformation between motion forms (rotation-rotation, rotation-straight line, straight line-straight

line), simplified control, etc.

The same point between CONNPATH and CONNECT:

125

the syntax of the two is the same, the number of pulses is connected, and the effect of
connecting CONNPATH to the motion of a single axis is the same as that of CONNECT.

Difference between CONNPATH and CONNECT:

CONNECT connects the target position of a single axis. CONNPATH connects the vector
length of the interpolated axis. At this time, it needs to be connected to the main axis of the
interpolated motion, and it cannot follow the interpolated motion when connected to the
interpolated slave axis. CONNPATH tracks XY interpolated vector length changes, not individual

XorY axes.

5.1.4 Handwheel

Related instructions:

Instruction Description Usage
CONNECT Connect to handwheel CONNECT (rate, axis number of connection axis)
CANCEL Cancel connection It can be used directly without parameters

Handwheel is also called pulse generator, hand pulse, hand pulse generator, etc. It belongs to
a kind of encoder and is used for zero correction and signal division of CNC machine tools,
printing machinery, etc. When the handwheel rotates, the encoder generates a signal corresponding
to the movement of the handwheel, selects the coordinates and locates the coordinates.

The handwheel function refers to using a specific encoder as the handwheel pulse change
input source to detect the encoder pulse input change, use the CONNECT command to establish
the connection between the handwheel axis and the follow axis, and drive the handwheel to follow
the axis. This function is mainly used for auxiliary motion in interpolation motion. The encoder
can be the encoder on the terminal board or the encoder module on the EtherCAT bus.

The handwheel following movement belongs to the position-following type, that is, the
handwheel pulse changes n, and the following axis follows n*ratio pulses, and the speed and
acceleration are planned according to the parameters of the main axis.

Conditions for entering the handwheel motion:

the axis following the handwheel is in a static state means there is no movement. The encoder
is in an unbound axis means it can be used for axis position feedback. The following axis is in the
enabled state. The following axis is not set to handwheel mode.

To exit handwheel mode by using CANCEL command. The handwheel connection ratio can

be switched at any time.

Use process:

Set the type of handwheel axis and follow axis, set various basic motion parameters, use the

126

CONNECT command to connect the handwheel and follow axis according to a certain ratio, then
the handwheel can drive the follow axis to move, and CANCEL cancels the handwheel connection

after the movement is completed.

Routine: Follow handwheel motion

RAPIDSTOP(2)

WAIT IDLE(0)

ERRSWITCH =3

CONST axishand = 0

BASE (axishand) ‘select axis 0 connect to handwheel

ATYPE=6 ‘pulse + directional handwheel, for quadrature input handwheel, using 3
BASE(1) ‘axis 1 is controlled by handwheel

ATYPE=1 ‘configure as pulse axis

DPOS =0,0

UNITS = 100,100 'pulse equivalent, 100 pulses per mm2100

SPEED = 200,200
ACCEL =2000,2000
DECEL = 2000,2000
SRAMP =20
CLUTCH_RATE =0 ‘use speed and acceleration to limit
DIM poslast
poslast = DPOS
WHILE 1
IF IN(0) = ON AND IN(1) = OFF THEN
CONNECT(1, axishand) 'link to axis 0, the ratio is 1
ELSEIF IN(1) = ON AND IN(0) = OFF THEN
CONNECT(1, axishand) ‘link to axis 0, the ratio is 10
ELSEIF IN(0)= ON AND IN(1) = ON THEN
CONNECT(50, axishand) ‘link to axis 0, the ratio is 50, for step motor, if the
ration is too high, it will lose steps or it ends for a
long time.
ELSEIF MTYPE =21 THEN
CANCEL ‘cancel CONNECT
ENDIF
IF poslast <> DPOS THEN
poslast = DPOS

127

TRACE DPOS
ENDIF
WEND
END

5.2 Interpolation Motion

5.2.1 Concept of Interpolation

The interpolation is the process to determine the tool movement path by using machine tool
CNC system according to certain methods. Interpolation is a real-time data densification process.
No matter what kind of interpolation algorithm, the operation principle is basically the same. Its
function is to perform digital calculation according to the given information, and continuously
calculate the feeding instruction of each coordinate axis participating in the movement, and then
drive their respective execution components to produce coordinated motions, so that the controlled
mechanical components move according to the ideal route and speed.

The most common interpolations are linear interpolation and circular interpolation. The
interpolation at least needs 2 axes, and when interpolating, first to build the coordinates, then map
axis into corresponding coordinate, the motion controller controls each axis’ motion to achieve
required motion path according to the coordinate mapping relation.

The interpolation motion instruction is stored into motion buffer, then be taken out in turn

from the buffer for executing, until all interpolations are executed.

\

» Linear Interpolation:

In the linear interpolation, the interpolation between two points closes to each other along the
group point of line. Firstly, assume the real contour starting point moves a short distance in X
direction (give one pulse equivalent, the axis will move a fixed distance). Then, find the terminal
point is below the real contour, the next segment will move s short distance in Y direction, if the
terminal is also below now, continuing to move in Y, it will move s short distance in X until it is
above the real contour. The motion cycles like this, until it arrives the contour terminal point. In
this way, the actual contour is formed by splicing a segment of polylines. Although it is a polyline,
each segment of the interpolation segment is very small within the allowable accuracy range, so
this segment of the polyline can still be approximately regarded as a straight line, which is linear
interpolation.

ZMotion controller uses hardware interpolation, and the interpolation precision is within one

pulse, so it is still smooth when the path is amplified.

128

If the axis needs to move from point (X0,Y0) to point (X1,Y1) in the XY plane, the

processing process of linear interpolation is like the below figure:

¥
r i i _ - '|_'|1 . .E.
y Zive one pulsein X give one puise m
direction direction
ending point

“// coordinate (1.Y1)

starting point X
coordinate (0,Y0)

» Circular Interpolation

Circular interpolation is similar to linear interpolation. The interpolation digital information
between the two ends is given, and the point group approximating the actual arc is calculated by a
certain algorithm. The control axis moves along these points to process arc curves. Circular
interpolation can be a plane arc (at least two axes) or a space arc (at least three axes). Assuming
that the axis needs to travel an inverse arc in the first quadrant of the XY plane, the center of the

circle is the starting point, and the processing process of the arc interpolation is shown in the

figure below.
Y
A
— 3 give one pulse in X give one pulse in Y
direction direction
ending point
coordinate (X1.Y1)

A

starting point
coordinate (X0.Y0)
The space arc interpolation function of the controller is based on the current point and the end
point and the middle point (or center point) set by the arc command parameters to determine the
circular arc and realize the spatial circular arc interpolation movement. The coordinates are three-

dimensional coordinates, and at least three axes are required to move along the X axis, the Y axis

129

and the Z axis respectively.

» Interpolation mode of motion controller

Motion controller’s interpolation motion mode has below functions:

1) it can achieve interpolation of linear, circular, space arc, helical, ellipse, etc.

2) it can do multi-axis interpolation in several coordinate systems multiple channels, single
channel only supports at most 16 axes combined interpolation.

3) each axis has motion buffer, which can be used to achieve motion pause, resume and other
functions. And the interpolation motion of one axis stops, other axes also stop.

4) it has delay in buffer and synchronously output digital in buffer functions.

5) it has the pre-process function, the controller analyzes and calculates target trajectory
automatically, so that high speed and smooth continuous motion in small segment can be

achieved.

» Two-axis linear interpolation

Axis 0 and axis 1 participate in the linear interpolation motion, as shown in the figure below.
The linear interpolation motion of these 2 axes moves from point A to point B, the XY axes start at
the same time, and reach the end point at the same time. Set the motion distance of axis 0 as AX,
and the motion distance of axis 1 is AY, the main axis is the first axis of BASE (now the master
axis is axis 0), the motion speed of the main axis interpolation is S (the set speed of the main axis),
and the actual speed of each axis is the sub-speed of the main axis, but it is not equal to S, at this
time:

Main axis’ motion distance: X=[(AX)2+(AY)2]%

Axis 0 actual speed: SO=SxAX/X

Axis 1 actual speed: S1=SxAX/X

Ay

B(X1,Y1)

AY

A(X0.Y0) AX

v

» Three-axis linear interpolation
AXxis 0, axis 1 and axis 2 participate in the linear interpolation motion, as shown in the figure

below. The linear interpolation motion of these 3 axes moves from point A to point B, the XYZ

130

axes start at the same time, and reach the end point at the same time. Set the motion distance of
axis 0 as AX, and the motion distance of axis 1 is AY, the main axis is the first axis of BASE (now
the master axis is axis 0), the motion speed of the main axis interpolation is S (the set speed of the
main axis), and the actual speed of each axis is the sub-speed of the main axis, but it is not equal

to S, at this time:

BX1,Y1,21)

Ay

A(X0, Y0, Z0)

v

T N R e PO RN /2

» Multi-axis linear interpolation

Multi-axis linear interpolation can be understood as multiple degrees of freedom of an axis,
which is linear interpolation in three-dimensional space. Taking four-axis interpolation as an
example, generally three axes run a straight line on the XYZ plane, and the other axis is a rotation

axis, which does follow motion with a certain proportional relationship.

5.2.2 Continuous Interpolation

If the MERGE continuous interpolation is not turned on, after the previous interpolation
movement is completed, when executing the next interpolation, it will first decelerate to stop, and
then re-accelerate to execute the interpolation movement. In actual application, this situation will
lead to low processing efficiency, so it is necessary not to use deceleration between consecutive
interpolation movements, which is the continuous interpolation function.

To make the interpolation action continuous, after setting MERGE=ON, the interpolation
motion of the same main axis will be automatically continuous, and there will be no deceleration
between two consecutive motions, and the SP instruction can manually set the motion speed and
end speed. Refer to some instructions, MERGE, SP, CORNER_MODE, ENDMOVE_SPEED,
FORCE_SPEED, etc.

131

A speed

FORCE_SPEED

ENDMOVE_SPEED

the end point
obscament 1 of seament2 of i3 of st oFemmrots e pointof .
5.3 Look-ahead processing
Related instructions:
Instruction Description Usage
CONNER_MODE Corner mode configuration COERNER_MODE=mode value
MERGE Continuous interpolation MERGE=0ON
DECEL_ANGLE Start deceleration angle When using,
STOP_ANGLE Stop deceleration angle
ZSMOOTH Chamfer radius ZSMOOTH=chamfer radius value
FULL_SP_RADIUS Speed limit radius
FORCE_SPEED Force speed

In the actual processing process, continuous interpolation will be turned on for pursing
processing efficiency. If the corner of the motion trajectory is not decelerated, and when the corner
is large, it will cause a greater impact on the machine and affect the machining accuracy. If the
continuous interpolation is turned off and the deceleration at the corner is 0, although the machine
is protected, the machining efficiency is greatly affected, so a look-ahead command is provided to
automatically determine whether to reduce the corner speed to a reasonable value at the corner,
which will not affect the processing accuracy but also improve the processing speed. This is the
role of the trajectory look-ahead function.

The trajectory look-ahead of the motion controller can automatically calculate a smooth
speed plan according to the user's motion path, reduce the impact of the machine, and improve the
machining accuracy. The inflection point will appear when automatically analyzing the command
trajectory of the motion buffer, and automatically calculate the motion speed at the corner
according to the corner conditions set by the user, and also calculate the speed plan according to
the maximum acceleration value set by the user, so that acceleration and deceleration value in any
acceleration and deceleration process in the machine do not exceed ACCEL and DECEL, so as to

prevent the damage to the mechanical part.

132

Speed planning situation with trajectory look-ahead or without trajectory look-ahead:

If the motion trajectory is like the left figure, it moves a rectangle trajectory, and there are 4
linear interpolation motions.

Mode 1: after opening continuous interpolation, obtained the speed of main axis changes

with time, please see the right figure. The speed of main axis is consecutive, and it doesn’t

¥ Y
motion trajectory continuous interpolation

0 X 0 T
decelerate at the corner position. The corner has

a big shock when running in high-speed.

Mode 2: under the condition of mode 1, close continuous interpolation, obtained changing
curve of main axis speed with time is the below left figure. A straight line is completed, it will
decelerate to 0, then start the second straight motion, therefore the processing efficiency is not
high.

Mode 3: under the condition of model, open continuous interpolation, and set trajectory
look-ahead parameters, obtained changing curve of main axis speed with time is the below right

figure. The corner position decelerates according to one certain proportion, the processing

Y Y

not open COIltilluOuS illterp()lati()ll continuous interpolation + trajectory look-ahead
not set trajectory look-ahead

0 T 0 T
efficiency is higher than mode 2.

For above modes, speed is set as S curve through SPAMP instruction, so that the speed curve

will be softer.

The main command CORNER_MODE of trajectory look-ahead is used for speed planning at
corners. There are three commonly used modes, and different modes are selected according to the
actual requirements of the processed trajectory.

This parameter takes effect before the interpolation motion command is called. Generally, the

133

corner mode is set in the parameter initialization. Because the look-ahead motion parameters
varying with the motion commands are stored in the motion buffer together. The look-ahead
motion parameters can be called multiple times, and different modes can also be mixed, such as
CONNER_MODE=2+8, which means automatic corner deceleration and small circle speed limit
are used at the same time, set the appropriate look-ahead mode according to the requirements of
the trajectory segment, and automatically optimize the trajectory when executing the motion
command.

Note: Once the CORNER_MODE mode is set, the parameters will be stored in the controller.
Set CORNER_MODE=0 to cancel it. Otherwise, CORNER_MODE set before will take effect.

CORNER_MODE instruction parameter description:

Bit Value Description
0 1 Reserve
1 2 Decelerate automatically at the corner position.

Accelerate and decelerate as ACCEL and DECEL.

This parameter takes effect before calling MOVE function.

The deceleration angle is set through DECEL_ANGLE and STOP_ANGLE
instructions.

The reference speed of deceleration corner refers to FORCE_SPEED, so
please set reasonable FORCE_SPEED.

2 4 Reserve

3 8 Automatic small circle speed limit, speed limit when the radius is less than
the set value, no speed limit when the radius is greater than the limit value.
This parameter is modified before the MOVE function is called.

The speed limit is related to FORCE_SPEED.

Limit speed = FORCE_SPEED * actual radius/FULL_SP_RADIUS
Speed limit radius FULL_SP_RADIUS setting.

4 16 Reserve

5 32 Automatic chamfer settings.

This parameter is modified before the MOVE function is called.

This MOVE motion is automatically chamfered with the previous MOVE
motion, and the chamfer radius refers to ZSMOOTH.

COR_MODE=2 corner deceleration application: do not change motion trajectory, just
automatically judge whether there is deceleration at the corner, which is usually used to improve
shaking problem of machine. For those places need trajectory precision and no speed requirements.

CORNER_MODE=8 small circle speed limit application: do not change the motion trajectory,
generally used in arc processing, calculate the current limit speed according to the radius of the arc.

CORNER_MODE=32 automatic chamfering application: change the motion trajectory, this
will not slow down the speed. For the occasions with large track corners, the motion track at the

chamfer is automatically smoothed, so it is generally used in the occasions where the speed is fast

134

and the track accuracy is not high.

See the CONNER_MODE instruction for the application routine of the track look-ahead.

5.4 Origin Point Homing

Related instructions:

Instruction Description Usage
DATUM Origin point homing mode selection DATUM(homing mode value)
DATUM_IN The switch to map the origin point DATUM_IN=input number
FWD_IN Mapping positive limit position switch FWD_IN=input number
REV_IN Mapping negative limit position switch REV_IN=input number
SPEED Fast speed for finding the origin point Set the value of speed
CREEP Inverse cramp speed for finding origin point Set the value of speed
INVERT_IN Input signal inverse INVERT _IN=
(input number, ON/OFF)

High-precision automation equipment has its own reference coordinate system. The
movement of the workpiece can be defined as the movement on the coordinate system. The origin
of the coordinate system is the starting position of the movement. All kinds of processing data are
based on the origin as the reference point. Therefore, before starting the controller to execute the
motion command, the device must perform the zero-returning operation to return to the origin of
the set reference coordinate system. If it is not performed, the subsequent motion trajectory will be
wrong.

Zmotion controller provides a variety of homing methods, which are set through the DATUM
instruction. Different mode values can choose different homing methods. Each axis automatically
returns to the origin according to the homing method set before. This command is a single-axis
homing command. When multi-axis homing, the DATUM command needs to be used for each
axis.

When returning to zero, the platform needs to be connected to the origin switch (indicating
the position of the origin) and the positive and negative limit switches (both are sensors., after the
sensor detects a signal, it indicates that there is an input signal, which will be sent to the controller
for processing).

When single axis finds the origin, the origin switch is set by DATUM _IN, and the positive
and negative limit switches are set by FWD_IN and REV_IN respectively. After the
positive/negative limit signal of the controller takes effect, the axis will stop immediately, and the
stop deceleration is FASTDEC.

When the ZMC motion controller is 0, the trigger is valid, and when the input is in the OFF

state, it means that the origin/limit is reached. The normally open type signal needs to use the

135

INVERT _IN inversion level.

DATUM instruction supports below homing mode:

Value Description

0 Clear error status of all axes.

1 The axis runs forward at CREEP speed until the Z signal appears.
It will stop directly when it touches the limit switch.
The DPOS value is reset to 0 and the MPOS is corrected.

2 The axis runs reversely at CREEP speed until the Z signal appears.
It will stop directly when it touches the limit switch.
The DPOS value is reset to 0 and the MPOS is corrected.

3 The axis runs forward at SPEED until it touches the home switch. Then, the axis
reverses at CREEP speed until it leaves the home switch.
In the process of finding the origin, it will stop directly when it encounters the
positive limit switch.
When the crawling stage encounters the negative limit switch, it will stop directly.
DPOS value reset to 0 while correcting MPOS

4 The axis runs reversely at SPEED until it touches the home switch. Then, the axis
runs forward at CREEP speed until it leaves the home switch.
In the process of finding the origin, it will stop directly when it encounters the
positive limit switch.
When the crawling stage encounters the negative limit switch, it will stop directly.
DPOS value reset to 0 while correcting MPOS

5 The axis runs forward at SPEED until it touches the home switch. Then, the axis
reverses at CREEP speed until it leaves the home switch.
In the process of finding the origin, it will stop directly when it encounters the
positive limit switch.
It will stop directly when it touches the limit switch.
The DPOS value is reset to 0 and the MPOS is corrected.

6 The axis runs reversely at SPEED until it touches the home switch. Then, the axis
runs forward at CREEP speed until it leaves the home switch.
In the process of finding the origin, it will stop directly when it encounters the
positive limit switch.
It will stop directly when it touches the limit switch.
The DPOS value is reset to 0 and the MPOS is corrected.

8 The axis runs forward at CREEP speed until touching the origin switch.
It will stop directly when it touches the limit switch.

9 The axis runs reversely at CREEP speed until touching the origin switch.
It will stop directly when it touches the limit switch.

21 Use the zero-return function of the EtherCAT drive, and now mode2 is valid.

Set the drive's zero-return mode (6098h). The default value of 0 means to use the
drive's current zero return mode.

It will use the SPEED, CREEP, ACCEL, DECEL of the axis, multiply it by
UNITS, and automatically set the 6099h, 609Ah action sequence of the drive:
6098h homing mode—6099h speed—609Ah acceleration—6060h switch the

136

current mode

Z signal homing must be configured with Z signal ATYPE.

For the case the origin is in the middle of the positive and negative limits, add 10 to each
mode, which means that the movement will not be canceled if the limit is encountered during the
zero-return process, but will continue to search for the origin in the reverse direction. Other
conditions are the same as the original mode. Since the origin is between the positive and negative
limit switches, one limit switch only is met during homing. The following zero-return methods
5~8 all plus 10 modes.

After the bus controller uses the above controller to find the origin mode, it needs to
manually reset the MPOS. Add 100 to zero return mode (modes 100+n and 110+n correspond to n
and 10+n respectively), indicating that MPOS can be automatically cleared after connecting to the

encoder (only for 4 series, ATYPE=4)

Detailed explanation of common zero return methods:

Mode 1: Z signal mode

The axis runs at CREEP speed until the Z signal appears. The DPOS value is automatically
reset to 0 and the MPOS is corrected. It is only valid when ATYPE is set to 4 or 7 and the
corresponding axis encoder Z is connected. It stops directly when it encounters the positive and
negative limit switches on the way of returning to zero. When mode=1, it returns to zero in

positive direction, and when mode=2, it returns to zero in negative direction.

the initial
position

/_ the origin position

speed CREEPJ]_D_L the first Z signal stops

Mode 2: the origin + find inversely mode

The axis runs to the origin point at SPEED speed until touching the origin switch. Then, the
axis runs inversely at CREEP speed until leaving the origin switch. The DPOS value is
automatically reset to 0 and the MPOS is corrected. It stops directly when it encounters the
positive and negative limit switches on the way of returning to zero. When mode=3, it returns to

zero in positive direction, and when mode=4, it returns to zero in negative direction.

the initial Jfthe sensor
position osifion

the origin position
gnp _\ lzave at CREEP spead
slowly

A

.
>

SPEED homing rapidly
N the origin switch position

137

Mode 3: mode =5, the origin + find inversely + Z signal mode

The axis travels towards the origin at SPEED until it touches the home switch. Then, the axis
reverses at CREEP speed until it leaves the home switch, and continues to reverse at CREEP
speed until it touches the Z signal. The DPOS value is automatically reset to 0 and the MPOS is
corrected. It is only valid when ATYPE is set to 4 or 7 and the corresponding axis encoder Z is
connected. It stops directly when it encounters the positive and negative limit switches on the way
of returning to zero. mode=5 returns to zero in positive direction, mode=6 returns to zero in
negative direction.

the initail e sensor
position position ——

the origin
position o

[leave slowly at the

the first Z signal stops J]_D_D CREEP speed

.
>

homing rapidly at the

SPEED speed the origin switch position

Mode 4: mode=8, the origin point returns to zero once mode

The axis runs at the speed of SPEED until it hits the origin switch. The DPOS value is
automatically reset to 0 and the MPQOS is corrected. It stops directly when encountering the
positive and negative limit switches on the way to zero. mode=8 returns to zero in positive

direction, mode=9 returns to zero in negative direction.

the initial & sensor
position ipo sition

f P\ the origin switch position
homing rapidly at the SPEED speed

the origin position
Mode 5: mode=11, Z signal mode,
The axis runs at the CREEP speed, it won’t stop when encountering the limit switch, and it

will continue to run at the CREEP speed direction until the Z signal appears.

the initial positive and
position negative limit switch
CEEEP speed
-« @

(CREEP in raverss

direction

Mode 6: mode=13 forward running, origin + reverse search mode + limit reverse

the first Z signal stops

The axis runs to the origin at SPEED speed, and it does not stop when meeting the forward

limit switch, and then runs in reverse at SPEED speed until it hits the limit switch. Then, the axis

138

moves slowly at CREEP speed until it leaves the origin switch.

the initial the sensor positivedinegative
position position limit switch

Y

SPEED homing rapidly
the origin position <
Y SPEED inversely

g
CPREEP leaves slowly

positive and negative
o . limit switch
the ofigin siwtch postion

Mode 7: mode=15, origin + reverse search + Z signal mode

The axis runs to the origin at the speed of SPEED, and it does not stop when encountering the
limit switch, but it continues to move in the reverse direction at the speed of SPEED until it hits
the origin switch. Then, the axis moves to the origin at the speed of SPEED. The CREEP speed

reverses movement until it leaves the home switch, and then continues to reverse at the creep

speed until the Z signal is encountered.

the initial the sensor ipositivednegativ
himit switch

position — SO

the erigin position ™, | «¢— |CREEF leaves slowly

the first Z signal stops 2
SPEED inversely @

the origin switch position positivedinegativ
e limit switch

v

SPEED homing rapidly

Mode 8: mode=18, one-time homing mode
The axis runs at the speed of SPEED, and it does not stop when encountering the limit switch,

but it continues to move in the reverse direction at the speed of SPEED. It stops when it hits the

home switch.
the inital the sensor positivednegative
position position limit switch
SPEED homing rapidly
.
L
the origin position — @
A SPEED inversely
the origin switch position positivednegzative
limit switch

139

5.5 Related Limit Position Instructions

Instruction Description Usage

FS_LIMIT Positive software limit setting FS_LIMIT = positive limit position

RS_LIMIT Negative software limit setting RS_LIMIT= positive limit position
FWD_IN Mapping the positive limit input FWD_IN = input number
REV_IN Mapping the negative limit input REV_IN = input number

The motion controller can limit the motion range of each axis by installing limit switches or
setting software limits. Hardware limit switches and software limit switches are used for the

permissible movement range and working range of the axes of the technology object.

negative software negative software }?OE:HVE lst.)fm'a_r e positive lmit
limit position limit position limit position position switch
work range

>

I T

A

|‘ permittable motion range

Hardware limit switches are limit switches that limit the maximum "permissible travel range" of
an axis. A hard limit switch is a physical switching element, and it is mapped to the corresponding
input switch signal through instruction. According to whether the switch signal is normally open
or normally closed to determine whether to flip the signal. After it is set, and when hitting the
hardware limit switch, the corresponding axis stops immediately, and the stop deceleration is
FASTDEC.

The soft limit switch id different from the hard limit switch, it is only realized by the
software program setting, without the help of external switching elements. The software limit
switch will limit the "working range" of the axis, and the limit position is directly set by the
instruction. After the axis reaches the set position, the motion will stop with deceleration
FASTDEC immediately. They should be located inside the relevant hardware limit switch that
limits the travel range of the machine tool. Since the position of the software limit switch is more
flexible, the working range of the axis can be adjusted according to the current running track and
specific requirements.

When the worktable hits the limit switch or the planned position exceeds the software limit,
the motion controller stops the motion of the worktable in an emergency. After the limit is
triggered, the axis cannot continue to move. At this time, the position of the axis needs to be
adjusted so that it is far away from the limit position to restart the movement.

The axis will only generate a stop signal when it hits the limit. At this time, since it takes a

certain time to decelerate, the actual position of the axis will exceed the limit by a certain distance.

140

Assume that the SPEED speed is vO when it stops, and the fast deceleration FASTDEC is a. The
calculation formula: vt2-v02=2as, bring in the following data: 0-1002=2*(-1000)*s, the overshoot
distance s=5, which can be known, reduce overshoot by increasing FASTDEC and decreasing
SPEED.

Example:

BASE(0) ‘select axis 0

ATYPE=1 ‘axis type setting

UNITS=100 ‘pulse equivalent 100
SPEED=100 'speed 100units/s

ACCEL=500 ‘acceleration

DECEL=500 ‘deceleration

FASTDEC=1000 ‘fast deceleration 100units/s/s
DPOS=0 'the coordinate is cleared
FS_LIMIT=200 ‘set positive software limit position is 200units
MOVE(300) ‘moves 300units
WAITIDLE(0) 'wait until axis stopped
?DPOS(0) "print result: 205units

The value of positive/negative software limit FS_LIMIT and RS_LIMIT needs to be between
-REP_DIST and +REP_DIST, the software limit parameters will take effect. Otherwise, the
positive/negative software limit setting will be invalid. When canceling the software limit, it is
recommended not to modify the value of REP_DIST, but to set FS_LIMIT and RS_LIMIT to a

larger value.

Routine: the application of positive and negative limit position
ERRSWITCH =3
RAPIDSTOP(2)

WAIT IDLE

BASE(0) ‘select axis X move

DPOS =0

ATYPE=1 "pulse stepper or servo

UNITS = 100 "pulse equivalent, 100 pulses per mm
SPEED =200

ACCEL = 20000
DECEL = 20000
TRIGGER

'set software limit position

141

REP_DIST = 100000000 "the default, don’t modify this value

RS_LIMIT =-50 'negative software limit position, it takes effect when it exceeds -REP_DIST
FS_LIMIT =100 'positive software limit position, it takes effect when it is below -REP_DIST
VMOVE(1) ‘continue to move in positive direction

WAIT UNTIL AXISSTATUS AND (512) ‘judge positive limit position generates or not
PRINT "SOFTLIMT FS", *DPOS

DELAY (200)

VMOVE(-1) ‘continue to move in negative direction

WAIT UNTIL AXISSTATUS AND (1024) ‘judge negative limit position generates or not
PRINT "SOFTLIMT RS", *DPOS

RS_LIMIT =-200000000 'close software limit position
FS_LIMIT =200000000

END

Print result:

Axis:0 AXISSTATUS:200h,FSOFT
SOFTLIMT FS 101
Axis:0 AXISSTATUS:400h,RSOFT
SOFTLIMT RS -51
The motion trajectory is as follows, the positive software limit is set to 100, so that the axis is
forced to stop after moving to the 100, and the negative software limit is set to -50, the axis cannot

continue to move after moving to this position in the negative direction.

1 DPOS[0) Min:-51.00 Max:101.00

\ :
500 1000 \1500 2000

5.6 Position Latch

Related instructions:

142

Instruction Description Usage
REGIST Set latch method REGIST (method value)
REG_INPUTS Latch input mapping REG_INPUT=$input number
MARK Judge latch is triggered or not WAIT UNTIL MARK
MARKB Judge the second latch is triggered or not WAIT UNTIL MARKB
MARKC Judge the third latch is triggered or not WAIT UNTIL MARKC
MARKD Judge the forth latch is triggered or not WAIT UNTIL MARKD
REG_POS Save latched measurement feedback position Print REG_POS
REG_POSB | Return latch 2 measurement feedback Print REG_POSB
position
REG _POSC | Return latch 3 measurement feedback Print REG_POSC
position
REG_POSD | Return latch 4 measurement feedback Print REG_POSD
position
OPEN_WIN Latch triggered start coordinate range point OPEN_WIN=POS
CLOSE_WIN Latch triggered end coordinate range point CLOSE_WIN=POS

The latch function of the controller is mainly used to latch the position of the encoder MPOS
(the latest firmware of the 4 series and above controllers supports virtual axis and pulse axis latch).
When the latch signal is triggered, the current position information is immediately captured in the
position latch, and clear the previous latched position coordinates. When reading latch position
information, the position information latched when the last latch signal is triggered will be read.
The number and position of the latched channel ports of different types of controllers are different,
please refer to the hardware manual of the corresponding type of controller.

It should be noted that the operation interface of position latch is accessed according to the
axis number. Different types of axes have different latch parameters. Before use, first determine
the type of axis. The types of axes that support latch are divided into the following types: local
pulse axis, EtherCAT axis, RTEX axis, also need to pay attention to the number of latch ports to
avoid errors caused by overflow of latch data.

The pulse axis type generally adopts three latches of RO, R1, and Z pulse; the bus axis type
generally adopts R2, R3 latch.

In addition to supporting controller latching, the EtherCAT bus controller also supports driver
latching. At this time, the driver 10 points are used to achieve latching. For the specific mode, see
the command syntax. RTEX only supports controller latches.

When supporting the simultaneous use of EtherCAT drive latch and controller latch, 4 latch
channels are required. The 4 channels refer to MARK, MARKB, MARKC, MARKD, and the
latch channel corresponding to the latch input port is specified by REG_INPUTS. When the latch
is generated, the axis state MARK will be set to ON, and the latched position will be stored in the

parameter REG_POS.

143

The input signals RO, R1 and Z signals of each axis can use the latch function, and the RO
and R1 inputs generally correspond to input ports 0 and 1. When using two signal latches, the
second signal latch uses MARKB and REG_POSB, MARK and REG_POS need to be paired, that
is, the numbers are the same.

The rising edge/falling edge refers to the internal state of the controller. Different types of
input ports may be inconsistent, and it is necessary to confirm the actual latched edge.

How to use the latch function:

1) Determine whether the current hardware conditions meet the latching requirements, and
determine the axis that needs to be latched;

2) Set the latch input mapping port REG_INPUT, the input port needs to support the latch
function;

3) Set the latch mode REGIST and wait for the latch to trigger MARK;

4) Latch completes print latch position information REG_POS;

5) The start and end coordinates of the latched position can be read, and the latched position
can be called by other instructions.

Refer to the description of the REGIST instruction for the latch method of the controller.

5.7 Hardware Comparison Output

Related instructions:

Instruction Description Usage
HW_PSWITCH | Hardware position comparison output Set the comparison point
HW_PSWITCH2 Bus hardware position comparison Set the comparison point and the

output comparison output port
HW_TIMER Hardware timer output Output in periodically

There is a position comparison unit in the motion controller. The hardware comparison output
is to operate the output port action by comparing whether the axis reaches the set position.
Generally, the encoder position is compared with the set position. When the encoder position
reaches a set position When comparing the position, trigger the level of the corresponding output
port to flip once.

As shown in the figure below, when the set position 1 is reached, the level of the specified
output port is flipped, the level of the designated output port is flipped again when it reaches
position 2, and the level is flipped again when it reaches position 3. After all points are compared,

the level remains the same as after the last flip. state.

144

ON

1 | I — i e e i i s i i

OFF

>
>

1 2 3 4 5 & the comparison point MPOS

Hardware comparison output needs to be supported by some models of 3 series and 4 series
and above controllers. It is necessary to operate the output port that supports this function. The
controller supports software comparison output PSWITCH command, hardware comparison
output HW_PSWITCH command (only supports pulse axis), HW_PSWITCH2 command (Both
pulse axis and bus axis are supported).

For the pulse axis, the difference between HW_PSWITCH and HW_PSWITCH2 is that there
is a one-to-one correspondence between the axis and output of HW_PSWITCH, and there is no
need to specify the output axis number; HW_PSWITCH2 can be specified in the output port that
supports this function. The HW_PSWITCH command can operate multiple output ports at the
same time to output simultaneously. The HW_PSWITCH2 instruction supports more controller
models.

Comparing the feedback MPOS of the encoder, the position accuracy is higher. When the
encoder is connected (the pulse axis axis type ATYPE is 4 or the bus axis type), the encoder
feedback position MPOS is compared. When the encoder is not connected (the pulse axis axis type
ATYPE is 1 or 7) Compare the target position DPOS.

If the comparison position is a large number of continuous equidistant outputs, the
HW_TIMER hardware timing output can be used. At this time, it is necessary to set the starting
comparison output position, interval distance and repetition period.

If the comparison position is a non-equidistant position value, use the HW_PSWITCH and

HW_PSWITCH2 commands to specify the position in the TABLE table for output, and store the

position data that needs to be compared and output in the TABLE table. At this time, it is
necessary to ensure that the TABLE position data is not modified before all comparison points are
completed, and the data in the TABLE table is a monotonically increasing positive distance value
or a monotonically decreasing negative distance value, otherwise an error will occur.

When comparing the spindle with encoder input, the encoder position is automatically used
to trigger, and the MOVEOP_DELAY parameter can be used to adjust the output exact moment.

Different bus drivers may have different effects, which can also be adjusted by the

145

MOVEOP_DELAY parameter.

5.8 Precision Output

Related instructions:

Instruction Description Usage
MOVE_OP Output in buffer MOVE_OP(number, state)
AXIS_ZEST Start precision output Set the function according to bit
MOVEOP_DELAY Delay output in buffer Output in advance or delay

The MOVE_ORP instruction defaults to normal output. The normal output operation needs to
wait for one controller cycle to execute, while the precise output operation can respond within one
pulse sent by the motor, which can greatly improve the accuracy of the process. At the same time,
the MOVEOP_DELAY instruction can be used to adjust the response time (earlier or later).

The minimum error of precision output pulse output mode is 1 pulse, and the minimum error
of bus control mode is within 1us.

Only controllers that support the hardware comparison output function can use the precision
output function, and both use the same hardware resources.

Use the AXIS_ZSET command to set whether to enable precise output, and then use the
MOVE_OP command to enable the precise output to take effect. Note that the output channel
should select the channel that supports precise output, that is, the channel that supports hardware
comparison output. The number of different models is different, generally special function starts
from 10 number 0.

There are two trigger modes for precision output, target position DPOS trigger or encoder
feedback MPOS trigger.

When there is no encoder feedback, the precision output function automatically uses the
command position DPOS to compare the trigger. The motor always has a certain following error
(following error = DPOS-MPOS). When the encoder feedback is used, the encoder feedback
MPOS trigger will be more accurate. Precisely, whether to start the encoder position is also
configured through the AXIS_ZSET instruction. According to the different effects of different
drives, you can also use the MOVEOP_DELAY parameter to adjust the exact timing of the 10
output.

146

5.9 Galvanometer Control System

5.9.1 The Description of Galvanometer

1. The galvanometer working principle
Laser galvanometer is a special motion device specialized for laser processing field. It
reflects the laser through two galvanometers, forming the motion in XY plane. Laser
galvanometer is different from general motor, the inertia is extremely small, and the load is
small in motion. There are two small reflection lens, X and Y use different motors to control

deviation, the system response is very fast.

laser generator

N B
galvanometerX % \

-

workpiece

=

There are two basic movements of laser galvanometer movement: jump movement and the
marking movement.

During the jump movement, the axis moves to the position to be processed, and the laser is
turned off, which does not affect the processing of the trajectory, so it can move at a high speed.
During the marking movement, the laser is turned on to process the trajectory, so the user needs to
set the appropriate movement speed according to the actual processing requirements.

Galvanometer is an excellent vector scanning device. It is a special oscillating motor (laser
galvanometer), the basic principle is that the energized coil generates torque in the magnetic field,
but different from the rotating motor, the rotor is added with a reset torque by mechanical springs
or electronic methods, the size and the angle deviating from the equilibrium position is
proportional. When the coil is supplied with a certain current and the rotor is deflected to a certain
angle, the electromagnetic torque is equal to the restoring torque, so it cannot rotate like an

ordinary motor, but can only be deflected. The deflection angle is proportional to the current.

2. Basic Structure of Galvanometer Control System

147

| .
. ; ocessin
upper computer p| the controller | p| the drive > izl;;n ometer | > gane ¢
|]
¥
galvanometer
generator

The galvanometer system consists of the above parts to form a basic system, in which the
main components of the galvanometer are two X/Y reflection lens, two motors that control the
rotation of the X/Y mirrors respectively, and a man-machine operating system, encoder and others

can also be added according to actual needs.

3. Basic Requirements for The Controller

Because the laser marking machine relies on the deflection of the X/Y galvanometer, the laser
is reflected on the work surface for precise engraving. The control of the galvanometer is
controlled by the open-loop controller, so it must be linear, that is, there is a linear relationship
between the input signal and the deflection angle. Because the galvanometer is a fast and precise
machine, it is required that the acceleration be as large as possible from one working state to
another, so that the marking space time is infinitely small.

The galvanometer movement adopts the buffer movement method, that is, the user needs to
transmit the movement and process data to the axis movement buffer, and then start the buffer
movement, and the motion controller will continuously execute the movement data transmitted by
the user in sequence until all the movement data are complete.

In the laser galvanometer motion control system, there are not only motion control, but also
laser control. How to effectively deal with the cooperation between the galvanometer movement
and the laser switch is a very important issue. Coordinating the relationship effectively between
the laser and the movement, the movement trajectory can be precise.

Motion control: During the marking movement, the laser will move along the given marking
trajectory at the set marking speed. When executing the relevant marking instructions, the laser
galvanometer motion controller will automatically turn on the laser. If the next is still a marking
instruction, the laser is always on until the last marking instruction ends, or instructions in buffer
area are executed. The laser will be turned off automatically if encountering the jump instruction
in buffer area. The laser will be turned on again only when meeting the marking instruction.
Before starting the movement, the galvanometer coordinates should be adjusted to ensure the
correct marking trajectory, and the buffer should be cleared at the same time.

Laser control: It mainly includes controlling the on/off control of the laser and the duration of

the laser, and using the OP command to control the on-off of the laser. The laser energy can be

148

controlled according [Ppin No. Signal Description
to the difference of 1 CLOCK- Clock signal -
the laser, SYNC- Synchronization signal -
] X channel- Galvanometer X channel signal -
corresponding to the
analog guantity,
digital quantity

output port, and the
duty cycle of output
port PWM
correspond to the
amount of control

energy.

4. Applications

It is mainly used for laser marking, including laser cutting, stage lighting control, laser
drilling, etc. It is a non-contact, non-polluting and non-wearing new marking process. It adopts
automatic control and greatly improves the reliability. Laser marking uses a high-energy-density
laser beam. With the regular movement of the laser beam on the surface of the material, the on-off
of the laser beam is controlled at the same time, so that physical or chemical changes occur on the
surface of the target material, and the laser beam can be processed a specified pattern on the
surface of the material.

Compared with the traditional marking process, laser marking has the following advantages:

The marking speed is fast and the handwriting is clear.

Non-contact processing, pollution is less and no wear.

It is convenient to work and has strong anti-counterfeiting ability.

High-speed automatic operation, low production cost and reliable operation.

5. ZMC120SCAN Controller Galvanometer Interface Signal

ZMC420SCAN is the controller that supports laser galvanometer control, each general output
of the controller all supports PWM function.

The local axis 4/5 can be configured as the first galvanometer through ATYPE=21, The local
axis 6/7 can be configured as the second galvanometer through ATYPE=21, and the axis humber

can be changed through AXISZ_ADDRESS instruction.

149

4 Y channel- Galvanometer Y channel signal -
5 NC Reserve
6 STATUS Galvanometer status signal -
7 NC Reserve
8 GND Digital ground
9 CLOCK+ Clock signal +
10 SYNC+ Synchronization signal +
11 X channel+ Galvanometer X channel signal +
1 -m . 9 12 Y channel+ Galvanometer Y channel signal +
: : 13 NC Reserve
-4 . 14 STATUS+ Galvanometer status signal +
b 15 GND Digital ground
g -e®" 15

6. XY2-100 Galvanometer Protocol

ZMC420SCAN supports XY2-100 galvanometer protocol.

In the galvanometer control system, the XY2-100 protocol is widely used as the interface
definition and communication protocol of the digital laser scanning galvanometer. Communication
protocol refers to the rules and conventions that must be followed by both entities to complete
communication or services. The XY2-100 protocol includes four signals: SENDCK (clock signal),
SYNC (synchronization signal), CHANNEL X (X channel data), CHANNEL Y (Y channel data),
these four signals are a synchronous serial transmission process.

Wus
l« »
ek | :

pipipipinigipipipipipipinipipigipinigipigisigizish

SYNG

CHANELLY| |

‘DOO] F‘]C?ICT ‘ Y |D15|D14]D13]D12|DI1ID‘IOIDC‘?IDlBlDO?lD%lD(blm#lD(Ii’DOZ|DO1IDOOI P IC'ZIC? ‘ CL]

The SENDCK signal is a clock signal with a frequency of 2MHz. When it transitions from
low level to high level, the data bit is written; when it transitions from high level to low level, the
data bit is reflected by the system sampling.

The SYNC signal is used to provide synchronization information for data conversion. When
it goes from low level to high level, the first bit of data is sent; when it goes from high level to low
level, the last bit of parity is sent.

CHANNEL X/Y is the data signal, which consists of 20 bits, among which C2, C1, CO are
the moving direction value of the galvanometer, the reference value is 001, D15 ~ DO are the data
bits, which are 16-bit binary numbers, used to control the vibration. The angle that the mirror
rotates, the last bit P is the parity check bit, when there is an even number of 1" in the sent data,

the corresponding check bit is "0", and when there is an odd number of "1" in the sent data, the

150

corresponding check digit is "1"

7. Galvanometer Correction

The galvanometer is generally realized by correcting the galvanometer to control the exact
position distance of the galvanometer. The galvanometer correction is actually to establish a
corresponding relationship between the theoretical galvanometer moving distance and the actual
galvanometer moving distance, and then the corresponding moving distance is combined with the
established relationship in the process of moving, so as to achieve the purpose of accurately

moving the galvanometer and achieve the effect of galvanometer correction.

Below are galvanometer correction instructions:
ZSCAN_CORRECT (ixy,imode,imaxline,imaxrow,x1,y1,x2,y2 tableindex)
ixy: the value is 0/1, there are 2 galvanometers to be selected: 0-the first galvanometer, 1- the
second galvanometer.
imode: O-turn off the correction function, 1- use correction for different areas.
imaxline: line number, the point in Y direction is the line number
imaxrow: row number, the point in X direction is the row number
x1, y1, x2, y2: the theoretical coordinates of the lower left corner and the lower right
corner
tableindex: table index is to be stored by measured real coordinate, first X, then Y, the first

line (stored as the row number), then the next line.

Galvanometer supports a maximum of 64*64 correction points to establish the theoretical
coordinates of the lower left corner and the upper right corner, and the theoretical coordinates and
the measured actual graphic coordinates written in the corresponding TABLE array are processed
correspondingly. The galvanometer axis currently connected to the galvanometer interface. The
galvanometer correction parameters are not saved after power off, so it should be noted during use
that the galvanometer needs to be corrected again after the power is turned on again.

The galvanometer is an absolute value system. After the power is turned on, the controller is
always in the state of communication with the motor. Modifying the DPOS of the galvanometer
axis will cause the offset of the galvanometer. Therefore, do not modify the DPOS value of the
galvanometer axis casually during the use of the galvanometer. It can move to the corresponding

position through MOVEABS.

5.9.2 Galvanometer Application Process

1. When using the galvanometer axis, please set the axis type of corresponding galvanometer

151

axis 4, axis 5, (axis 6, 7) to be connected as 21.

Set the axis parameters for the corresponding galvanometer axis. The set axis pulse will
affect the movement distance of the galvanometer during motion. Therefore, the pulse
equivalent can be fixed as a size, and then the galvanometer axis at the current position can
be corrected to the correct distance through the galvanometer correction command.

If the laser needs to be switched on and off during the movement of the galvanometer, the
high-speed output port should be selected to control the switch light, and the corresponding
precise output setting should be turned on, so that the output port can emit light in a short
time after reaching the position, and achieve accurately control for the laser.

If the galvanometer axis needs to return to zero, the galvanometer axis can be moved to
position 0 through MOVEABS command, and the DPOS value of the galvanometer axis
cannot be modified casually during the movement of the galvanometer, otherwise it will
cause the offset of the galvanometer axis, the corresponding galvanometer motor will also
vibrate.

The galvanometer axis can be exchanged by the axis mapping instruction AXIS_ADDRESS,
and the galvanometer axis can be operated by other axis numbers to change the axis. In
addition, the current direction of the galvanometer axis cannot be modified by the command.
In order to correct the direction of the galvanometer, it is necessary to invert the coordinates
of the galvanometer that need to be reversed in the correction part of the galvanometer, and
then correct it again to modify the direction of the galvanometer axis.

It can operate the galvanometer axis and the common motor axis to establish continuous
interpolation, establish the linkage between the galvanometer axis and the ordinary axis, and

realize hybrid interpolation.

Laser Control Notes:

The energy control of the laser has the following control methods:

1. The analog quantity controls the energy: the precision of analog is 10 bits, 0-10V. The

value of 0-4096 controls corresponding energy.

2. Digital signal combination to control energy: it is combined with output signals, the energy
selects the energy corresponding to each combination.

3. Control energy output through PWM duty cycle.

Example: The energy combination of Lianpin laser mopa laser is as follows:

Pin No. Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
Pin 1 0 0 0 0 1
Pin 2 0 0 0 0 1
Pin 3 0 0 0 0 1

152

Pin 4 0 0 0 0 1
Pin5 0 0 0 1 1
Pin 6 0 0 1 1 1
Pin7 0 1 1 1 1
Pin 8 1 1 1 1 1
Current 50% 75% 87.5% 93.75% 100%
Laser work 52% T1% 89% 93% 100%

Galvanometer Routine:

Example 1: two galvanometer axes interpolation

Description: two galvanometer axes achieve mark 5 5mm small segment round in one line.

‘set axis number of galvanometer axis, and configure the axis type
BASE(4,5)
ATYPE=21,21
‘set basic parameters
UNITS=300,300
SPEED=5000,5000
ACCEL=SPEED*20,SPEED*20
DECEL=SPEED*20,SPEED*20
MOVEABS(0,0)
FORCE_SPEED=5000
'start continuous interpolation
MERGE=0ON
AXIS_ZSET(4)=3 ‘start MOVE_OP precision output function
'set frequency
PWM_FREQ(2)=2000
WHILE 1
IF MODBUS_BIT(0)=ON THEN
MODBUS_BIT(0)=OFF

OP(0,0FF)

BASE(4,5)

‘energy switch

OP(11,0N)

'MO switch

OP(1,0N)

'marking 5 small segment round, the trajectory moving data
FORj=0TO4

153

MOVE(-15, 0)
MOVE_OP(0,0N)
MOVE(-0.038, 0.434)
MOVE(-0.113, 0.421)
MOVE(-0.184, 0.395)
MOVE(-0.250, 0.357)
MOVE(-0.308, 0.308)
MOVE(-0.357, 0.250)
MOVE(-0.395, 0.184)
MOVE(-0.421, 0.113)
MOVE(-0.434, 0.038)
MOVE(-0.434, -0.038)
MOVE(-0.421, -0.113)
MOVE(-0.395, -0.184)
MOVE(-0.357, -0.250)
MOVE(-0.308, -0.308)
MOVE(-0.250, -0.357)
MOVE(-0.184, -0.395)
MOVE(-0.113, -0.421)
MOVE(-0.038, -0.434)
MOVE(0.038, -0.434)
MOVE(0.113, -0.421)
MOVE(0.184, -0.395)
MOVE(0.250, -0.357)
MOVE(0.308, -0.308)
MOVE(0.357, -0.250)
MOVE(0.395, -0.184)
MOVE(0.421, -0.113)
MOVE(0.434, -0.038)
MOVE(0.434, 0.038)
MOVE(0.421, 0.113)
MOVE(0.395, 0.184)
MOVE(0.357, 0.250)
MOVE(0.308, 0.308)
MOVE(0.250, 0.357)

154

MOVE(0.184, 0.395)
MOVE(0.113, 0.421)
MOVE(0.038, 0.434)

WAIT IDLE

MOVE_OP(0,0FF)

NEXT
ENDIF
WEND

Motion efficiency figure:

B a8
A By | fer | 1‘ DPOS[4] Min=1/55.00 Max-75.05 =
KR [0 M OXER 2] 2 DPOS(5) Min:-2/.50 Max:2.50
BT sx | 5|
#S HER (1 #E
| s 1o [75
| =1 [75
i =|[aouT - [aco: LS
¢ ~|fceos =1 [50
Vo ~|o | 1003
i _]|ve_seee 1P 1000
_j VP SPEED ~1[[1000
S = | e

Example 2: Mixed interpolation motion of galvanometer axis and common axis

Description: The galvanometer axis and the rotation axis establish an interpolation two-axis

coordinated motion to mark and clean the graphics.

The cleaning length is 58, and the cleaning width is 30. The workpiece to be cleaned is

placed on the rotating axis 0, the axis 5 controls the laser movement, and the Y axis reciprocates

for cleaning.
BASE(0,5)
ATYPE=7,21

UNITS = 10000/360,10000/18

SPEED=1000,5000

ACCEL=SPEED*5, SPEED*5
DECEL=SPEED*5, SPEED*5

MOVEABS(0,0)
MERGE=ON
AXIS_ZSET(0)=3
OP(12,0N)

'start continuous interpolation

'start main axis MOVE_OP precision output function

‘enable pulse axis axis 0

155

PWM_FREQ(2)=2000 'set DB25 the frequency of external control laser
PWM_DUTY(11)=0.8 'set energy
PWM_FREQ(11) = 2000

WHILE 1
LOCAL i ‘cycle condition
LOCAL sum ‘accumulate the rotation angle

IF MODBUS_BIT(0)=ON THEN
sum =0
MODBUS_BIT(0)=off
OP(0,0FF)
OP(11,0N) ‘energy switch
OP(1,0N) 'mo switch
WA 100

MOBE_OP(0,0N)
TRIGGER
MOVE(0,-30)
WAITIDLE
MOVE(58,0)
WAITIDLE
MOVE(0,30)
WAITIDLE
MOVE(-58,0)
WAITIDLE

‘when rotation axis rotated one certain angle, clean the marked graphics on rotation axis.
FORi=0TO57.6 STEP0.4 'clean
sum =sum + 0.4
MOVE(0,-30)
MOVE(0.4,0)
MOVE(0,30)

NEXT

?“cylinder rotation angle”, sum
MOVE_OP(0,0FF)
MOVE(-58,0)

ENDIF

156

WEND
END

Motion efficiency figure:

5.10 Robotic Arm

Zmotion controller supports more than 30 kinds of manipulator algorithms. It can be used after
establishing a manipulator connection according to the type of manipulator frame. It can control
the motion of the manipulator smoothly and accurately. For detailed instructions, please refer to

the "ZMotion Robot Manual Instruction”.

5.10.1 Related Concept of Robot

1. Joint-axis and Virtual-axis

157

1) Joint axis

The joint axis refers to the rotation joint in the actual mechanical structure, and in the
program it is generally displayed the rotation angle. Since there is a reduction ratio between the
motor and the rotating joint, the units should be set according to the actual joint rotation for one
circle. At the same time, when filling in the structural parameters in the table, the calculation
should be based on the center of the rotating joint instead of the center of the motor axis.
2) Virtual axis

The virtual axis does not actually exist, it is abstracted as 6 degrees of freedom of the world
coordinate system, which are X, Y, Z, RX, RY, RZ in sequence. It can be understood as the three
linear axes of the space rectangular coordinate system and the three rotation axes around the axes,
which are used to determine the processing track and coordinates of the working point at the end

of the manipulator.

2. Coordinate System
1) Joint coordinate system

The absolute angle of each axis is relative to the origin position, including all joints of the
robot, each joint is independent of each other, and the coordinate unit is angle. Manipulating one
of the joints does not affect the other joints.

2) Cartesian coordinate system

World coordinate system: The world coordinate system is a standard Cartesian coordinate
system fixed in space, the chassis of the robot is the coordinate origin, and its position is
determined according to the type of robot. The virtual axis is operated according to the world
coordinate system. At this time, each joint will automatically calculate the angle that needs to be
rotated.

User coordinate system: the Cartesian coordinate system defined by the user for each work
space, which is used for teaching and executing the position register, executing the position
compensation command, etc. When not defined, the coordinate system will be replaced by the
world coordinate system.

The main purpose of the manipulator algorithm is to connect the joint coordinate system with
the Cartesian coordinate system.

Coordinate system transformation refers to the transformation from the original coordinate
system to another coordinate system when describing the same space. In the use of the
manipulator, it is often used to determine the coordinate system of the workpiece.

The workpiece coordinate system is a Cartesian coordinate system fixed on the workpiece,
and there is a transformation between the workpiece coordinate system and the world coordinate

system. Each manipulator can have a Nuogan workpiece coordinate system to represent different

158

workpieces, or to represent the same workpiece at different positions.

Virtual axis of the robot type meeting XYZ three axes supports this function.

3. Attitude

Mathematically speaking, the attitude of the manipulator is the solution of multiple sets of
joint axes from the same set of virtual axis values. That is, when the manipulator moves to a
certain coordinate point in the Cartesian coordinate system, it can have various motion trajectories,
and these motion trajectories correspond to different attitudes. For the two attitudes of SCARA as
shown in the figure below, when moving in the X direction, joint-axis has two ways to do motion.

EFES HFES
ALY the left hand attitude 4 Y the right hand attitude

4. Singularity

In the inverse solution mode, when the robot moves to a certain position, it will lose a certain
degree of freedom, and this position is called the singular point, and it should be avoided to move
to the singular point in the actual use process. For example, when the SCARA manipulator is fully
straightened, it cannot translate in the X direction at this time. And when it needs to operate to
move in the negative direction of X, the structure cannot judge which posture motion to use, and
the manipulator cannot move at this time. Adjust the position of the joint axis in the forward

solution mode, and then switch to the inverse solution mode for use.

5.10.2 Forward and Inverse Solution Motion

The establishment of the manipulator is set by the CONNREFRAME (positive solution)
instruction and the CONNREFRAME (inverse solution) instruction. The virtual axis MTYPE
(motion type) value is 34 in CONNREFRAME, and the joint axis MTYPE value is 33 in
CONNREFRAME. Check whether a specific axis is located in the corresponding mode through
MTYPE.

Joint axes and virtual axes are specified by the CONNREFRAME or CONNFRAME
instructions, and the controller supports multiple robots as long as the number of axes is sufficient.

The program can control the movement of the joint axis or the virtual axis through the motion

command, but only the virtual axis or the joint axis can be operated at the same time, and the two

159

cannot be operated at the same time.

When operating the joint axis movement, the virtual axis needs to be in the
CONNREFRAME mode, so that it automatically points to the current spatial coordinate. When
operating the virtual axis movement, the joint axis needs to be in the CONNREFRAME mode, so
as to automatically point to the current joint axis coordinate.

Robot mode can be cancelled through CANCEL or RAPIDSTOP instruction.

1. Inverse Solution Motion

The motion corresponding to CONNFRAME is the inverse solution motion, and this
instruction acts on the joint axis. At this time, only the virtual axis can be operated. The virtual
axis can be moved in the Cartesian coordinate system such as straight line, circular arc, space arc,
etc. The joint axis will automatically move to the position after the inverse solution under the
action of CONNFRAME.

The inverse motion modes refer to the two motion modes of the controller. Under the premise
of ensuring the accurate position of the end point, the manipulator will make a trade-off between
the accurate trajectory of the motion process and the smooth speed.

Inverse solution motion mode is achieved by connecting to speed through CLUTCH_RATE,

the CLUTCH_RATE default value of the controller is 1000000.

CLUTCH_RATE of joint axis Motion mode description

0 Smooth mode: In this mode, the joint axis uses its own speed
and acceleration for speed planning, and the trajectory will be
deformed at high speed. It is suitable for occasions where the
precision of motion trajectory is not high.

Non-0 Forced mode: In this mode, the joint axis is completely
planned according to the speed and acceleration of the virtual
axis. This mode can accurately return to the set position, but it
will shake when moving at high speed.

2. Forward Solution Motion

The motion corresponding to CONNREFRAME is the positive solution motion, and this
instruction acts on the virtual axis. At this time, only the joint axis can be operated, and the joint
axis can also perform various movements, but the actual movement trajectory is not a straight arc.
This mode is generally used to manually adjust the joint position or return the power-on point to
zero.

The joint interpolation motion is the interpolation motion of the manipulator in the positive

solution mode, which controls the end point to go straight line, circular arc, etc.

160

5.10.3 Functions Supported by Robot

1. Robot control

Control the end point of the manipulator to move in the world coordinate system. Multiple
manipulator types are supported, and one controller can control multiple manipulators at the same
time. The manipulator has several motors, which are called several-joint manipulators. The motor
axis that controls the actual mechanical joint movement is called the joint axis of the manipulator.
All the joint axes consist of the joint coordinate system, and the joint axis rotates according to the
angle in this coordinate system.
2. Coordinate System Rotation

The coordinate system of the movement of the manipulator's working point is rotated and
offset with reference to the world coordinate system. A user coordinate system can be constructed.
Control the end point of the manipulator to move in the world coordinate system. The coordinate
axis of the world coordinate system is assumed to be a virtual axis and moves according to
distance units.
3. Mechanical Parameter Correction

The current manipulator parameters are automatically corrected according to the coordinates
and characteristics taught by the manipulator joints.
4. Robotic Calculation

Calculation between the coordinates of the end work point and the coordinates of the joint
axis.
5. Manipulator Motion Simulation

ZRobotView simulation software shows the movements of the manipulator.
6. Controller Simulate

Support offline simulation, which means it can be used when there is no controller.

5.10.4 Application Cases of Robot

Generally speaking, the inverse solution mode is selected during production and processing,
and the movement of the robot is controlled by sending the coordinate position to the virtual axis.
During the movement of the robot, corners will appear. It is necessary to set the corner
deceleration to prevent the machine from shaking at high speed.

Programming reference steps:

1. Parameter definition: Define the joint length and the distance between each axis, and set

the pulse equivalent of each axis.

161

2. Joint axis setting: Select the axis number of the joint axis, set the axis type, pulse
equivalent (the pulse equivalent of the joint axis needs to be converted into an angle), speed
parameters, set the inverse motion mode (CLUTCH_RATE), corner deceleration, etc.

3. Virtual axis setting: Select the virtual axis number, set the axis type (ATYPE=0) and pulse
equivalent.

4. Store robot parameters in TABLE.

5. Establish the forward and reverse connection of the robot.

Six degrees of freedom manipulator routine:

mmmmmtinarameter definition™

DIM LargeZ ‘vertical height of the base

DIM L1 "The X offset from axis 1 to axis 2; the offset from the center of the

turntable to the center of the large swing arm

DIM L2 'the length of large swing arm

DIM L3 'the distance between axis 3 center and axis 4 center

DIM L4 "The distance from axis 4 to axis 5.

DIM D5 '5 means turn one cycle, 6 means the number of turns, 0 means no
association.

DIM PulesVROneCircle 'the pulse number when virtual attitude axis turns one round
DIM Smallz "The vertical distance from the end to the axis 5

DIM SmallX, Smally XY offset of end to center of turntable

DIM InitRx, InitRy, InitRz 'Initial attitude, (0, 0, 0) points to z positive direction

parameter assignment
LargeZ=50

L1=0

L2=100

L3=0

L4=60

D5=0

Smallz=10

SmallX=0

SmallY=0

InitRx=0

InitRy=0

InitRz=0 Pules\VROnNeCircle=360*1000

DIMu_ml ‘The number of pulses per round of the motor 1

162

DIM u_m2 "The number of pulses per round of the motor 2

DIM u_m3 ‘The number of pulses per round of the motor 3
DIMu_m4 ‘The number of pulses per round of the motor 4
DIM u_m5 ‘The number of pulses per round of the motor 5
DIM u_m6 ‘The number of pulses per round of the motor 6
u_m1=3600

u_m2=3600

u_m3=3600

u_m4=3600

u_m5=3600

u_m6=3600

DIMi_1 'transmission ratio of joint 1

DIMi_2 ‘transmission ratio of joint 2

DIMi_3 ‘transmission ratio of joint 3

DIMi_4 ‘transmission ratio of joint 4

DIMi_5 'transmission ratio of joint 5

DIMi_6 ‘transmission ratio of joint 6

i1=1

i 2=1

i_3=1

i4=1

i_5=1

i 6=1

DIMu_j1 ‘The actual number of pulses per round of joint 1
DIMu_j2 ‘The actual number of pulses per round of joint 2
DIMu_j3 ‘The actual number of pulses per round of joint 3
DIM u_j4 "The actual number of pulses per round of joint 4
DIM u_j5 "The actual number of pulses per round of joint 5
DIMu_j6 ‘The actual number of pulses per round of joint 6
u_jl=u mi*i 1

U_j2=u_m2*i_2

u_j3=u_m3*i_3

u_jd=u ma*i 4

u_j5=u m5*i 5

u_jé=u_m6*i_6

163

mmmgint axis setting
BASE(0,1,2,3,4,5) 'select joint axis 0,1,2,3,4,5
ATYPE=1,1,1,1,1,1 'set axis type as pulse axis
UNITS = u_j1/360,u_j2/360,u_j3/360,u_j4/360,u_j5/360 ,u_j6/360
'set as pulse per @
DP0S=0,0,0,0,0,0 'set joint axis position, now it should be modified according to actual
situation
SPEED=100,100,100,100,100,100 'speed parameter setting
ACCEL=1000,1000,1000,1000,1000,1000
DECEL=1000,1000,1000,1000,1000,1000
CLUTCH_RATE=0,0,0,0,0,0 'use speed and acceleration of joint axis to for limitation
MERGE=ON 'start continuous interpolation
CORNER_MODE =2 'start corner deceleration
DECEL_ANGLE =15 * (P1/180) ‘'start deceleration angle 15 degrees
STOP_ANGLE =45 * (P1/180) 'reduce the angle to the lowest speed 45 degrees
mmmmtyirtyal axis setting™ttttttt
BASE(6,7,8,9,10,11)
ATYPE=0,0,0,0,0,0 'set as virtual axis
TABLE(O,LargeZ,L1,L.2,L3,L4,D5,u_j1,u_j2,u j3,u_j4,u_j5,u_j6,PulesVRONeCircle,SmallX,
SmallY,SmallZ,InitRx, InitRy,InitRz) 'fill the parameters according to manual
UNITS=1000,1000,1000,1000,1000,1000 'motion precision is set before, it can’t change
during the process

mmmmastablish robot connection

WHILE 1
IF SCAN_EVENT(IN(0))>0 THEN ‘input o, falling edge trigger
BASE(0,1,2,3,4,5) 'select joint axis number

CONNFRAME(S6,0,6,7,8,9,10,11) 'start reverse solution connection
WAIT LOADED 'Wait for the motion to load, now the position of the virtual
axis is automatically adjusted.
?"reverse solution mode"
ELSEIF SCAN_EVENT(IN(0))<0 THEN ‘input 0, falling edge trigger
BASE(6,7,8,9,10,11) 'select virtual axis number
CONNREFRAME(6,0,0,1,2,3,4,5) 'start forward solution connection
WAIT LOADED 'wait for the motion to load

?"forward solution mode"

164

ENDIF
WNED
END

The ZRobotView software simulation can be enabled. How to use it: After downloading this
program to the controller, first establish a forward or reverse solution connection (the robot cannot
be displayed on the ZRobotView software if it is not established), open the ZRobotView software,
and click the "Connect" button on the right, select the connection method with the controller and
confirm the connection (select the same IP network segment as the controller for network port
communication, and select the same serial port number and baud rate as the controller for serial
port communication), now the simulation robot will be built automatically for simulation motion.
Also, it can use the "manual motion" function of ZDevelop software, in this interface, simulating

the motion of the robot by manually changing the coordinates of the axes.

wmis: [FHum - @

- T
[
on | en |
omeeng | o |
FHHOPOS FATHNFOS:
e 4 - EE [®
— & —

—6 DOF robot ZRobotView software simulation graphic:

[l 2RobotView - 127,001 - FRAMES-CESENSE, RESEWNSE-62 - ul

165

5.11 G Code

As a multi-axis motion controller, ZMC series motion controller supports standard
Computerized Numerical Control (CNC) function to realize simple CNC machine tool control,
and it can be applied to other positioning and paths through G codes planning occasion.

G-code (G-code) is the most widely used computer numerical control programming language,
and it is mainly used in computer-aided manufacturing to control automatic machine tools.

ZBasic supports SUB procedure in G code form and supports G code in standard form. The
G code function can be customized according to the actual processing requirements, and the CNC
file can be parsed in the form of GSUB. It supports NC machining codes generated by various
CAD/CAM software such as UG, MasterCam, ArtCAM, etc., which can be applied to machine
tool processing occasions such as engraving and milling machines, precision engraving machines,
drilling and tapping centers and machining centers.

For the usage of G code, please refer to the chapter "Self-defined G code” in the simple

routine.

Chapter VI Description Related to Axis

6.1 The Concept of Axis

In the motion control system, the object controlled by motion is called “axis”, and the motion
platform controlled by one motor is called a motion axis. Each motion axis only has one DOF,

which can do linear interpolation or rotation motion. Below is the classification of axis:

AXxis Type Description

Motor axis Use controller’s pulse axis interface, EtherCAT bus or RTEX bus interface
to connect to drive, then assign the axis number for equipment, one motor
is used as one axis.

Virtual axis The virtual axis built in motion controller, not to use actual drive, or as a
virtual spindle for synchronous control and as a Cartesian axis in the robot
algorithm.

Encoder axis Use the controller native encoder axis interface, and assign it as actual
encoder input for using.

Motor axis: active operation, the motor moves according to the pulses sent by the controller,
the number of pulses sent is determined according to the movement parameter change *UNITS,
and the target demand position is reflected by the DPOS parameter.

Encoder axis: passive operation, the encoder rotates with the motor, generates pulses, and

166

feeds back to the controller. The number of pulses received by the controller is determined by
checking the ENCODER command, and the encoder feedback position is reflected by the MPOS

parameter.

6.2 Axis Number Description

1. Pulse axis number

Pulse motor axis: it runs actively and moves according to the pulses sent by the controller. It
is generally divided into servo motors and stepper motors. The number of pulses sent is
determined according to the movement parameter variation *UNITS, and the target demand
position is reflected by the DPOS parameter.

Encoder axis: it runs passively, follows the motor rotation, generates pulses and feedbacks to
the controller, the number of pulses received by the controller is determined by checking the
ENCODER command, and the encoder feedback position is reflected by the MPOS parameter.

When using the pulse axis, the motor axis number is the number of the DB axis terminal
interface connected to it, which is printed on the shell, in the form of Axis0, Axisl... (If there is no
DB interface, please check the corresponding controller hardware manual to determine the axis

number).

Take the following controller status as an example. For what type of axis each pulse axis
interface supports, please refer to the description of the Axis features list in the "State the
Controller" window. Step is pulse output, and Encoder is encoder feedback.

If the axis number is marked as “Step Encoder”, it can be configured to have both pulse
output Step and encoder feedback input Encoder. When ATYPE=4, the pulse output and encoder
feedback are on the same axis number. At this time, DPOS and MPOS are real. When ATYPE=1
or 7, there is only pulse output at this time, and the feedback of the connected encoder is on other
axis numbers. See the rules below, DPOS is true, and MPOS copies the value of DPOS.

If there only is "Encoder” behind the axis number, which means it feedbacks occupied axis
number. For example, axis 6, the default ATYPE of the feedback axis is 3 (when ATYPE is 3, it
corresponds to the quadrature encoder, which can be changed to 6, corresponding to the pulse
direction type Encoder).

As shown in the figure below, the motor axis number is axis 0, the corresponding encoder
axis number is axis 6, the motor axis 1 corresponds to encoder axis 7, and so on. Assuming that

the motor pulse and encoder are both connected to the Axis0 interface, then the motor axis number

167

is 0, the encoder axis number is mapped to axis 6. Assuming the motor is connected to the Axisl
interface, encoder is connected to Axis2 interface, then the motor axis number is 1, and the

encoder axis number is 8.

B Controller State *
VirtualAxises: 64 -
RealAxises: 64

Taskes: 22

Files/3Files: 612

Modbus0x Bits: 8000
Modbus4x Regs: 8000

VR Regs: 8000

TABLE Regs: 320000

RomSize: 62500KB

FlashsSize: 262144KB

SoftType: VPLC5xx-5imu

Softversion: 4.990-20180511

IpAddress: 127.0.0.1

HardVersion: 464-0

ControllerID: 1234

ZvlibVersion: 1.3.0-Alpha Build(20211020)

Axis features list:
0: Step Encoder
1: Step Encoder
2: Step Encoder
3: Step Encoder
4 Step Encoder
5: Step Encoder

BasicInfo |2CanN0des SlotdModes | CommunicationInfo

2. Bus Axis Number
Axis number of bus axis maps to axis number of connected drive equipment through
AXIS_ADDRESS instruction. Pulse axis number is the same as pulse controller axis number, and

the motor and encoder share one axis number.

3. Ways to modify the motor motion direction
Pulse axis:
1) select pulse mode through INVERT_STRP instruction
2) set denominator as negative value through STEP_RATIO
3) drive modifies the round direction
Bus axis:
1) set denominator as negative value through STEP_RATIO

2) drive modifies the round direction

6.3 Axis Status

Check various states of axis through AXISSTATUS instruction. It shows the value in decimal
system, and it judges the state according to relative value in binary system, several errors can be
made at the same time.

Axis parameter window shows the value in octal system, but the value printed by PRINT

command is decimal system.

Bit Description Print value

168

1 Follow-up error over-limit alarm 2 2h

2 Error communicating with remote axis 4 4h

3 Remote drive error 8 8h

4 Forward hardware limit position 16 10h

5 Reverse hardware limit position 32 20h

6 Be finding the origin point 64 40h

7 HOLD speed, keeping signal input 128 80h

8 Follow-up error over-limit error 256 100h

9 Over the forward software limit position 512 200h

10 Over the reverse software limit position 1024 400h

1 CANCEL in the execution 2048 800h

12 When pulse frequency exceeds MAX_SPEED limits, 1096 1000h
deceleration or MAX_SPEED should be modified.

14 Robot instruction coordinate error 16384 4000h

18 Power appears error 262144 40000h

19 Precise output buffer overflow 524288 80000h

21 Fail to trigger special motion instruction in motion 2097152 | 200000h

22 Alarm signal input 4194304 | 400000h

23 AXis enters pause state 8288608 | 800000h

AXIS_STOPREASON the historical stop reason of the axis is latched, write O to clear it,
latch by bit, and latch the information of AXISSTATUS.

The IDLE command is used to judge whether the motion command added to the axis is

completed. It returns O during motion and -1 when the motion ends. Generally, the WAIT IDLE

(axis number) statement is used in the program to judge the state of the axis.

The MTYPE instruction is used to judge the current motion type of the axis. For example, the

return value of MTYPE is 1, which means that the MOVE motion is in progress.

6.4 Axis Speed

6.4.1 Speed Curve

There are 3 stages, acceleration stage, constant speed stage and deceleration stage.

4 speed speed curve

target speed
vahie

acceleration constant speed deceleration time

169

When the displacement is short, there may not be a constant speed stage, but only an

acceleration and deceleration stage, as shown in the figure below.

4 speed Speed Curve

target speed | —
value

v

acceleration deceleration time

Commonly used speed commands include SPEED motion speed, ACCEL acceleration,
DECEL deceleration, FASTDEC rapid deceleration, etc., which are set when the axis parameters

are initialized and used as the speed reference for motion commands.

1. Trapezoidal Curve

If SRAMP is not set (set SRAMP equal to 0), the speed curve is a trapezoidal curve. In this
speed planning mode, the speed curve changes according to a trapezoidal curve. Keep the
parameters such as speed, acceleration and deceleration unchanged.

After the speed reaches the set value, it will move at a constant speed. If only the acceleration
is set, when the deceleration is 0, the deceleration will be automatically equal to the acceleration
value. Generally, the corresponding acceleration and deceleration are set before the movement. Do
not modify it during the movement. The adjustment during the movement will cause the
movement track to change.

Below is the routine:

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

MPOS=0

DPOS =0

UNITS =100

SPEED =1000

ACCEL = 10000

DECEL = 10000

SRAMP=0

TRIGGER

170

MOVE(300)

At this time, obtain the below speed curve: now, the acceleration and deceleration process is

faster, and the speed change has a greater impact on the machine tool.
Max:1000.00

2.

1 MSPEED(0)

Min:0.00

B

100

S Curve

200

300

400

By setting the value of SRAMP to set the appropriate rate of change of acceleration and

deceleration, the speed curve will be smooth, and the jitter is reduced during mechanical start-stop

or acceleration and deceleration. The range of SRAMP value is between 0-250 milliseconds. After

setting, the acceleration and deceleration process will be longer correspondingly. The longer the

time, the smoother the speed curve. If the setting time exceeds 250 milliseconds, it will be

smoothed according to 250 milliseconds.

Routine:
RAPIDSTOP(2)
WAIT IDLE
BASE(0)

DPOS =0
MPOS =0
UNITS =100
SPEED = 1000
ACCEL = 10000
DECEL = 10000
SRAMP=50
TRIGGER
MOVE(300)

When SRAMP=50, obtain the below S curve: it is softer when accelerating and decelerating.

171

When SRAMP=100, obtain the below S curve: acceleration and deceleration process become

longer.

3. SScurve

S curve and SS curve both can smooth the speed parameter, difference refers to below
graphics. “jerk” parameter value of S curve is constant in acceleration and deceleration stages, but
SS curve makes jerk parameter change according to acceleration and deceleration stages, speed
curve is smoother than S curve, which means it can decrease axis shake. SS curve is configured by

VP_MODE instruction, there are several modes to be selected.

v A%
A A
| |
S curve: consecutive acceleration T SS curve: consecutive jerk T

Routine: compare S curve with SS curve
BASE(0,1)

ATYPE=1,1

UNITS-100,100

DPOS=0,0

172

MPOS=0,0
SPEED=100,100
ACCEL=1000,1000
DECEL=1000,1000
SRAMP=100,100
VP_MODE=7,0
TRIGGER
MOVE(25) AXIS(0)
MOVE(25) AXIS(1)
END

Speed curve: mode7 processed acceleration and deceleration stages.

MSPEED(0) = 50 (vertical scale), start and end stages of SS curve acceleration and deceleration
are smoother.

MSPEED(0) = 50 (vertical scale), S curve.

6.4.2 SP Speed

The SP speed is applied to the interpolated motion commands with SP suffixes (such as
MOVESP, MOVECICRSP), and the motion speed uses the FORCE_SPEED parameter instead of
the SPEED parameter.

Start speed STARTMOVE_SPEED: the start speed of the SP movement of the custom speed.

End speed ENDMOVE_SPEED: the end speed of the SP movement of the custom speed.

Forced speed FORCE_SPEED: forced speed of SP motion for custom speed.

173

The above three parameters are valid only when the motion command with SP is used, and all
parameters are brought into the motion buffer.

When not in use, please set STARTMOVE_SPEED and ENDMOVE_SPEED to a larger
value, otherwise the next motion instruction will continue to use this parameter.

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1) ‘select XY axis
DPOS =0,0

MPOS =0,0

ATYPE=1,1 ‘pulse step or servo
UNITS = 100,100 ‘pulse equivalent
SPEED = 100,100

ACCEL = 200,200

DECEL = 200,200

SRAMP=100,100 'S curve
MERGE= ON 'start continuous interpolation
TRIGGER

'the first segment

FORCE_SPEED=50 ‘the first speed is 50
STARTMOVE_SPEED=20 'the first start speed is 20
ENDMOVE_SPEED=10 "the first end speed is 10
MOVESP(40,40)

'the second segment

FORCE_SPEED=60 'the second speed is 60
STARTMOVE_SPEED=30 'the second start speed is 30
ENDMOVE_SPEED=40

MOVESP(50,50)

'the third segment

FORCE_SPEED=80 'the third speed is 80
STARTMOVE_SPEED=30 'the third start speed is 30
ENDMOVE_SPEED=20

MOVESP(60,60)

END

174

Speed change curve: start moving from speed 0, STARTMOVE_SPEED = 20 of the first
segment has no effect, and the end speed of the first ssgment ENDMOVE_SPEED = 10 means
that the first segment of motion is completed after the speed drops to 10. The second segment of
motion actually starts the movement at the speed of 10 and end at ENDMOVE_SPEED = 40. The
start speed of the third segment is STARTMOVE_SPEED = 30, which is less than the end speed
of the second segment of 40. After the second segment is completed, the speed will drop to 30.
After the third segment is completed, there is no movement command behind it. So the speed

drops to 0 and ENDMOVE_SPEED has no effect.

T 2
; e | |]
_ 2% | g | i | fTVP_sPLEn() Min:0.00 Max.00.00 : \
KEsrE oo xvigst <<| g MSPEED() | Min0.00 Max:56.58 : \
o ~— N Ia‘uspzﬁn‘m s Min:0.00 Max:56.58 ‘
Lk v Wi : S5 s
& ta“ RIS %ﬁi: %E‘,m : g ™\ /f \\
T WS 48 Ed). - - 7
Vs 4 5 .
F [| [FspeD | 100 [100 / \‘\ /' NS \
/

6.5 Axis Mapping

When using the local pulse axis of the controller, no axis mapping is required, and the default
axis number can be used, please refer to the section on axis number description.

When using the bus axis and the extended pulse axis, the bound axis number should be
mapped before use. If you want to change the default axis number of the pulse axis, you can
remap and configure the axis number. The mapped axis number uses the AXIS_ADDRESS axis
mapping command, the grammar for axis mapping is different.

The axis numbers can be mapped at will, but they must be within the range of the number of
axes supported by the controller, and the mapped axis numbers cannot be repeated. Generally, they
are mapped in sequence, which is not easy to make mistakes. Different types of axis channel

numbers are sorted independently, and the axis numbers are all from 0 to start.

Supports mixed interpolation of local pulse axis and EtherCAT axis. After the axis number is
mapped, the extended axis resource can be called.

The axis number of EtherCAT and the axis number of the local pulse axis are independent

175

coding sequences. For example, in a certain configuration, two local pulse axes and two EtherCAT
axes need to be used. The axis mapping relationship during configuration is as follows:

AXIS 0——Ilocal pulse axis 0

AXIS 1——Ilocal pulse axis 1

AXIS 2——EtherCAT axis 0

AXIS 3——EtherCAT axis 1

Before configuration, set AXIS 0-3 as virtual axis ATYPE=0, and then use AXIS_ADDRES
instruction to map the axis number of the drive. After the configuration is completed, configure
ATYPE according to the characteristics of the axis, and then send commands to axes 0-3.

The default configuration file is configured according to the total number of channels of the
connected hardware resources. If the hardware resources are greater than the software resources,
the default mapping is to map all the software resources to the corresponding hardware resources

in sequence, and the redundant unmapped hardware resources are uncontrollable.

Note that multiple motors can be connected to a multi-axis drive, one motor represents one
axis, and each motor requires axis number mapping, which is equivalent to that the drive can

control multiple axes.

6.6 Axis Type

Use the ATYPE instruction to configure the axis type according to the characteristics of the
current axis. When the user program is initialized, the configuration of the axis type should be
completed as soon as possible. If the type does not match, an error will be reported.

All unassigned axes default to virtual axes, and the value of ATYPE is 0.

The axis types supported by the controller are as follows:

Atype Type Description
0 Virtual axis

Servo or stepper of pulse direction
Servo analog signal control method
Quadrature encoder
output in pulse direction + quadrature encoder input
output in pulse direction + quadrature encoder input in pulse direction
Encoder of pulse direction
Servo or stepper of pulse direction + EZ input
Servo or stepper of pulse direction through ZCAN
Quadrature encoder through ZCAN
Encoder of pulse direction through ZCAN
Galvanometer type with galvanometer status feedback.
If galvanometer links with AXISSTATUS bit2 unsucessfully, it will set,

OO N[O O | W| N -

[EEN
o

N
o

176

ENCODER returns to the original sending position, pulse unit.
ZMCA408SCAN supports.

21

Galvanometer axis type, it needs support of controller.

The default system period is 250us, galvanometer refresh period is 50us,
which are related to firmware.

All motion control instructions of ordinary axes can be used, and support
galvanometer axis mixed interpolate with other axis types.

22

Galvanometer type with galvanometer status feedback.

If galvanometer links with AXISSTATUS bit2 unsucessfully, galvanometer
warnning AXISSTATUS bit3 will set.

MPOS returns to reflection position, and does the reverse correction.
ENCODER returns to original feedback position, pulse unit.

ZMCA408SCAN supports.

24

Remote encoder axis type.
ZHD 500X handwheel using, need 5 series controllers with firmware version
above 20180404.

50

RTEX period position mode, available in RTEX controller

51

RTEX period speed mode, available in RTEX controller.

52

RTEX period torque mode, available in RTEX controller.
Do close 2 DOF mode in connected drive, and set speed limit.

65

ECAT period position mode, available in EtherCAT controller

66

ECAT period speed mode, available in EtherCAT controller.
DRIVE_PERIOD should be set as 20 or above.

67

ECAT period torque mode, available in EtherCAT controller.
DRIVE_PERIOD should be set as 30 or above..

70

Sef-defined ECAT mode, only read encoder value. available in EtherCAT
controller.

1. ATYPE=0 Virtual axis

It can be the main axis when in the multi-axis synchronization motion, and slave axes all

follow this virtual axis.

As the superposition axis for other axes, it superposes a virtual axis to axes that really move.

These virtual axes can be set through ADDAX command (axis superposition), then the motion of

each virtual axis is superposed to actual-axis.

2. ATYPE=lor7 Pulse axis

The motion of axis is controlled by pulse sent from the controller, and the direction of pulse

determine the direction of motor rotation. The axis motion speed (fast or slow) is controlled

according to frequency for sending pulse.

There are 3 modes of controller pulse output: pulse + direction, dual-pulse, orthogonal pulse.

They are configured through INVERT_STEP instruction, the default is pulse + direction mode.

1) pulse + direction mode

177

PUL+, PUL- output instruction pulse string, the number of pulse is relative to motion running
distance, and the pulse frequency is relative to motion running speed.
DIR+, DIR- output direction signal, different levels of this signal are relative to different

rotation direction. This mode occupied the most in drive.

pulse line level |

direction line level

rotate in negative direction rotate in positive direction

2) CW/CCW: dual-pulse work mode
Two lines both output pulse signal, CW means output pulse signal in positive direction, CCW
means output pulse signal in negative direction. Usually, they are differential output, the phase

difference angle between the two signals is determined by the phase lead or lag.

forward pulse line ‘
reverse pulse line |

rotate in positive direction rotate in negative direction

3) AB Phase: orthogonal pulse work mode

It refers to two identical pulse signals (both are square waves) that are independent of each
other. The positive direction pulse signal is generated before the negative direction pulse signal,
and the phase difference between the two is 90 degrees. At this time, it is a positive rotation. The
negative direction pulse signal is generated before the positive direction pulse signal, and the two
are 90 degrees out of phase, which is negative rotation at this time.

The function of counting or encoding is achieved by the phase difference between the two

forward pulse line
reverse pulse line

rotate in positive direction rotate in negative direction

pulses.

Polarity reversal
If the positive and negative of the pulse line are switched, that is, the original positive

direction pulse signal becomes a negative direction pulse signal, and the negative direction pulse

178

signal becomes a positive direction pulse signal, and the movement direction at this time will be
opposite to the above situation.

1) pulse + direction mode

pulse line level |

direction line level

rotate in positive rotate in negative

2) CW/CCW: dual-pulse work mode

reverse pulse line
forward pulse line

rotate in negative direction rotate in positive direction

3) AB Phase: orthogonal pulse work mode

The criterion for judging the rotation direction in this mode is to observe which direction
sends out the pulse signal first, and the rotation direction is the negative direction.

The negative direction pulse signal is generated before the positive direction pulse signal, and
the phase difference between the two is 90 degrees. At this time, it is a negative direction rotation.
The positive direction pulse signal is generated before the negative direction pulse signal, and the

phase difference between the two is 90 degrees. At this time, it is a positive direction rotation.

reverse pulse line
forward pulse line

rotate in negative rotation rotate in positive rotation

In the above modes, pulse + direction mode and dual-pulse two polarities are related to 8 different
motion states. AB phase/BA phase mode is the customized mode of some controllers (ZMC4XX

series or above).

3. ATYPE=3o0r 6 encoder axis

When encoder separately occupies one axis number, axis type can be selected as 3 or 6

according to encoder type.

4. ATYPE=4 pulse axis and encoder axis share the axis number
When the current pulse axis with encoder feedback, the axis type is set as 4, and the signal

output by pulse and the signal input by encoder both are on the same axis number.

179

5. ATYPE=8 CAN expand axis
When expanding axis through CAN bus, set the axis type of expanded pulse axis as 8, and set

the axis type of connected encoder axis on expanded axis as 9.

6. ATYPE=21 galvanometer axis number
When galvanometer equipment is connected, the axis type of galvanometer should be set 21,

and galvanometer axis is supported by some models.

7. ATYPE=50,51,52 RTEX bus axis number

When using the RTEX bus driver, the axis type can only be selected from the above three,
among which ATYPE=50 is the position mode, the motion command is used to control the motor
running. ATYPE=51 speed mode in the speed mode, the DAC command is used to set the running
speed of the motor, and continue to run. ATYPE=52 torque mode uses DAC command to set the
motor torque in torque mode, and continue to run, motion command cannot be used in speed and
torque mode, so there is no need to set axis parameters, stop running with DAC=0.

To switch modes in speed and torque mode, in order to prevent accidents, first set the DAC to
0 and then use the ATYPE command to switch.

Note: Before modifying ATYPE to switch to torque mode, please set the first position of the
drive parameter Pr6.47 to 0 and turn off the 2-DOF control mode. Then set the speed limit through
parameter Pr3.17. When the set value of Pr3.17 (speed limit selection) is O, set the speed limit
through Pr3.21, and when the set value is 1, you can switch between Pr3.21 or Pr3.22 for the
speed limit value during torque control through SL_SW.

8. ATYPE=65,66,67 EtherCAT bus axis number

When using the EtherCAT bus driver, the axis type can only be selected from the above three,
among which ATYPE=65 is the position mode, the motion command is used to control the motor
operation. ATYPE=66 speed mode is in the speed mode, the DAC command is used to set the
running speed of the motor, and continue to run, there are two speed units, the number of pulses /S
and R/MIN are determined by the drive. ATYPE=52 is torque mode, using the DAC command to
set the torque of the motor in torque mode, and continue to run, the range of DAC value is 0-1000
in torque control mode, corresponding to 0-100%, such as DAC=10, the motor torque is 1% at this
time, and motion commands cannot be used in speed and torque mode, so there is no need to set
axis parameters, and DAC=0 to stop running.

To switch modes in speed and torque mode, in order to prevent accidents, first set the DAC to

0 and then use the ATYPE command to switch.

180

Chapter VII Motion Instructions

When the current motion command is being executed, the subsequently called motion
commands will be automatically buffered. Each axis of the ZMotion motion controller can support
up to 4096 levels of motion buffers (the number of buffers varies with different models of
controllers). When all the buffers are occupied, the subsequent call of the motion instruction will
block the current task, and the task will continue to run until there is a space in the buffer.

Each motion instruction has a MOVE_MARK parameter, and which motion buffer is
currently running can be known through MOVE_CURMARK.

Single-axis motion commands such as MOVE use the axis parameters of the respective
single-axis, such as SPEED of this axis.

The multi-axis interpolation motion commands such as MOVE use the SPEED and other axis
parameters of the BASE spindle as the vector composite speed, but they have corresponding SP
commands, which can specify various speed parameters for each movement, such as,
FORCE_SPEED, STARTMOVE_SPEED, ENDMOVE_SPEED, see the corresponding *SP
instruction.

The axis parameter MERGE is used to set whether to decelerate to zero in the middle of the
single-axis positioning or multi-axis interpolation command of the axis group. When
MERGE=O0FF, it decelerates to 0. When MERGE=0N, it does not decelerate. At this time, the
axis parameter CORNER_MODE of the BASE spindle will set more than one value. Whether to
automatically decelerate to the necessary speed between axis interpolations.

ZMotion motion controller supports motion pause or resume of single-axis or axis group,
refer to MOVE_PAUSE, MOVE_RESUME.

ZMorion motion controller supports motion superposition, refer to ADDAX.

7.1 Single-axis Motion Instructions

ADDAX -- Motion Superposition

| Type | Single Axis Motion Instruction

181

Description

Motion superposition: add motion of one axis to another axis.
When using ADDAX to realize superposition. the added value is not units but
pulse amount.

Conversion relationship: Distance of superimposing axis *unites of

superimposing axis /unites of superimposed axis = distance of superimposed

axis

For example:

If UNITS of axis A equals to 100, and UNITS of Axis B equals to 50, and the

superposition axis moves 100.

Situation 1: add motion of axis A to axis B, now showing Axis A moves 100,
then the axis B moves 100*100/50=200

Situation 2: add motion of axis B to axis A, now showing axis B moves 100,
then axis A moves 100*50/100=50.

Motion can not be added to each other simultaneously between 2 axes, when
add motion of axis A to axis B, then add motion of axis B to axis A
simultaneously is not allowed.

Support series superposition, motion A superimposes to B, B is superimposed
to C.

Support parallel superposition, motion A is superimposed to B and C at the
same time.

When superimposing, the speed starts to change from the superimposed axis,
and the acceleration and deceleration are determined according to the
superimposed axis acceleration and deceleration and the ratio of the units of
the two axes.

ADDAX has no effect when the axis MTYPE is FRAME or REFRAME.

Grammar

Superposition: ADDAX (superposing axis No.) AXIS (superposed axis No.)
Cancel superposition: ADDAX(-1) AXIS (superposed axis No.)
This superposition is added in controllers above 4xx series with 20220708
firmware version or above.
ADDAX(srcaxis ,[imode], [para])

destaxis: the superposed target axis number

srcaxis: the superposed axis number of the source axis

imode: superposition mode

0: default value, single-axis superposition, compatible with previous
direct pulse number superposition

1: single-axis superposition, support scale adjustment.
ADDAX (srcaxis, 1, ratio)

ratio: ratio value, supports floating point numbers, target axis
distance = source axis distance * ratio.

2: single-axis superimposition, supports gear ratio adjustment
ADDAX(srcaxis, 2, ratioin, ratioout)
ratioin: numerator, integer, supports negative numbers
ratioout: denominator, positive integer.

182

target axis distance = source axis distance * ratioin / ratioin

3: single axis superimposed to two axes, support angle adjustment
BASE (destaxis1, destaxis2)
ADDAX(srcaxis, 3, angle)

destaxis: the superposed target axis 1, 2

angle: angle, radian value, target axis 1 distance = source axis
distance * cos(angle).

target axis2 distance = source axis distance * sin(angle).

Note: If needs to cancel, cancel the two axes ADDAX(-1, 3, 0) or
ADDAX(-1) AXIS (the superposed axis No.) respectively

4: SCAN linkage superposition, use SCAN axis to compensate the
deviation of platform axis, and their directions and amounts must be
consistent, if not, please adjust gear ratio or add ratio for SCAN correction.

BASE (destaxis, destaxis2)

ADDAX(srcaxis, 4, srcaxis2)

Use srcaxis to compensate destaxis, use srcaxis2 to compensate
destaxis2.

Note: two axes should be cancelled together, ADDAX(-1, 4, -1) or
ADDAX(-1) AXIS (superposed axis No.)

5: SCAN linkage superposition, platform axis is superposed at SCAN
axis, their directions and amounts must be consistent, if not, please adjust gear
ratio or add ratio for SCAN correction.

BASE(destaxis, destaxis2)

ADDAX(srcaxis, 5, srcaxis2)

srcaxis is superposed at destaxis, srcaxis2 is superposed at
destaxis2.

Note: two axes should be cancelled together, ADDAX(-1, 5, -1) or
ADDAX(-1) AXIS (superposed axis No.)

Controller General
Example Example 1:
BASE(0,1)
ATYPE=1,1
UNITS=100,200 'set UNITS of axis 0 as 100, and axis 1 as 200

SPEED=1000,1000 'set speed as 1000

ACCEL=10000,10000 ‘set acceleration as 10000

DECEL=10000,10000 'set deceleration as 10000

ADDAX(0) AXIS(1) ‘add motion of axis 0 to axis, superpose according to
the number of pulse

DP0OS=0,0 'set position as 0,0
TRIGGER 'trigger oscilloscope automatically
MOVE(100) ‘axis 0 moves 100, axis 1 moves 100*100/200=50

‘the switch of UNITS two axes should be considered

183

WAIT IDLE ‘wait until motion ends
ADDAX(-1) AXIS(1) ‘cancel the motion superposition

The motion trajectory when the superposition command is not used. (there is
no special description in below graphic, which means offset is not
configured).

DPOS(0) vertical scale 100

DPOS(1) vertical scale 100

The motion trajectory when superposition command is used:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

Example 2:

RAPIDSTOP(2)

WAIT IDLE

BASE(0,1)

DPOS=0,0

ATYPE=1,1

UNITS=100,100 ‘pulse proportion is 1:1
SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

ADDAX(0) AXIS(1) ‘superpose axis 0 to axis 1
TRIGGER

MOVE(200) AXIS(0)

184

MOVE(-100) AXIS(1)
WAIT IDLE ‘wait running ends
ADDAX(-1) AXIS(1) ‘cancel superposition

Before superposition:

After superposition: following, send motion command for axis 0, axis 0 and
axis 1 move together, and keep superposition. Cancel superposition until
ADDAX(-1) AXIS(1).

Example 3: mode 1
BASE(0,1) ‘select axis No.
UNITS = 100,100
DPOS=0,0
TRIGGER
BASE(1) ‘select superposed axis
ADDAX(0,1,1.5)AXIS(1)
‘mode 1 superposition, superpose axis 0 to axis 1, the ratio is 1.5
MOVE(100) AXIS(0)
WAIT UNTIL IDLE(0) AND IDLE(1)
?”axis 1 superposing axis No.” ADDAX AXIS(1)
ADDAX(-1) AXIS(1) ‘cancel superposition
The pulse amount is the same, axis 1 motion distance is 1.5 times of axis 0.

185

Example 4: mode 2
BASE(0,1) ‘select axis No.

UNITS = 100,100

DPOS=0,0

TRIGGER

BASE(1) ‘select superposed axis

ADDAX(0,2,3.5) AXIS(1) ‘mode 2 superposition, superpose axis 0 to axis 1
MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1)

?”axis 1 superposing axis No.” ADDAX AXIS(1)

ADDAX(-1) AXIS(1) ‘cancel superposition

END

The pulse amount is the same, axis 1 motion distance is 3/5 times of axis 0.

Example 5: mode 3

BASE(0,1,2) ‘select axis No.

UNITS = 100,100,100

DP0S=0,0,0

BASE(1,2) ‘select target No., axis 1 and axis 2

186

TRIGGER

ADDAX(0,3,PI/3) ‘mode 3 superposition, superpose axis 0 to axis 1, axis 2
MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1) AND IDLE(2)

DIM pos 1, pos2

pos 1=100*cos(P1/3)

pos 2=100*sin(P1/3)

?axis 0 target position”, 100, “actual position” ENDMOVE(0)
?”axis 1 target position”, posl, “actual position” ENDMOVE(1)
?”axis 2 target position”, pos2, “actual position” ENDMOVE(2)
?”axis 1 superposing axis No.” ADDAX AXIS(1)

?”axis 2 superposing axis No.” ADDAX AXIS(2)

ADDAX(-1) AXIS(1) ‘cancel superposition
ADDAX(-1) AXIS(2)

CANCEL -- Stop Single-Axis / Axis Group

Single Axis Maotion Instruction

Axis defined by “BASE” decelerate to stop, if the BASE axis is involved
in interpolation movement, the interpolation movement also stops.

If the defined axis is in the list of BASE, whether CANECL master axis or
any axis in BASE axis list, interpolations of axis group all stop.

The deceleration of Mode 2 obeys the bigger value between FASTDEC and
DECEL. Generally, FASTDEC is set as bigger than DECEL.

If there is requirement of calling absolute position after using CANCEL, it
needs to use “WAIT IDLE” to wait the movement to stop.

187

CANCEL (mode)

Mode: mode selection
O(default) |Cancel the motion in process
1 Cancel the motion in buffer
5 Cancel motions in process and in buffer, stop speed refers to
fast deceleration “FASTDEC”.
3 Stop pulse delivery immediately
4 Cancel motions in process and in buffer, stop speed refers to

deceleration “DECEL”.

CANCEL (4) is valid in ZMC4XX series controllers whose firmware version
is above 170708.

CANCEL (3) can’t be used for the slave axis that is in interpolation.

General

Example 1: mode =0

BASE(0)
DPOS=0
SRAMP=0
ATYPE=1
UNITS=100

SPEED=1000

ACCEL=1000

DECEL=1000 'set deceleration as 1000
FASTDEC=10000 'set fast deceleration as 10000

TRIGGER

‘trigger oscilloscope automatically

MOVE(1000) 'motion in process
MOVE(-1000) 'motion in buffer
CANCEL(0) ‘axis will only execute MOVE(1000)

Motion trajectory:
MSPEED(0) Vertical scale 1000

188

Example 2: mode = 1

BASE(0)

DPOS=0

SRAMP=0

ATYPE=1

SPEED=100

ACCEL=1000

DECEL=1000 'set deceleration as 1000
FASTDEC=10000 'set fast deceleration as 10000
TRIGGER 'trigger oscilloscope automatically
MOVE(1000) ‘motion in process

DELAY (-1000) ‘motion in buffer

CANCEL(1) ‘axis will only execute MOVE (1000)

Motion trajectory:
MSPEED(0) Vertical scale 1000

Current motion still runs at deceleration speed to stop because it only cancels
the buffer motion.

Example 3: mode = 2

BASE(0,1)

DPOS=1,1

ATYPE=1,1

SPEED=1000,1000

ACCEL=1000

DECEL=1000 ‘set deceleration as 1000

FASTDEC=10000 'set fast deceleration as 10000

SRAMP=0,0

TRIGGER

MOVE(1000,500) 'interpolation movement

DELAY (1000) 'delay 1 second

CANCEL(2) AXIS(1) ‘axis 1 stops, axis 1 was involved in interpolation, the
interpolation also stops, and deceleration is 10000.

Motion trajectory and speed curve:

189

DPOS(0) Vertical scale 1000, no offset
MSPEED(0) Vertical scale 1000, offset -1000
DPOS(1) Vertical scale 1000, no offset
MSPEED(1) Vertical scale 1000, offset -1000

Example 4: mode = 3

BASE(0)

ATYPE=1

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000 ‘set deceleration as 1000
FASTDEC=10000 ‘set fast deceleration as 10000
TRIGGER ‘trigger oscilloscope automatically
MOVE(10000) ‘the current motion 10000
DELAY(2000) ‘delay 2 seconds

CANCEL(3) ‘now directly stop sending pulse, axis stops immediately

Motion Trajectory
MSPEED (0) vertical scale 1000

Example 5: mode = 4

190

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

SPEED=1000

ACCEL=10000

DECEL=10000 ‘set deceleration as 10000
FASTDEC=10000 ‘set fast deceleration as 100000
TRIGGER ‘trigger oscilloscope automatically
MOVE(1000) ‘the current motion

DELAY (-2000) ‘the motion in buffer

DELAY (500)

CANCEL(4) ‘emergency stop, deceleration is 10000

Motion Trajectory
DPQOS (0) vertical scale 500, no offset
MSPEED (0) vertical scale 500, no offset

RAPIDSTOP , DECEL, FASTDEC

DATUM - Homing

Single Axis Motion Instruction

Origin (home position or zero position) finding movement of single axis.

Origin switch is set by DATUM_IN, plus-minus switches are set by FWD_IN
and REV_IN respectively.

Inputs of ZMC motion controller are effective when they are 0, when the input
is OFF, it indicates the movement reaches origin or limit position. For
common-opened signal, the signal electrical level is needed to be reversed by
using INVERT_IN.

Inputs of ECI motion controller are effective when they are 1, when the input
is ON, it indicates the movement reaches origin or limit position. For

191

common-closed signal, the signal electrical level is needed to be reversed by
using INVERT_IN.

When using Z signal to trigger origin position finding, ATYPE(ATYPE=4/7)
should be configured to the mode which contains Z signal.

When LSPEED is configured, it will stop emergency when found the origin,
and the position that decelerated to LSPEED is the origin position.

When multi-axis finds the origin position, every axis should use DATUM
instruction.

In terms of BUS (EtherCAT or RTEX) motion controller, after using DATUM
to find origin position, the relevant MPOS should be cleared by manual.

DATUM (mode), DATUM (21, mode2)

Mode: zero position finding mode, when using “mode+10”, it means the
axis will move backward to find zero position after reaching the limit position,
it will not stop, such as, if mode=13, 13=mode 3 + move backward 10, this is
valid when the origin position is in the center.

When ATYPE=4, homing mode plus 100 (mode 100+n and 110+n
corresponds n and 10+n), indicating the relevant MPOS will be cleared
automatically after linking the encoder (only ZMC4XX series controller
support).

DATUM (0) AXIS (Axis No.) to clear assigned axis’ error state.

Value |Description

0 Clear error states of all axes.

1 Axis runs forward at the speed of CREEP until signal Z
appeared, it will directly stop when meeting limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

2 AXis runs reverse at the speed of CREEP until signal Z appeared,
it will directly stop when meeting limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

3 Axis runs forward at the speed of SPEED, until meeting origin
switch, then axis runs reverse at the speed of CREEP until away
from origin switch.

When in the finding origin process, it will directly stop when
meeting positive limit switch, when in the creeping process, it
will directly stop when meeting negative position limit.

DPOS value will be reset to 0, at the same time, correct MPOS.

4 AXxis runs reverse at the speed of SPEED, until meeting origin
switch, then axis runs forward at the speed of CREEP until away
from origin switch.

When in the finding origin process, it will directly stop when
meeting negative limit switch, when in the creeping process, it
will directly stop when meeting positive position limit.

DPOS value will be reset to 0, at the same time, correct MPOS.

5 Axis runs forward at the speed of SPEED, until meeting origin

192

switch, then axis runs reverse at the speed of CREEP until away
from origin switch.

Then, keep moving at CREEP speed reversely until meeting
signal Z. It stops immediately when met limit switch.

DPOS value will be reset to 0, at the same time, correct MPOS.

6 Axis runs reverse at the speed of SPEED, until meeting origin
switch, then axis runs forward at the speed of CREEP until away
from origin switch.

Then, keep moving at CREEP speed forward until meeting
signal Z. It stops immediately when met limit switch.
DPOS value will be reset to 0, at the same time, correct MPOS.

8 Axis runs forward at speed of SPEED, until meeting origin
switch, it will stop immediately when met limit switch.

9 AXxis runs reverse at speed of CREEP, until meeting origin
switch, it will stop immediately when met limit switch.

21 Use EtherCAT drive homing function, now mode 2 is valid.

Set drive homing mode (6098h), default 0 means using drive
current homing mode. Using axis SPEED, CREEP, ACCEL and
DECEL to multiple UNITS, then automatically set drive 6099h
and 609Ah.

Action sequence: 6098 homing mode — 6099 speed — 609A
acceleration — 6060 switch to current mode.

Mode2: it is valid when mode=21, default value is 0. When it is not O, set
it as drive homing mode, the value is set according to drive manual data
dictionary 6098h.

Controller

General

Example

Example 1 find origin directly.

BASE(0)

DPOS=0

ATYPE=1

SPEED =100 'speed when searching for original switch.
CREEP =10 ‘speed when moving backward.
DATUM_IN=5 'input 5 as original switch signal input.

INVERT _IN(5,0N) 'reverse the electricity level signal of IN5, when signal is
normally open.(ZMC series)

TRIGGER 'trigger the oscilloscope automatically

DATUM(3) ‘axis 0 moves forward to find original switch at speed of
100units/s, then continue to move at speed of 10units/s
after reaching the original switch until leave, DPOS reset
as 0 at the same time.

Motion trajectory and speed curve:
DPOS(0) Vertical scale 500
MAPEED(0) Vertical scale 100
IN(5) Vertical scale 10

193

After reaching origin switch, creep backward until leave, at this time, DPOS is
cleared as 0, homing movement finished. In order to make it clear, the creep
process is longer here. It is very short in the actual applications.

Example 2 Searching for origin reversely after meeting position limit

switch.

Base(0)

DPOS=0

ATYPE=1

SPEED =100 'speed when searching for original switch.

CREEP =10 'speed when moving backward.

DATUM_IN=5 'input5 as original switch signal input.

FWD_IN=6 'input6 as positive position switch signal input.

INVERT_IN(5,0N) 'Reverse the signal electricity level, often need the

common closed signal.

INVERT_IN(6,0N)

Trigger "Trigger oscilloscope automatically

DATUM(13) ‘axisO moves forward to find original switch at speed of
100units/s, move backward at speed of 10units/s after
reaching the original switch until leave, DPOS reset as
0 at the same time.

Motion trajectory and speed curve:

DPOS(0) Vertical scale 500

MAPEED(0) Vertical scale 100

IN(5) Vertical scale 10

IN(6) Vertical scale 10

194

Example 3 EtherCAT Bus Homing (Panasonic A6N Servo)
Enable the motor according to EtherCAT initialization routine.

SPEED=100
CREEP=10

ACCEL=1000
DECEL=1000
DATUM (21,0)

WHILE 1
TABLE(0)=DRIVE_STATUS 'read the present homing status to judge.
IF READ_BIT2(10,TABLE(0)) THEN ‘depend on below figure to judge

IF READ_BIT2(12, TABLE(0)) THEN
?"homing finished"

ENDIF

ENDIF

WEND

END

'Homing speed*UNITS, transferred to 6099.
‘Creep speed*UNITS, transferred to 6099.

‘Acceleration speed*UNITS, transferred to 609A.

‘Start homing as per the present homing mode of drive,
now judge according to drive signal, not controller signal.

There are different homing processes of different drive manufacturers, please
see drive manual to determine.
Description of bit 13, bit 12, bit 10:

bit13 | bit12 | bit10 Description
0 0 0 in the motion of homing
0 0 1 The homing motion doesn’t start or interrupts
0 1 0 homing finishes, not achieve target position
0 1 1 Homing finishes normally
1 0 0 Detect that homing is abnormal, it still moves
1 0 1 Detect that homing is abnormal, it stops

195

Example 4 Rtex Bus homing (Panasonic A6N Servo)

Enable the motor according to Rtex initialization routine.

SPEED=100 'the speed of finding the origin

ACCEL=1000 ‘acceleration and deceleration

DECEL=1000

DATUM (21, $11) 'Start homing as per the present homing mode of drive,
now judge according to drive signal, not controller signal.

Determine the homing mode according to drive manual

11h Z Phase
12h HOME 1 *2
13h HOME 1 *3
14h POT 1 *2
15h POT 1 *3
16h NOT T *2
Initialization mode 17h NOT 1 *3
18h EXIT1 T *2
19h EXITL T *3
1Ah EXIT2 T *2
1Bh EXIT2 T *3
1Ch EXIT3 T *2
1Dh EXIT3 T *3

DATUM_IN, INVERT_IN

DATUM_OFFSET - Origin Position Offset

Single Axis Maotion Instruction

Set position offset of origin.
When returned to the origin successfully, axis moves to offset position.

DATUM_OFFSET (axis)=distance
distance: offset distance

Valid in 4xx series controllers and above.

BASE(0)

DPOS=0

ATYPE=1

SPEED=100 ‘the speed of finding origin

CREEP=10 ‘reveres finding speed

DATUM_IN=5 ‘input INS as origin switch

INVERT_IN(5,0N) ‘reverse IN5 electric level signal, common-opened signal
starts to reverse (ZMC controllers)

TRIGGER ‘automatically trigger oscilloscope

DATUM_OFFSET(0)=100 ‘axis 0 homing, then offset

196

DATUM(3) ‘axis 0 does homing at the speed of 100units/s firstly, then
leaves origin at the speed of 1Ounits/s after finding
origin, and clear DPOS as 0 at the same time.

Motion trajectory and speed curve: axis stops at the position
DATUM_OFFSET finally.

DPOS(0) Vertical scale 500

MAPEED(0) Vertical scale 100

IN(5) Vertical scale 5, offset -5

DATUM

VMOVE - Continuous Movement

Single Axis Maotion Instruction

Move in one direction continuously.
There is no need to use “CANCEL” to stop the “VMOVE” movement in
advance, the new “VMOVE” movement will automatically replace the former
“VMOVE” and modify the direction.

VMOVE (dirl)
dirl=-1: negative movement 1: positive movement

General

BASE(0)
DPOS=0
ATYPE=1
SPEED=100
ACCEL=1000

197

DECEL=1000 'set deceleration as 1000
SRAMP=100

VMOVE(-1) ‘continuous negative movement
WAIT UNTIL IN(0)=ON 'wait until input 1 is on
VMOVE(1) ‘continuous positive movement

DPOS(0) Vertical scale 500, no offset
MAPEED(0) Vertical scale 100, no offset
IN(0) Vertical scale 1000, no offset

FORWARD, REVERSE

FORWARD - positive movement

Single Axis Motion Instruction

BASE selects axis to move forward.
REVERSE is switched after CANCEL.

Forward [axis(axis number)]

General

Example 1

Base(0)

FORWARD ‘axis 0 move forward continuously
WAIT UNTIL IN(1)=ON ‘wait until input 1 is on
CANCEL(2)

Example 2

FORWARD AXIS(1) ‘axis 1 move forward
WAIT UNTIL IN(1)=ON ‘wait until input 1 is on
CANCEL(2) AXIS(1)

REVERSE, VMOVE

198

REVERSE — negative movement

Single Axis Motion Instruction

BASE selects axis to move reverse.
FORWARD is switched after CANCEL.

reverse [axis(axis number)]

General

Example 1

Base(0)

REVERSE ‘axis 0 move backwards continuously
WAIT UNTIL IN(1)=ON 'wait until input 1 is on

CANCEL(2)

Example 2

REVERSE AXIS(1) ‘axis 1 move backwards
WAIT UNTIL IN(1)=ON ‘wait until input 1 is on
CANCEL(2) AXIS(1)

FORWARD, VMOVE

MOVEMODIFY — Modify Motion Position

Single Axis Maotion Instruction

Change the last motion target position.

The effect is the same as MOVEABS when there is no motion before, but it
will not enter the motion buffer, see Example 1 for reference.

Need WAIT command, see example 2 for reference.

If it is continuous interpolation, then use MOVEMODIFY will interrupt the
continuity of motion speed.

When MOVEMODIFY is used in multi-axis, the motion is not absolutely
linear interpolation movement.

MOVEMODIFY (distance)
distancel: the motion distance of one single axis
Only support single axis modification at present.

General

Example 1

BASE(0)

UNITS=100 'set the pulse amount

DPOS=0

SPEED=100 'speed setting

ACCEL=1000 ‘acceleration setting

DECEL=1000

TRIGGER 'trigger the oscilloscope automatically
MOVEABS(100)

199

MOVEABS(10) ‘axis will move to position 100, then move back to 10.

Motion trajectory:
DPOS(0) Vertical scale 100

If:

MOVEMODIFY (100)

MOVEMODIFY (10)'axis will move to position 10 directly, MOVEMODIFY
will not enter the motion buffer.

Motion trajectory:

DPOS(0) Vertical scale 100

Example 2

BASE (0)

UNITS=100 ‘pulse equivalent setting

DEFPOS(0)

SPEED=100 'speed setting

ACCEL=1000 ‘acceleration setting

DECEL=1000

TRIGGER 'trigger the oscilloscope automatically

MOVEABS(500)

WAIT UNTIL DPOS >=300 'modify the target position until axis reaches 300.

MOVEMODIFY (100) 'Change the target position to 100, the axis will
decelerate to stop, then move inversely.

Use WAIT, motion trajectory:
DPOS(0) vertical scale 200

200

MSPEED(0) vertical scale 200

Not use WAIT, move to position 100 directly.
DPOS(0) vertical scale 300

MOVEMODIFY2

7.2 Multi-axis Motion Instruction

RAPIDSTOP - all axes stop

Multi-Axis Motion Instruction

All axes stop immediately, if axes were involved in interpolation
movement, the interpolation movement also stops.

In the mode 2, deceleration obeys the bigger value between FASTDEC and
DECEL. Generally, FASTDEC is set to be bigger than DECEL.

If there is a requirement of calling absolute position after using RAPIDSTOP,
it needs to use “WAIT IDLE” to wait the movement to stop.

201

RAPIDSTOP (mode)
Mode: mode selection

0(default) |Cancel motion in process
1 Cancel motion in buffer
5 Cancel motions in process and in buffer, stop speed refer to fast
deceleration FASTDEC
3 Stop pulse delivery immediately
4 Cancel motions in process and in buffer, stop speed refer to
deceleration DECEL

RAPIDSTOP (4) is valid in ZMC4XX series controllers with firmware
version 170708 or above.

General

Example 1

BASE(0,1,2)

DP0OS=1,1,1

ATYPE=1,1,1

UNITS=100,100,100

SPEED=1000 ‘interpolated resultant speed is 100
ACCEL=1000

DECEL=1000 'set deceleration as 1000
FASTDEC=10000 'set fast deceleration as 10000

TRIGGER

MOVE(1000,1000,1000) ‘'motion in process
MOVE(-1000,-1000,-1000) 'motion in buffer
RAPIDSTOP(1) ‘axis only executes the current motion

Motion trajectory and speed curve:

DPOS(0) vertical scale 1000, no offset
MSPEED(0) vertical scale 1000, offset -1000
DPOS(1) vertical scale 1000, offset 100
MSPEED(1) vertical scale 1000, offset -900
DPOS(2) vertical scale 1000, offset 200
MSPEED(2) vertical scale 1000, offset -800

202

b DPOS|2) Min:1.00 Max:1001.01)

Example 2

BASE(0,1)

DP0OS=0,0

ATYPE=1,1

SPEED=1000

ACCEL=1000

DECEL=1000 'set deceleration as 1000
FASTDEC=10000 ‘set fast deceleration as 10000
TRIGGER

MOVE(10000,10000) 'interpolation movement
DELAY (2000) 'delay 2 seconds
RAPIDSTOP(2) ‘axis stops immediately, deceleration is 10000

Motion trajectory and speed curve:
DPOS(0) vertical scale 1000, no offset
MSPEED(0) vertical scale 1000, no offset
DPOS(1) vertical scale 1000, offset 100
MSPEED(1) vertical scale 1000, offset 100

203

CANCEL, DECEL, FASTDEC

MOVE - linear motion

Multi-Axis Motion Instruction

linear interpolation motion, which is relative motion.

Only speed of main axis is valid in interpolation motion, main axis is the first
axis in BASE list, motion will follow parameters of main axis.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

Interpolation motion distance: X=X + X2 + X2 +....+ X2

Motion time: T=X/speed of main axis.

MOVE(distancel [,distance2 [,distance3 [,distance4...]]])
Parameters:

distancel -move distance of the first axis
distance2 -move distance of the next axis

General

Example 1

Base(0,1,2,) ‘axis 0 is the main axis

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100 'pulse equivalent configuration

SPEED=100,10,1000 ‘only speed of main axis is valid, act as resultant
speed

ACCEL=1000,1000,1000

DECEL=1000,1000,1000

DPOS =0,0,0

Trigger "Trigger the oscilloscope automatically

MOVE(500,1000,1500) ‘'axis 0,1,2 will do linear interpolation, relative

204

distance.
WAIT IDLE 'wait until the motion stops.
PRINT *DPOS 'Printed result:500,1000,1500

Speed of each axis in interpolation motion is the component speed of main
axis.

MSPEED(0) vertical scale 100
MSPEED(1) vertical scale 100
MSPEED(2) vertical scale 100
VP_SPEED(0) vertical scale 100

Example 2

BASE(0,1)

ATYPE=1,1

UNITS=100,100 ‘pulse equivalent configuration
SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

DP0OS=0,0

MPOS=0,0

Trigger "Trigger the oscilloscope automatically
MOVE(100,100)

Interpolation trajectory
DPOS(0) horizontal scale 100
DPOS(1) vertical scale 100

205

MOVEABS,*SP

MOVEABS - Linear Motion-Absolutely

Multi-Axis Motion Instruction

Linear Interpolation movement, it moves absolutely to defined
coordinate.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

MOVEABS(positionl[, position2[, position3[, position4...]]])
positionl -coordinate of first axis
position2 -coordinate of next axis

General

BASE(0,1)

UNITS=100,100

DPOS=0,0

MPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER ‘Trigger the oscilloscope automatically.

MOVEABS(500,300) ‘'axis 0 moves to 500, axis 1 moves to 300,
interpolation motion

MOVEABS(100,100) ‘'axis 0 moves back to 100, axis 1 moves back to 100.

Interpolation trajectory;
DPOS(0) horizontal scale 300
DPOS(1) vertical scale 300

206

When using MOVE relative motion, other conditions are the same,
MOVEBAS instruction is turned into MOVE instruction.

Interpolation trajectory:

DPOS(0) horizontal scale 300

DPOS(1) vertical scale 300

MOVE, *SP

MOVEMODIFY2 — Move to new position

Multi-axis motion instruction

Force the previous motion to stop, move to a new target position at
former speed and acceleration.

If there isn’t motion in the former, then the result caused by this instruction is
the same as MOVEABS, but each axis’ motion is independent and will not
enter the motion buffer, see example 1 for reference.

It must be used with WAIT instruction. See example 2 for reference.

When there is continuous interpolation, MOVEMODIFY2 will interrupt the
continuity of motion.

When MOVEMODIFY?2 is used in multi-axis situation, the motion is not
absolutely linear interpolation movement.

MOVEMODIFY?2 (abspos1, abspos2,[...])

207

absposl BASE -Target position of axis 1
abspos2 BASE -Target position of axis 2

ZMC3XX series with firmware version above 201612009.
ZMC4XX series with firmware version above 20170509.

Special firmware

Example 1

BASE(0,1) 'set as pulse type

ATYPE=1,1

DP0OS=0,0

SPEED = 100,100

ACCEL=1000 ‘acceleration configuration

DECEL=1000

TRIGGER

MOVE(200) AXIS(0)

MOVEMODIFY2(50,200) ‘cancel MOVE (200), force the axis to move to a
new position (50,200).

MOVE(100) AXIS(1)

Motion trajectory :
DPOS(0) vertical scale 200
DPOS(1) vertical scale 200

Example 2

BASE(0,1)

ATYPE=1,1 'set as pulse type
DPOS=0,0

SPEED=100,100

ACCEL=1000,1000 ‘acceleration configuration
DECEL=1000,1000

TRIGGER

MOVE(200) AXIS(0)

WAIT UNTIL DPOS(0)>=100 ‘wait until the axis O reaches position 100
MOVEMODIFY2(50,200)

MOVE(100) AXIS(0)

208

Motion trajectory:

The vertical scale is the same as the above.

MOVEMODIFY

MOVECIRC —-Arc at the Center

Multi-Axis Motion Instruction

motion.

generate a full circle.

SP, see *SP for reference.

Circular interpolation between two axes, arc at the center, relative

The first axis and second axis in BASE list will execute circular interpolation,
and in relative motion mode. If the end distance is 0, then the motion will

This instruction can be used in continuous interpolation movements by adding
When using, it is necessary to obtain the coordinates of the center of the circle

and the end point of the arc relative to the starting point.
Ensure the coordinates are correct, or the actual motion path will be wrong.

B is (400,400).

A
400 end point B
100
start point A the center of circle C
0 100 400

Suppose start point A is (100,100), the center point C is (400,100), end point

209

Then the coordinate of point C that is related to starting point A is (300,0), for
point B is (300,300).

MOVECIRC (end1, end2, centrel, centre2, direction)

endl: end point coordinate of the first axis, which is relative to starting point.
end2: end point coordinate of the second axis, which is relative to starting
point.

centerl: center point coordinate of the first axis, relative to starting point.
center2: center point coordinate of the second axis, relative to starting point.
direction: 0-anticlockwise 1-clockwise

General

BASE(0,1)

ATYPE=1,1 'set as pulse type

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER ‘trigger the oscilloscope automatically

MOVE(100,100) 'move to position (100,100)

MOVECIRC(200,0,100,0,1) 'draw the semicircle with 100 radius in
clockwise, end point coordinate is (300,100).

Interpolation trajectory:
DPOS(0) vertical scale 150
DPOS(1) vertical scale 150

Other conditions are the same, the motion instruction is modified:
MOVECIRC(0,0,100,0,0'radius is 100, center (100,0), draw in anticlockwise

Interpolation trajectory:
Same as the above.

210

MOVECIRCABS, MOVECIRC2, *SP

MOVECIRCABS - Center Based Arc - Absolute

Multi-Axis Motion Instruction

Circular interpolation between two axes, draw the arc at the center,
absolute motion.

The first and second axis in BASE list will execute circular interpolation, and
in absolute motion mode.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

MOVECIRCABS doesn’t support moving a whole circle, but MOEVCIRC
supports.

MOVECIRCABS (end1, end2, centrel, centre2, direction)

endl: end point coordinate of the first axis, the absolute position.

end2: end point coordinate of the second axis, the absolute position.
centerl: center point coordinate of the first axis, the absolute position.
center2: center point coordinate of the second axis, the absolute position.
direction: 0-anticlockwise 1-clockwise

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1)

ATYPE=1,1 'set as pulse type

UNITS=100,100

DP0OS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER "Trigger the oscilloscope automatically
MOVE(100,100) 'move to position (100,100)

211

MOVECIRCABS(200,0,100,0,1) ‘'draw quarter circle of radius 100
clockwise, end point is (200,0).

Interpolation Path
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

MOVECIRC, MOVECIRC2ABS, *SP

MOVECIRC2 - Three-Point Based Arc

Multi-Axis Motion Instruction

Circular interpolation between two axes, three-point based arc, relative
motion.

The first and second axis in BASE list will execute circular interpolation, and
in relative motion mode, which is relative to start point.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

Note: don’t use this instruction to do full circle interpolation. it is better to use
MOVECIRC or use MOVECIRC2 two times.

MOVECIRC2(midl, mid2, endl, end2)

mid1: middle point coordinate of the first axis, which is relative to start point.
mid2: middle point coordinate of the second axis, it is relative to start point.
endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1)

ATYPE=1,1 'set as pulse type
UNITS=100,100

DP0OS=0,0

SPEED=100,100

212

ACCEL=1000,1000
DECEL=1000,1000
TRIGGER "Trigger the oscilloscope automatically
MOVE(100,100) 'move to position (100,100)
MOVECIRC2(100,100,200,0)

'draw semicircle through 3 points, relative coordinate

Interpolation path:
DPOS(0) vertical scale 200
DPOS(1) vertical scale 200

MOVECIRC2ABS, MOVECIRC, *SP

MOVECIRC2ABS --Three-Point Based Arc - Absolute

Multi-Axis Motion Instruction

Circular interpolation, arc at the center, absolute motion.

The first and second axis in BASE list will execute circular interpolation, and
in relative motion mode. This instruction can be used in continuous
interpolation movements by adding SP, see *SP for reference.

Note: don’t use this instruction to do full circle interpolation. it is better to use
MOVECIRC or use MOVECIRC2 two times.

MOVECIRC2ABS(mid1, mid2, endl, end2)

mid1: middle point coordinate of the first axis, which is relative to start point.
mid2: middle point coordinate of the second axis, it is relative to start point.
endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1)
ATYPE=1,1 'set as pulse type
UNITS=100,100

213

DPOS=0,0
SPEED=100,100
ACCEL=10000,10000
DECEL=10000,10000
TRIGGER "Trigger the oscilloscope automatically
MOVE(100,100) 'move to position (100,100).
MOVECIRC2ABS(200,200,300,100)
'draw semicircle through 3 points, absolute coordinate

Interpolation path:
DPOS(0) vertical scale 200
DPSO(1) vertical scale 200

MOVECIRC2, MOVECIRCABS, *SP

MHELICAL - Central Helical

Multi-Axis Motion Instruction

Helical Interpolation, arc at the center, relative motion.

The first and second axis in BASE list will execute circular interpolation, the
third axis will execute helical, and they are relative to start point.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

It can execute a full circle in Z direction.

MHELICAL (end1,end2,centrel,centre2,direction,distance3,[mode])

endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.
centerl: center point coordinate of the first axis, relative to start point.
center2: center point coordinate of the second axis, relative to start point.
direction: 0-anticlockwise 1-clockwisemode

distance3: motion distance of the third axis

mode: speed calculation of the third axis

Value Description

214

O(default) | Third axis participates interpolation speed calculation.

1 Third axis keep independent.
Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1,2)

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

TRIGGER

MHELICAL(200,-200,200,0,1,100) ‘original point as start point, center is
(200,0), end point is (200,0),
clockwise, Axis Z participates speed
calculation, move 100.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

Axis 0 and axis 1 interpolation under XY mode:

215

MHELICAL2, MHELICALABS, *SP

MHELICALABS — Central Helical - Absolute

Multi-Axis Motion Instruction

Helical Interpolation, arc at the center, absolute motion.

The first and second axis in BASE list will execute circular interpolation, the
third axis will execute helical, in absolute motion way.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

It can execute a full circle in Z direction.

MHELICALABS(endl,end2,centrel,centre2,direction,distance3,[mode])
end1: motion coordinate of the first axis

end2: motion coordinate of the second axis

centerl: motion center point of the first axis

center2: motion center point of the second axis

direction: 0-anticlockwise 1-clockwisemode

distance3: motion distance of the third axis

mode: speed calculation of the third axis

Value Description

O(default) | Third axis participates interpolation speed calculation.

1 Third axis keep independent.
Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1,2)

ATYPE=1,1,1 'set as pulse type
UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration

216

DECEL=1000,1000,1000

TRIGGER

MHELICALABS(0,0,200,0,1,100) ‘'start from original point, center point
(200,0), end point (0,0), clockwise,
AXxis Z participates speed calculation,
move 200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

Axis 0 and axis 1 interpolation trajectory under XY mode:

MHELICAL, MHELICAL2ABS, *SP

MHELICAL2 — Three-Point Based Helical

Multi-Axis Motion Instruction

Helical Interpolation, arc at the center, absolute motion.

217

The first and second axis in BASE list will execute circular interpolation, the
third axis will execute helical, in relative motion way.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

It can’t generate a full circle in Z direction, please use MHELICAL or
MHELICALABS.

MHELICAL2(mid1, mid2, endl, end2, distance3,[mode])

mid1: middle point coordinate of the first axis, which is relative to start point.
mid2: middle point coordinate of the second axis, it is relative to start point.
endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.
distance3: motion distance of the third axis, which is relative to start point.
mode: speed calculation of the third axis

Value Description

O(default) | Third axis participates interpolation speed calculation.

1 Third axis keep independent.

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1,2)

ATYPE=1,1,1 'set as pulse type

UNITS=100,100,100

DP0OS=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

MHELICAL2(100,100,200,0,200) ‘start from original point, center point
(100,100), end point (200,0), Axis Z
participates speed calculation, move
200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

218

Axis 0 and axis 1 trajectory interpolation under XY mode:

MHELICAL2ABS, MHELICAL, *SP

MHELICAL2ABS-Three-Point Based Helical-Absolute

Multi-Axis Motion Instruction

Helical Interpolation, arc at the center, absolute motion.

The first and second axis in BASE list will execute circular interpolation, the
third axis will execute helical, in relative motion way.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

It can’t generate a full circle in Z direction, please use MHELICAL or
MHELICALABS.

MHELICAL2(mid1, mid2, end1, end2, distance3,[mode])

mid1: middle point coordinate of the first axis, which is relative to start point.
mid2: middle point coordinate of the second axis, it is relative to start point.
endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.
distance3: motion distance of the third axis, errata: there is a problem with this

219

parameter in versions before 20150306, it is recommended to use
the MHELICALZ2 relative command

mode: speed calculation of the third axis

Value Description

O(default) | Third axis participates interpolation speed calculation.

1 Third axis keep independent.

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0OS=0,0,0

SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000

MOVE(100,100) 'move to position (100,100)

TRIGGER

MHELICAL2ABS(200,100,200,0,200) ‘start from point (100,100), center
point (200,100), end point (200,0).
Axis Z participates speed
calculation, move 200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

Axis 0 and axis 1 interpolation trajectory under XY mode:

220

MHELICAL2, MHELICALABS, *SP

MECLIPSE -- Ellipse

Multi-Axis Motion Instruction

Ellipse interpolation, arc at the center, relative motion, helical is optional.

Execute elliptical interpolation with first and second axis in BASE list,
relative motion mode, the third axis is available for synchronized helical
motion.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

Valid for full ellipse drawing.

Valid for ellipse drawing whose major axis is parallel or perpendicular to X.

MECLIPSE (end1, end2, centrel, centre2, direction, adis, bdis[, end3])
endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.
centerl: center point coordinate of the first axis, relative to start point.
center2: center point coordinate of the second axis, relative to start point.
direction: 0-anticlockwise 1-clockwise

Value Description
0 Clockwise
1 Anticlockwise

adis: ellipse radius of the first axis, semi-major or semi-minor axis is optional.
bdis: ellipse radius of the second axis, semi-major or semi-minor axis is
optional. when adis is equal to bdis, the path is arc or helical line.

end3: distance of the third axis, fill this value when helical is necessary.

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

Example 1 No helical
RAPIDSTOP(2)

WAIT IDLE(0)
BASE(0,1,2)

221

ATYPE=1,1,1 'set type as pulse

UNITS=100,100,100

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

DP0S=0,0,0

TRIGGER "Trigger the oscilloscope automatically

MECLIPSE(0,0,100,0,1,100,50) ‘center point (100,0), end point (0,0),
semi-minor axis 50, semi-major axis
100, full ellipse drawing clockwise, no
helical.

Interpolation Path:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

Example2 with helical.
RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

DP0S=0,0,0

TRIGGER "Trigger the oscilloscope automatically

MECLIPSE(0,0,100,0,1,100,50,200) ‘center point (100,0), end point (0,0),
semi-minor axis 50, semi-major axis
100 full ellipse drawing clockward with
helical motion. The motion distance of
the third axis is 200.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode, and it
merges axis Z motion on the basis of example 1.

222

MECLIPSEABS, *SP

MECLIPSEABS - Ellipse - Absolute

Multi-Axis Motion Instruction

Ellipse interpolation, arc at the center, absolute motion, helical is
optional.

Execute elliptical interpolation with first and second axis in BASE list,
absolute motion mode, the third axis is available for synchronized helical
motion.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

Valid for full ellipse drawing.

MECLIPSEABS(end1, end2, centrel, centre2, direction, adis, bdis[, end3])
endl: end point coordinate of the first axis, which is relative to start point.
end2: end point coordinate of the second axis, which is relative to start point.
centerl: center point coordinate of the first axis, relative to start point.
center2: center point coordinate of the second axis, relative to start point.
direction: 0-anticlockwise 1-clockwise

Value Description
0 Clockwise
1 Anticlockwise

adis: ellipse radius of the first axis, semi-major or semi-minor axis is optional.
bdis: ellipse radius of the second axis, semi-major or semi-minor axis is
optional. when adis is equal to bdis, the path is arc or helical line.

end3: distance of the third axis, fill this value when helical is necessary.

Ensure the coordinate is correct, or the actual motion path will be wrong.

General

223

Example 1 no helical

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000
TRIGGER "Trigger the oscilloscope automatically
MOVE(100,100)
MECLIPSEABS(300,100,200,100,1,100,50)
‘center (200,100), end point (300,100), semi-minor
axis 50, semi-major axis 100, semi ellipse drawing,
no helical.

Interpolation Path:
DPOS(0) vertical scale 150
DPOS(1) vertical scale 150

Example 2 with helical

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed

ACCEL=1000,1000,1000 'main axis acceleration

DECEL=1000,1000,1000

MECLIPSEABS(0,0,100,0,1,100,50,200)
‘center point (100,0), end point (0,0), semi-
minor axis 50, semi-major axis 100, full ellipse
drawing with helical.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

224

Axis 0 and axis 1 interpolation trajectory:

MECLIPSE, *SP

MSPHERICAL — Space Arc

Multi-Axis Motion Instruction

optional.

Spherical arc interpolation motion, relative motion mode, helical is

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

stanceb5])
Parameters:

endl
end2
end3
centrel
centre2

MSPHERICAL (end1,end2,end3,centrel,centre2,centre3,mode[,distance4][,di

motion distance parameterl of axis 1
motion distance parameterl of axis 2
motion distance parameterl of axis 3
motion distance parameter2 of axis 1
motion distance parameter2 of axis 2

225

centre3 motion distance parameter2 of axis 3
mode specify the meaning of above parameters

Value Description

0 Generate arc by present point, middle point, and end point.
parameterl: end point distance
parameter2: middle point distance

1 Generate arc by present point, central point, and end point.
Move along the shortest arc.

parameterl: end point distance

parameter2: central point distance.

2 Generate circle by present point, middle point, and end point.
parameterl: end point distance
parameter2: middle point distance.

3 Generate circle by present point, central point, and end point.

Move along the shortest arc first, then continue to finish the

whole circle.

parameterl: end point distance

parameter2: central point distance.

distane4: add the fourth axis as helical motion, appoint the relative motion
distance of axis 4. This axis is not involved in speed calculation.

distane5: add the fifth axis as helical motion, appoint the relative motion

distance of axis 5. This axis is not involved in speed calculation.

Ensure the coordinate is correct, otherwise, the actual motion path will be
wrong.

General

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000

TRIGGER

Suppose central point is (120,160,150), radius is 250, 4 trajectories are

generated below due to mode differences.

mode O:

MSPHERICAL(120,160,400,240,320,300,0) 'end point: (120,160,400),
middle point: (240,320,300),
mode 0: three-point based
arc.

AXxis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

226

mode 1:

MSPHERICAL(120,160,400,120,160,150,1)
‘relative position, end point (120,160,400), central
point (120,160,150), mode 1: move along the shorter
arc.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

mode 2:
MSPHERICAL(120,160,400,240,320,300,2)
‘end point: (120,160,400), middle point:
(240,320,300), mode2: three points base circle.
Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

227

mode 3

MSPHERICAL(120,160,400,120,160,150,3)
‘end point: (120,160,400), central point:
(120,160,150), mode3: move along the shorter arc
first (red part), then continue to finish the whole
circle.

Axis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

228

MSPHERICALABS - Space Arc — Absolute

Multi-Axis Motion Instruction

Space arc interpolation motion, absolute motion mode, helical is optional.
For continuous interpolation of custom speed, it can use command with SP
suffix, please refer to *SP description.

MSPHERICALABS(end1,end2,end3,centrel,centre2,centre3,mode[,distance4
][distance5])
Parameters:

endl motion distance parameterl of axis 1
end2 motion distance parameterl of axis 2
end3 motion distance parameterl of axis 3
centrel motion distance parameter2 of axis 1
centre2 motion distance parameter2 of axis 2
centre3 motion distance parameter2 of axis 3
mode specify the meaning of above parameters

Value Description

0 Generate arc by present point, middle point, and end point.
parameterl: end point distance
parameter2: middle point distance

1 Generate arc by present point, central point, and end point.
Move along the shortest arc.

parameterl: end point distance

parameter2: central point distance.

2 Generate circle by present point, middle point, and end point.
parameterl: end point distance

parameter2: middle point distance.

3 Generate circle by present point, central point, and end point.

Move along the shortest arc first, then continue to finish the

whole circle.

parameterl: end point distance

parameter2: central point distance.

distane4: add the fourth axis as helical motion, appoint the relative motion
distance of axis 4. This axis is not involved in speed calculation.

distane5: add the fifth axis as helical motion, appoint the relative motion

distance of axis 5. This axis is not involved in speed calculation.

Ensure the coordinate is correct, otherwise, the actual motion path will be
wrong.

General

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0S=0,0,0

229

SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000

TRIGGER

Suppose central point is (120,160,150), radius is 250, then below shows
motion trajectories of 4 modes.

mode 0:

MSPHERICALABS(120,160,400,240,320,300,0)

‘end point: (120,160,400), middle point: (240,320,300), mode 0, arc is made
by three points.

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

mode 1:

MSPHERICALABS(120,160,400,120,160,150,1)

‘absolute position, end point (120,160,400), central point (120,160,150), mode
1: move along the shortest arc.

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

230

mode 2:
MSPHERICALABS(120,160,400,240,320,300,2)

‘end point: (120,160,400), middle point: (240,320,300), mode2: a full circle is
made by three points

Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

mode 3

MSPHERICALABS(120,160,400,120,160,150,3)

‘end point: (120,160,400), central point: (120,160,150), mode3: move along
the shortest arc first (red part), then continue to finish the whole circle.
Interpolation trajectory of axis 0, axis 1 and axis 2 under XYZ mode:

231

400 -
350
300 -
250 4
200 A
150
100 -
50
0 4
-50

MSPHERICAL

MOVESPIRAL - Involute Arc

Multi-Axis Motion Instruction

Involute arc interpolation movement, relative motion mode, helical is
optional.

Distance between present point and central point will determine the start
radius, if the start radius is 0, then angel can’t be determined, it will start from
angel O directly, see the example 1 for reference.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

MOVESPIRAL (centrel,centre2,circles,pitch[,distance3][,distance4])
Parameters:

centrel: central point coordinate-aixsl, relative.
centre2: central point coordinate-aixs2, relative.
circles: circles amount, integral or decimal. Minus value means
clockwise, end point of each circle is the one point of the
line between start point and central point.
pitch: diffusion distance of each circle, which can be minus value.
distane3: add the third axis as helical motion, appoint the relative
motion distance of axis 3. This axis is not involved in
speed calculation.

232

distane4: add the fourth axis as helical motion, appoint the relative
motion distance of axis 4. This axis is not involved in
speed calculation.

General

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000

TRIGGER "Trigger the oscilloscope automatically

Example 1 diffusion starts from start point

MOVESPIRAL(0,0,2.5,30) 'set start point as central point, rotate 2.5 circles
anticlockwise, diffusion distance of each circle
is 30.

Interpolation path
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

Example 2 no helical motion

MOVESPIRAL(100,100,2.5,30) ‘'start radius is 100, central point is
(100,100), rotate 2.5 circles anticlockwise,
diffusion distance of each circle is 30.

Interpolation Path

(if path circle amount is not full displayed, make captured gap proper bigger)

DPOS(0) vertical scale 300

DPOS(1) vertical scale 300

233

MOVESPIRAL (100,100,-2.5,3.) 'When the number of rotations is negative
(-2.5), rotate clockwise

Example 3 with helical motion

MOVESPIRAL(100,100,2.5,30,100) ‘start radius is 100, central point is
(100,100), rotate 2.5 circles
anticlockwise, diffusion distance of

each circle is 30, Axis Z moves
upwards to 100.
AXxis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

234

MOVESPLINE/MOVESPLINEABS -- Spline Interpolation

Special Motion Instruction

Spline interpolation, relative or absolute motion.

Fill the spline points data into TABLE in advance.
This instruction doesn’t support SP function, continuous interpolation with
self-defined speed can be set by instructions: BIT8 of CONNER_MODE.

MOVESPLINE (axes,mode ,dtendcontrol4, dtcontrol2, dtcontrol3)

axes: the number of interpolation axes

mode: mode, 0 means 3 Layer Bezier Splines is used.

dtendcontrol4: table index of fourth control point. for Bessel spline, it means
the end point.

dtcontrol2: table index of second control point.

dtcontrol3: table index of third control point.

For Bessel spline, present point is the first control point.

ZMC4XX series with firmware version above 170507.
ZMC306X with firmware version above 161208.

Example 1:

BASE(0,1)

DPOS=0,0

ATYPE=1,1, 'set type as pulse

SPEED=100,100 'main axis speed

ACCEL=1000,1000 'main axis acceleration
DECEL=1000,1000

TRIGGER

CORNER_MODE=2 + 256 'set SP motion, use FORCE_SPEED.
FORCE_SPEED=100

TABLE(0,100,100) "TABLE(0) and TABLE(1) will store the second

235

control point, relative to start point.

TABLE(10,200,-100) ‘"TABLE(10) and TABLE(11) will store the third
control point, relative to start point.
TABLE(20,300,0) '"TABLE(20) and TABLE(21) will store the fourth

control point, distance of end point.
MOVESPLINE(Z2, 0, 20, 0, 10) '2 axes relative spline interpolation.

Interpolation path:
DPOS(0) vertical scale 100, offset -100
DPOS(1) vertical scale 100, no offset

Example 2:

BASE(0,1,2)

ATYPE=1,1,1 ‘set type as pulse axis
UNITS=100,100,100

DP0OS=0,0,0

SPEED=100,100,100 ‘set main axis speed
ACCEL=1000,1000,1000 ‘set main axis acceleration
DECEL=1000,1000,1000

TRIGGER

TABLE(0,100,100,100) ‘TABLE(0) and TABLE(1) will store the second
control point, relative to start point.
TABLE(10,200,-100,200) 'TABLE(10) and TABLE(11) will store the third
control point, relative to start point.
TABLE(20,300,0,0) "TABLE(20) and TABLE(21) will store the fourth
control point, distance of end point.
MOVESPLINE(3, 0, 20, 0, 10) '2 axes relative spline interpolation.

AXxis 0, axis 1 and axis 2 interpolation trajectory under XYZ mode:

236

CORNER_MODE

MOVE_TURNABS-Rotating Stage Interpolation

Multi-Axis Motion Instruction

Rotating Stage Interpolation - ensure motion on stage is linear.

The rotation function means that the work platform rotates on a plane parallel
to XY, and the positive direction of rotation should be consistent with the
positive direction of XY (right-hand rule).

The rotation parameters are stored in the TABLE, which stores the R axis
number as order, the number of pulses per revolution of the R axis, the X axis
number, the Y axis number, the X circle center, and the Y circle center.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

It is recommended to use robotic algorithm directly, see ZMOTION Robotic
Instructions Reference for reference, the related frame is framel1/17.

MOVE_TURNABS(tablenum,positionl1[,position2[,position3][, position4...]1])
Parameters: tablinum: Table NO. which saves rotating parameters.

positionl: coordinate of the first axis
position2: coordinate of next axis

General

BASE(0,1,2)

ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100

DP0S=0,0,0

SPEED=100,100,100 'main axis speed

237

ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000 'main axis deceleration

TABLE(0, 3, 3600, 0,1, 0,0) 'set parameters of rotating stage.
TRIGGER

MOVE_TURNABS(0,100,200,90) 'move to target position by linear.
WAIT IDLE ‘wait until the motion stops.

Interpolation Path:

DPOS(0) vertical scale 100
DPOS(1) vertical scale 100
DPOS(2) vertical scale 100

MCIRC_TURNABS

MCIRC_TURNABS-Rotating Stage Interpolation-Absolute

Multi-Axis Motion Instruction

Rotating Interpolation-ensure motion on stage is circular.

The rotation function means that the work platform rotates on a plane parallel
to XY, and the positive direction of rotation should be consistent with the
positive direction of XY (right-hand rule).

The rotation parameters are stored in the TABLE, which stores the R axis
number as order, the number of pulses per revolution of the R axis, the X axis
number, the Y axis number, the X circle center, and the Y circle center.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

MCIRC_TURNABS(tablenum, refposl, refpos2, mode, endl, end2 [, dis3,
dis4, dis5])

tablinum: Table NO. which saves rotating parameters.

refposl: reference point of the first axis, absolute position

238

refpos2: reference point of the second axis, absolute position
mode: 1-the reference point is before the current point

2-the reference point is behind the end point

3-the reference point is in the middle

It uses the method of three-point circle.
endl: the end point of the first axis, absolute position
endl: the end point of the second axis, absolute position
dis3: the end position of rotating axis

General

Base(0,1,2)
ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100
DP0S=0,0,0
SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000
Table(0, 3, 3600, 0,1, 0,0) 'set parameters of rotating stage
TRIGGER
TURN_POSMAKE(0,100,200,5,10)
MCIRC_TURNABS(0,table(10),table(11),3,200,300,10)

'3 axes also rotates when circular is in process

WAIT IDLE

Interpolation Path:
DPOS(0) vertical scale 200
DPOS(1) vertical scale 200
DPOS(2) vertical scale 200

MOVE_TURNABS, TURN_POSMAKE

239

MOVESMOOTH-Fillet

Type

Multi-Axis Motion Instruction

Description

Space Linear Fillet Motion.

Insert arc at the turning angle depends on absolute coordinate of next linear
motion, once arc was inserted, the final end point of the motion will be
different from end point of the linear. If the turning angle is too big, arc will
not be inserted, radius will be reduced automatically when distance is not
enough.

This instruction can be used in continuous interpolation movements by adding
SP, see *SP for reference.

This is an instruction developed early, so there is limit for axes, it is
recommended to use CORNER_MODE because its function is more.

Grammar

MOVESMOOTH (end1, end2, end3, nextl, next2, next3, radius)
Parameters: endl absolute coordinate of axis1;

end2 absolute coordinate of axis2;

end3 absolute coordinate of axis3;

nextl absolute coordinate of next straight line, axisl;

next2 absolute coordinate of next straight line, axis2;

next3 absolute coordinate of next straight line, axis3;
radius the radius of the inserted arc, it will minish if too big.

Controller

General

Example

BASE(0,1,2)
ATYPE=1,1,1 'set type as pulse
UNITS=100,100,100
DP0S=0,0,0
SPEED=100,100,100 'main axis speed
ACCEL=1000,1000,1000 'main axis acceleration
DECEL=1000,1000,1000 'main axis deceleration
TRIGGER ‘Trigger the oscilloscope automatically
MOVESMOOTH (0,100,0,100,100,0,50)

‘after the arc was inserted, the actual movement reaches (50,100,0)
MOVEABS(100,100,0)

Interpolation path:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

240

*SP-Motion Independent Speed

Multi-Axis Motion Instruction

It is used to set starting speed, running speed and end speed of every
stage of motion.

Multi-Axis motion instructions have related SP instructions. Now it can use
FORCE_SPEED, ENDMOVE_SPEED and STRATMOVE_SPEED to set
motion speed, end speed and start speed. If there is no need to set speed of
every motion, then no need to use SP instruction.

SP Dbased instructions: MOVESP, MOVEABSSP, MOVECIRCSP,
MOVECIRCABSSP, MHELICALSP, MHELICALABSSP, MECLIPSESP,
MECLIPSEABSSP, MSPHERICALSP.

FORCE_SPEED, ENDMOVE_SPEED and STRATMOVE_SPEED will enter
motion buffer.

General

Example 1

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

ACCEL=1000

DECEL=1000

SRAMP=100

MERGE=0ON ‘open continuous interpolation.
SPEED=100 'motion speed is 100
FORCE_SPEED=80 ‘limit speed is 80
STARTMOVE_SPEED=60 'start speed is 60
ENDMOVE_SPEED=30 ‘end speed is30

TRIGGER "Trigger the oscilloscope automatically
MOVE(100) 'motion A, no SP limit.

241

MOVESP(100) 'motion B, use SP limit.
FORCE_SPEED=120 'speed limit is 120
ENDMOVE_SPEED=30 ‘end speed limit is 30
MOVESP(100) 'mation C, use SP limit.

Speed Path
MSPEED(0) vertical scale 100

The motion speed is SPEED when there is no SP limit, the motion speed is
FORCESPEED when there is SP limit. When Both STARTMOVE_SPEED
and ENDMOVE_SPEED are set, STARTMOVE_SPEED will take effect in

priority.

Example 2

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

ACCEL=1000

DECEL=1000

SPEED=100 ‘running speed is 100
SRAMP=100 ‘S curve
FORCE_SPEED=150 ‘speed limit is 120
TRIGGER

MOVE(100) ‘motion speed is SPEED
MOVESP(200) ‘motion speed is FORCE_SPEED

Motion trajectory:
DPOS (0) = 200 (vertical scale)
MSPEED (0) =100 (vertical scale)

242

FORCE_SPEED, ENDMOVE_SPEED, STRATMOVE SPEED

MOVESCAN - Galvanometer (SCAN) Motion

Motion Instruction

The Motion command is without acceleration and deceleration, and it
supports time control at the us level.

The running time is directly calculated through FORCE_SPEED and vector
distance. For example, the SCAN vector distance is 1,
FORCE_SPEED=10000, then the motion time is 1/10000, the unit is s,
namely 100us.

Valid in galvanometer controllers with firmware version above 20180714.

Under this motion, corner delay means the maximum corner delay, and
ZSMOOTH indicates the actual delay time is linearly distributed between
DECEL_ANGLE and STOP_ANGLE.

Bitl of CORNER_MODE sets whether the corner delay is used or not, if it
sets, ZSMOOQOTH sets max delay time, the unit is us, then this motion meets
corner condition dely.

Time control at the us level can be achieved together with MOVE_WAIT and
MOVE_OP.

Non-SCAN axis also can be used, but it needs to control the speed in sections
to do acceleration and deceleration.

MOVESCAN(pos1[,pos2][,pos]...)
posl: motion distance of the first axis
pos2: motion distance of the next axis

Galvanometer controller

Example 1

BASE(4,5)

AXIS_ZEST=2 ‘open precision output
TRIGGER

CORNER_MODE=0 'no corner delay
MOVE_PAUSE(3) 'force to stop
MOVE_OP(0,1)

243

FORCE_SPEED=10000

MOVESCANABS(0,0)

MOVESCANABS(10,0) ‘galvanometer motion, time: 10/10000=1000us
MOVESCANABS(10,10) ‘galvanometer motion
MOVESCANABS(0,10) ‘galvanometer motion

MOVESCANABS(0,0) ‘galvanometer motion

MOVE_DELAY (0.25) 'delay 250us

MOVE_OP(0,0) ‘output

MOVE_RESUME

END

Resultant trajectory under galvanometer axis XY mode:
DPOS(4), vertical scale (Y scale): 10
DPOS(5), vertical scale (Y scale): 10

Example 2

BASE(4,5)

AXIS_ZSET=2

CORNER_MODE=2 ‘corner delay
ZSMOOTH=100 ‘'maximum corner delay 100us

DECEL_ANGLE = 25 * (P1/180) 'set the start deceleration corner, in radians
STOP_ANGLE =90 * (P1/180) 'set the end deceleration corner, in radians
MOVE_PAUSE(3)

MOVE_OP(0,1)

FORCE_SPEED=10000

MOVESCAN(1,0) 'time of motion 100us

MOVESCAN(0,1) ‘add 100us corner delay time, then move 100us
MOVE_DELAY (0.25)

MOVE_OP(0,0) ‘after 550us, it outputs

MOVE_RESUME

MOVE

244

MPULSCAN - Galvanometer Motion 2

Type Motion Instruction

Description | Motion commands are without acceleration and deceleration, the unit is
the number of pulses.
The running time is directly calculated through FORCE_SPEED and vector
distance. For example, galvanometer vector distance is 1, FORCE_SPEED =
10000, the running time is 1/10000, the unit is s, that is, 100us.
Support MOVESCANABS absolute motion.
The time control at us level can be achieved when it is used together with
MOVE_WAIT and MOVE_OP.
Non-galvo axis can also be used, but it needs to control the speed in sections
to do acceleration and deceleration.
This command doesn’t have corner deceleration, MOVE DELAY must be
added to achieve delay deceleration.
Valid in firmware version above 20220225.

Grammar MPULSCAN vectpul, pull[,pul 2] [,pul 3]...

vectpul: vector pulse length, calculate externally to reduce controller
execution time.
pull,2,3: pulse distance or length of each axis, directly use pulse unit, no

need to do UNITS conversion.

Controller Galvanometer controller

Example BASE(4,5)
ATYPE=21,21

FORCE_SPEED=1000,1000 ‘galvanometer motion speed

DPOS=0,0

AXIS_ZSET=2 ‘open precision output

TRIGGER

MOVE_OP(0,1)

MPULSCANABS 50,30,40 ‘galvanometer motion, vector length is 50
pulses, axis 4 moves 30, axis 5 moves 40

MOVE_DELAY(0.2) 'delay 200us
MOVE_OP(0,0) ‘output
END

Galvanometer axis motion trajectory:
DPOS(4) vertical scale 20
DPOS(5) vertical scale 20

245

MOVESCAN

7.3 Special Motion Instruction

MOVE_PAUSE - Motion Pause

Special Motion Instruction

BASE axis motion pause.

It is valid when single axis or multi axes interpolation movement, axes will
pause simultaneously while multi axes coordination.

Use AXISSTATUS to check if any motion is paused.

If axes already paused or stopped, there is alarm output after calling this
instruction, but will not affect procedure process. Some motions don’t support
pause, such as, VMOVE, synchronization motion instructions, etc.
MOVE_PAUSE (mode)

0 (default) |Pause the present motion.

1 Pause when the present motion finished completely.

2 Pause when present motion is finished completely and
MARK of present motion instruction is different from the
following motion instruction.

This mode can be used to suspend one motion which
consist of multiple instructions when it is finished.

3 Pause mandatorily, even pause while IDLE mode is in
process.

This mode is only supported in controller with firmware
version above 20170513.
General

246

Example

BASE(0)
DPOS=0
SPEED=100

Examplel mode 0

MOVE(1000) 'motion in process
MOVEABS(-100) 'motion in buffer
MOVE_PAUSE(0) 'mode 0, pause motion in process
?DPOS(0) ‘print result,0

'the present motion only executes for a short time. Then pause when
MOVE_PAUSE is detected during the scanning.

Example 2 mode 1

MOVE(1000) 'motion in process

MOVEABS(-100) ‘'motion in buffer

MOVE_PAUSE(1) 'mode 1, pause after the present motion finished.
?DPOS(0) ‘print result, 1000

'the present motion is finished before pausing. DPOS is 1000

Example 3 mode 2

MOVE_MARK=1 ‘define mark NO. as 1 manually.

MOVE(200) 'motion in process

MOVE_MARK=1 ‘define mark NO. the same as last motion.

MOVEABS(-100) ‘'motion in buffer

MOVEABS(100) 'mark NO. is not defined manually, plus 1
automatically.

MOVE_PAUSE(2) 'mode 2, finish present motion first, then pause

until mark of next motion differs from the
present motion.

DELAY (3000) ‘wait until motion pause.

?DPOS(0) ‘print result, -100 (present motion will not pause
if the speed is too slow, the print result will
over -100)

'Finish motion with same mark, pause until meet the last motion which has a
different mark NO.3.

Instructions

MOVE_MARK, MOVE_RESUME, AXISSTATUS

MOVE_RESUME — Motion Resume

Type Special Motion Instruction

Description | Resume the motion of axes assigned by BASE from where it paused.
Use AXISSTATUS to check if any motion is paused.

Grammar MOVE_RESUME

Controller General

Example BASE(0)

247

UNITS=100

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000

MOVE(100) 'motion in process

MOVE(100) 'motion in buffer

MOVE_PAUSE(1) ‘pause after motion in process finished.
WA 2000 ‘wait until motion in process finished.
?DPOS(0) 'print result,100

DELAY (1000)

MOVE_RESUME ‘continue to motion.

WAIT IDLE

?DPOS(0) ‘print result,200

MOVE_PAUSE, AXISSTATUS

MOVE_PT -Distance in Unit Time

Special Motion Instruction

Set the distance of motor motion in a certain time.

Usually, PC will calculate relative coordinate in every period, then transfer it
to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse
frequency will be high, which will result to motor stalling. It is better to divide
long distance into pieces, then send repeatedly.

“multi-period speed auto-even” function is added by MOVE_PT.

MOVE_PT (TICKS, DIS1,DIS2...)
ticks: servo period numbers of time, time=system period*ticks
dis1: motion distance

controller SERVO_PERIOD is 1ms, TICKS = 1ms (for different
SERVO_PERIOD, TICKS are different).

General

Example 1:

BASE(0)

UNITS=100

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000

TRIGGER 'trigger the oscilloscope automatically
Fori=0to 9

248

MOVE_PT (4, 10) 'move 10 units in 4 TICKS, speed=2500 units/s.
NEXT

WAIT IDLE

PRINT*DPOS ‘print result, 100

Interpolation Speed:
DPOS(0) vertical scale 100
MSPEED(0) vertical scale 2000

Example 2:

BASE(0,1,2)
UNITS=1000,1000,1000
DPOS=0,0,0,
SPEED=10,10,10,10
ACCEL=1000,1000,1000,1000
DECEL=1000,1000,1000,1000
MERGE = ON

TRIGGER

MOVE_PT(350,-20,-15,-25) 'in 350 ticks, axis 0, axis 1, axis 2 run -20, -15, -
25

MOVE_PT(350,20,15,25) 'in 350 ticks, run 20,15,25

MOVE_PT(350.-20,-15,-25)

MOVE_PT(350.20,15,25)

WAIT IDLE

Speed Curve:

DPOS(0) = 50 (vertical scale)
MSPEED(0) = 200 (vertical scale)
DPOS(1) = 50 (vertical scale)
MSPEED(1) = 200 (vertical scale)
DPOS(2) = 50 (vertical scale)
MSPEED(2) = 200 (vertical scale)

249

Example 3:
BASE(0)
UNITS=100
DPOS=0
SPEED=10
ACCEL=100
DECEL=100

DIM timeadd

DIM vall

DIM SPEEDval

timeadd=0
DP0OS=100=COS(2*P1*0.2*timeadd+pi)+100

DELAY/(1000)
TRIGGER

WHILE TRUE

‘period=2m/|o|
'X=A*COS(wx+y)+C

'take the derivative to get the slope, which is the speed:

250

v=A*o*SIN(ox+y)
val1=100*COS(2*P1*0.2*timeadd+pi)+100
SPEEDval=100*2*P1*0.2*SIN(2*P1*0.2*timeadd-+pi)

?"vall="vall
?"SPEEDval="SPEEDval

MOVE_PVTABS(10, vall, SPEEDval)
'MOVE_PTABS(10,vall)
timeadd=timeadd+0.01

if timeadd>(2*PI/ABS(2*P1*0.2)*0.2) THEN
EXIT WHILE

ENDIF
WEND
DPOS(0), MSPEED(0), vertical scale (Y scale) is 150

MOVE_PTABS

MOVE_PTABS — Absolute motion distance in unit time.

Special Motion Instruction

Drive the motor to reach one certain position in a period time.

Usually, PC will calculate relative coordinate to reach in every period, then
transfer it to controller.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse

251

frequency will high, which will result to motor stalling. It is better to divide
long distance into pieces, then send repeatedly.

MOVE_PTABS (TICKS, DIS1,DIS2...)
ticks: servo period numbers of time
dis1: motion distance

General

Example 1

Base(0,1)

DP0OS=0,0

MOVE_PTABS (3, 20,20) 'move to (20,20) in 3 ticks.
WAIT IDLE

PRINT*DPOS ‘print result, 20,20

Example 2
RAPIDSTOP(2)
WAIT IDLE(0)

BASE(0)
ATYPE=1
UNITS=100
SPEED=100
ACCEL=1000
DECEL=1000
DPOS =0

SetSine ‘call function, then produce SINE curve
TRIGGER ‘Trigger the oscilloscope automatically

FOR i=0 TO 100
MOVE_PTABS (1, TABLE(i)) 'move TABLE distance in 1TICK
NEXT
WAIT IDLE(0)
PRINT DPOS(0) ‘print result, 500
END

GLOBAL SUB SetSine() ‘calculate the displacement of small segment
LOCAL num_p,scale 'variable definition
num_p=100
scale=500
FOR p=0 TO num_p
TABLE(p,((-SIN(PI*2*p/num_p)/(P1*2))+p/num_p)*scale)
'save parameters
NEXT
END SUB

DPOS(0) vertical scale 500
MSPEED(0) vertical scale 10000

252

Example 3
RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

ATYPE=1,1

UNITS=100,100

DP0OS=0,0

TRIGGER

MOVE_PTABS (10,10,10) 'reach absolute position (10,10) in 10ticks
MOVE_PTABS (10,20,20)

MOVE_PTABS (10,30,40)

MOVE_PTABS (10,40,20)

MOVE_PTABS (10,50,10)

MOVE_PTABS (10,40,0)

MOVE_PTABS (10,30,-10)

MOVE_PTABS (10,20,-40)

MOVE_PTABS (10,10,-10)

MOVE_PTABS (10,0,0)

END

DPOS(0), DPOS(1) vertical scale 50
MAPSEED(0), MSPEED(0) vertical scale 5000

253

Example 4

BASE(0)

ATYPE=1000,1000,1000

DP0S=0,0,0,0

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PTABS(350,20,15,25) 'in one period, axis 0 runs to 20, axis 1 runs to
15, axis 2 runs to -25

MOVE_PTABS (350,-20,-15,-25) 'in one period, axis 0, axis 1 and axis 2 run

to position -20, -15, -25 separately

MOVE_PTABS(350, 20, 15, 25)

MOVE_PTABS(350,-20,-15,-25)

WAIT IDLE

DPOS(0), DPOS(1) and DPOS(2) are 50 (vertical scale)

254

MOVE PT

MOVE_PVT - Unit Distance (with speed planning)

Special Motion Instruction

Set the distance of motor motion in a certain time, and it is with speed
planning and can assign end speed. Speed in small distance will plan
automatically according to former speed and end speed, as consecutive as
possible.

Usually, PC will calculate relative coordinate in every period, then transfer it
to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse
frequency will be high, which will cause motor block. It is better to divide
long distance into pieces, then send repeatedly.

MOVE_PVT (ticks, disl, spl, dis2, sp2...)
ticks: servo period numbers of time
dis1: motion distance of the first axis
spl: the end speed when first axis moved
dis2: motion distance of the second axis
sp2: end speed when second axis moved

SERVO_PERIOD of controller is 1000us, 1 TICKS is equal to 1 ms. (ticks
differ from different SERVO_PERIOD)

General

Example 1:

255

BASE(0,1,2)
UNITS=10,10,10,10
DPOS=0,0,0,0
SPEED=10,10,10,10
ACCEL=1000,1000,1000,1000
DECEL=1000,1000,1000,1000
MERGE = ON
TRIGGER
MOVE_PVT(350,200,10,150,10,250,10) 'in one period, axis 0, axis 1 and axis
2 run 200, 150, 250 separately, end
speed is 10
MOVE_PVT(350,-200,10,-150,10,-250,10) 'in one period, axis 0, axis 1 and
axis 2 run -200, -150, -250
separately, end speed is 10
MOVE_PVT(350,200,10,150,10,250,10)
MOVE_PVT(350,-200,10,-150,10,-250,10)

DPOS(0), DPOS(1), DPOS(2) are 200 (vertical scale)

MSPEED(0), MSPEED(1) and MSPEED(2) are 1000 (vertical scale)

256

Example 2:
BASE(0)
UNITS=100
DPOS=0
SPEED=10
ACCEL=100
DECEL=100

DIM timeadd

DIM vall

DIM SPEEDval

timeadd=0
DPOS=100=COS(2*P1*0.2*timeadd+pi)+100

DELAY (1000)
TRIGGER

WHILE TRUE

‘period=2m/|o|
'X=A*COS(ox+y)+C

'take the derivative to get the slope, which is the speed:
v=A*o*SIN(ox+y)

val1=100*COS(2*P1*0.2*timeadd+pi)+100

257

SPEEDval=100*2*P1*0.2*SIN(2*PI*0.2*timeadd+pi)

?"vall="vall
?"SPEEDval="SPEEDval

MOVE_PVTABS(10, vall, SPEEDval)
'MOVE_PTABS(10,vall)
timeadd=timeadd+0.01

if timeadd>(2*PI/ABS(2*P1*0.2)*0.2) THEN
EXIT WHILE

ENDIF
WEND
DPOS(0), MSPEED(0), vertical scale (Y scale) is 150

MOVE PT

MOVE_PVTABS - Unit Absolute Distance (with speed

planning)

Special Motion Instruction

Set the distance of motor motion in a certain time, and it is with speed
planning and can assign end speed. Speed in small distance will plan
automatically according to former speed and end speed, as consecutive as
possible.

Usually, PC will calculate relative coordinate in every period, then transfer it
to controller.
BASE assigned axis can be used.

258

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse
frequency will high, which will result to motor stalling. It is better to divide
long distance into pieces, then send repeatedly.

MOVE_PVTABS (ticks, disl, sp1, dis2, sp2...)
ticks: servo period numbers of time
dis1: absolute motion distance of first axis
spl: the end speed after first axis motion
dis2: absolute motion distance of the second axis
sp2: end speed after second axis motion

SERVO_PERIOD of controller is 1000us, then 1 TICKS equals to 1 ms.
(TICKS differ from different SERVO_PERIOD)

General

Example 1:

BASE(0)
UNITS=13107.2
DPOS=0

SPEED=10
ACCEL=100
DECEL=100
MAX_SPEED=8000000

DIM timeadd
DIM vall

DIM SPEEDval
timeadd=0

DPOS=100=COS(2*PI*timeadd*0.2)+166
DELAY (1000)
TRIGGER

WHILE TRUE
‘period=2m/|o|

'Y=A*COS(0x-+y)+C

‘take the derivative to get the slope, which is the speed:
v=A*o*SIN(ox+y)

val1=100*COS(2*PI*timeadd*0.2)+166
SPEEDval=100*2*P1*0.2*SIN(2*PI*timeadd*0.2)
?"vall="vall

2"SPEEDval="SPEEDval
MOVE_PVTABS(10, vall, SPEEDval)

259

'MOVE_PTABS(10,vall)
timeadd=timeadd+0.01
if timeadd>(2*PI/ABS(2*P1*0.2))THEN
EXIT WHILE
ENDIF
WEND

MSPEED(0), no offset, vertical scale (Y scale) is 100

DPOS(0), offset -50, vertical scale (Y scale) is 100
Min:-125.66 Max:125.66 :
""" T RAER00 T MAKE2BR 00T

| Min:0.00 Max:0.00 |
Min:0.00 Max:0.00

3 IN[2)
4 IN[0]

MOVE_PTABS

MOVE_PVTPP — Distance of unit time

Special Motion Instruction

Same as MOVE_PVT, set the distance of motor motion in a certain time,
and it is with speed planning. Accelerations of start and end moments can
be sure as 0 through planning speed, and it can be used for point motions
of assigned time. MOVE_PVT only can be used to send continuous and
small distance motions, for long distance motions, please use
MOVE_PVTPP.

Usually, PC will calculate relative coordinate in every period, then transfer it
to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse
frequency will high, which will result to motor stalling. It is better to divide
long distance into pieces, then send repeatedly.

MOVE_PVTPP (ticks, dis1, sp1, dis2, sp2...)
ticks: servo period numbers of time

260

dis1: motion distance of first axis

spl: the end speed when first axis moved
dis2: motion distance of the second axis

sp2: end speed when second axis moved

SERVO_PERIOD of controller is 1000us, 1 TICKS is equal to 1 ms. (ticks
differ from different SERVO_PERIOD)

General

Example 1:
BASE(0,1,2)
UNITS=10,10,10,10
DPOS=0,0,0,0
SPEED=10,10,10,10
ACCEL=1000,1000,1000,1000
DECEL=1000,1000,1000,1000
MERGE = ON
TRIGGER
MOVE_PVTPP(350,200,10,150,10,250,10)
'in one period, axis 0, axis 1 and axis 2 run 200,
150, 250 separately, end speed is 10
MOVE_PVTPP(350,-200,-10,-150,10,-250,-10)
'in one period, axis 0, axis 1 and axis 2 run -200,
-150, -250 separately, end speed is 10
MOVE_PVTPP(350,200,10,150,10,250,10)
MOVE_PVTPP(350,-200,-10,-150,-10,-250,-10)
WAIT IDLE

DPOS(0), DPOS(1), DPOS(2) are 200 (vertical scale)

MSPEED(0), MSPEED(1) and MSPEED(2) are 1000 (vertical scale)

261

MOVE_PT, MOVE PVT

MOVE_PVTPPABS - Distance of unit time

Special Motion Instruction

Same as MOVE_PVT, set the distance of motor motion in a certain time,
and it is with speed planning. Accelerations of start and end moments can
be sure as 0 through planning speed, and it can be used for point motions
of assigned time. MOVE_PVT only can be used to send continuous and
small distance motions, for long distance motions, please use
MOVE_PVTPP.

Usually, PC will calculate relative coordinate in every period, then transfer it
to controller.

BASE assigned axis can be used.

Motion speed=(DIS/TICKS)*1000units/s

Don’t let the motor run a long distance in a very short time, then the pulse
frequency will high, which will result to motor stalling. It is better to divide
long distance into pieces, then send repeatedly.

MOVE_PVTPPABS (ticks, dis1, sp1, dis2, sp2...)
ticks: servo period numbers of time
dis1: motion distance of first axis
spl: the end speed when first axis moved
dis2: motion distance of the second axis
sp2: end speed when second axis moved

SERVO_PERIOD of controller is 1000us, 1 TICKS is equal to 1 ms. (ticks
differ from different SERVO_PERIOD)

262

General

Example 1:

BASE(0,1,2)

UNITS=10,10,10,10

DP0OS=0,0,0,0

SPEED=10,10,10,10

ACCEL=1000,1000,1000,1000

DECEL=1000,1000,1000,1000

MERGE = ON

TRIGGER

MOVE_PVTPPABS(350,200,10,150,10,250,10)
'in one period, axis 0, axis 1 and axis 2 run 200,
150, 250 separately, end speed is 10,
acceleration decrease to be 0

MOVE_PVTPPABS(350,-200,-10,-150,10,-250,-10,10)
'in one period, axis 0, axis 1 and axis 2 run -200,
-150, -250 separately, end speed is 10,
acceleration decrease to be 0

MOVE_PVTPPABS(350,200,10,150,10,250,10)

MOVE_PVTPPABS(350,-200,10,-150,10,-250,10)

WAIT IDLE

DPOS(0), DPOS(1), DPOS(2) are 200 (vertical scale)

MSPEED(0), MSPEED(1) and MSPEED(2) are 2000 (vertical scale)

263

MOVE_PTABS, MOVE_PVT

MOVE_PTP - Point to Point

Special Motion Instruction

This is the linear interpolation motion command used for point-to-point
motion.

This command doesn’t support speed ahead in continuous motion, and it uses
each axis’ SPEED, then speed parameter will enter motion buffer
automatically.

This command doesn’t support modifying online commands dynamically, but
it can use SPEED_RATIO to adjust speed, and VP_MODE configuration is
valid.

MOVE_PTP (mode, dis1, dis2......)
mode: BITO: 1 -- speed and acceleration are calculated by each axis’
speed and acceleration limits.
BIT2: 1 —reserved
dis1: motion distance of first motion, unit: units, support decimal
dis2: motion distance of second motion, unit: units, support decimal

General

Example 1:

‘example of mode 1 single-axis and VP_MODE usage
rapidstop(2)

trigger

speed_ratio =1

base(0)

mpos =0

dpos=0

atype =1

speed = 100

264

units = 100

accel = 1000
decel = 1000
vp_mode =0
move_ptp(1,200)
wait idle
vp_mode =6
move_ptp(1,200)

MPQOS(0), MSPEED(0), vertical scale (Y scale): 200
fl MPOS[D) : Min:0.00 Max:400.00

--

2 MSPEED(0) Min:0.00" Max:100.02

Example 2:

‘'example of mode 1 single-axis and speed_ratio usage
rapidstop(2)

trigger

speed_ratio =1
vp_mode =0,0
base(0,1)

mpos = 0,0

dpos =0,0

atype =1,1

speed = 100,200
units = 500,500

accel = 500,500
decel = 500,500
move_ptp(1,150,200)
wait idle

speed_ratio =0.5
move_ptp(1,150,200)

265

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale) 200

IMPOS() & . Min:0.00 Max:300.00
? MSPEED(D) | Min:0.00 Max:100.02
M MSPEED(1] Min:i.00 Max;133.34

500 3000 4500 5000 7500 9000

Example 3:

‘'example of mode 0 multi-axis and speed_ratio usage
rapidstop(2)

trigger

speed_ratio =1

vp_mode = 0,0

base(0,1)

mpos = 0,0

dpos =0,0

atype =1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500

move_ptp(0,150,200) ‘'under mode 0, same effect as “MOVE” command
wait idle

speed_ratio =0.5

move_ptp(0,150,200)

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

266

TMPOS[@D) | Min0.00 Max.300.00

--

2 MSPEED(O) Min:0.00 Max:60.01

4 MSPEED[1] Min:0.00 Max:80.00

MOVE_PTPABS

MOVE_PTPABS - Point-to-Point | Absolute

Special Motion Instruction

This is the linear interpolation motion command used for point-to-point
motion.

This command doesn’t support speed ahead in continuous motion, and it uses
each axis’ SPEED, then speed parameter will enter motion buffer
automatically.

This command doesn’t support modifying online commands dynamically, but
it can use SPEED_RATIO to adjust speed, and VP_MODE configuration is
valid.

MOVE_PTPABS (mode, dis1, dis2......)

mode: BITO: 1 -- speed and acceleration are calculated by each axis’

speed and acceleration limits.
BIT2: 1 — reserved

disl: absolute motion distance of first motion, unit: units, support
decimal

dis2: absolute motion distance of second motion, unit: units, support
decimal

Valid in ZMC4XX series controllers, and the version above “version_buid
2305107,

Example 1:

‘'example of mode 1 single-axis and VP_MODE usage
rapidstop(2)

trigger

speed_ratio =1

base(0)

267

mpos =0
dpos=0

atype =1

speed = 100
units = 100

accel = 1000
decel = 1000
vp_mode =0
move_ptp(1,200)
wait idle
vp_mode =6
move_ptpabs(1,300)

MPOS(0), MSPEED(0), vertical scale (Y scale): 200
1 MPOS[0) ! Min:0.00 Max:300.00

...

Example 2:

‘'example of mode 1 single-axis and speed_ratio usage
rapidstop(2)

trigger

speed_ratio =1
vp_mode =0,0

base(0,1)

mpos = 0,0

dpos =0,0

atype =1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500
move_ptpabs(1,150,200)

268

wait idle
speed_ratio = 0.5
move_ptp(1,100,100)

MPQOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

e T Min:000 Max150.00 . iG]
2 MSPEED(0) | Min:£0.00 Max:100.02
4 MSPFED() Min=100.01 Max:133.34

Example 3:

‘example of mode 0 multi-axis and speed_ratio usage
rapidstop(2)

trigger

speed_ratio =1

vp_mode = 0,0

base(0,1)

mpos = 0,0

dpos =0,0

atype=1,1

speed = 100,200

units = 500,500

accel = 500,500

decel = 500,500

move_ptp(0,150,200) 'under mode 0, same effect as “MOVEABS” command
wait idle

speed_ratio = 0.5

move_ptpabs(0,100,100)

MPOS(0), MSPEED(0), MPOS(1), MSPEED(1), vertical scale (Y scale): 200

269

1 MPOS(0) 0 Min:0.00 Max:150.00

2 MSPEED(0] Min:-50.00 Max60.01

4 MSPEED(1] Min:-100.01 Max:80.00

5000 5000

Instructions

MOVE_PTP

MOVE_OP--Output in Buffer

Type

Special Motion Instruction

Description

Add one output to the motion buffer of BASE axis.
When LOAD is executed in the buffer, only operate the outputs, using the
same grammar as OP.

Normal Mode: error is one scan period, this mode is valid in all controllers.

High Precision Output Mode: error is within 1 microsecond. ZMC4XX series
or controller with firmware version above
20170421 supports.

1. Only valid in OP that supports hardware comparison output.

2. It is necessary to span one period between each effected precision output
MOVE_OP, then it can take effect continuously, and in this gap, new
MOVE_OP will use normal mode automatically. If exceeds the span, new
MOVE_OP also can take effect, then it is continuous MOVE_OP, but only
the first one is valid because of no span time (some controllers can trigger
several precision outputs at the same time, see Controller Hardware
Manual for details. For example, first 8 outputs of ZMC420SCAN support
HPO, and every output uses HPO synchronously)

3. Even if the OP port is independent, when there are different OP ports of
multi-axis, MOVE_OP also can be output highly precision. When HPO
function is not independent, using HPO simultaneously will cause conflicts.

4. MOVE_OP precision function is on the basis of BASE master axis, when
there is multiple axes interpolation, precision output of slave axis whose
ATYPE type is different from BASE master axis can’t be ensured.

5. Different precision parameters can be set through different MOVE_OP

270

instructions, then some parameters can be set well before calling
MOVE_OP, such as, us level control for laser power, precision output,
output delay, etc.

Grammarl: MOVE_OP ([ionum],value)
ionum; output No., which starts from 0
value: output status, indicating several ports’ statuses by bits when multi
outputs are operated.

Grammar2: MOVE_OP (ionum1, ionum2,value[,mask])
ionum1.: the first output channel to operate
ionum2; the last output channel to operate
value: output status indicates status by bits when operating multi outputs.
mask: set value according to bits status, and set which 10s to be operated,
if it is blank, all channels (from the first to the last) are to be
operated

General

Example 1: Normal Mode

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

TRIGGER ‘Trigger the oscilloscope automatically

MOVE(500)

MOVE_OP (0,0N) ‘wait until last instruction finished, OUTO outputs signal
MOVE(500)

MOVE_OP (0,0FF) ‘wait until last instruction finished, OUTO closes signal
MOVE_OP(1,4,15) 'OUT1-4 output signal, 15 is value of binary status:1111

Some offset in vertical direction was done in order to get better view of the
trajectory curve.

DPOS(0) vertical 1000

OP(0) vertical 1, offset -0.1

OP(1) vertical 1, offset -0.2

OP(2) vertical 1, offset -0.3

OP(3) vertical 1, offset -0.4

OP(4) vertical 1, offset -0.5

271

Min:0.00 Max:1.00

Example 2: High Precision Output Mode

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

TRIGGER ‘trigger oscilloscope automatically

ATYPE=1

MERGE=1

AXIS_ZSET(0) =2 ‘open MOVE_OP precision output function

MOVE(100)

MOVE_OP(0,1) ‘precision takes effect.

MOVE(100) 'since motion exceeds 2 ms, the next MOVE_OP
will take effect in HPO mode.

MOVE_OP(0,0) ‘precision takes effect .

MOVE(100)

Path Curve:
DPOS(0) vertical scale 300
OP(0) vertical scale 1

272

Example 3: Encoder High Precision Output Mode

Valid in controller with firmware version above 20170505.

DIM opnum

AXIS_ZEST=3+16 'BIT4 supports precision output of encoder.
BASE(0)

ATYPE=4 ‘set axis as pulse + encoder mode, encoder wiring is necessary.
DPOS=0

MPOS=0

units=1000

SPEED= 1000

ACCEL =1000

MERGE=1

TRIGGER

opnum =0

MOVEOP_DELAY =2 ‘actual output time delays 2 ms.
HW_TIMER(0,10000,5000,1,0,0pnum)

OP(opnum,0) initialize OP.

HW_TIMER(2, 10000, 5000, 1, 0, opnum) ‘switch output to off after 5000 us.
MOVE(200)

MOVE_OP(opnum,1) ‘use HW_Timer to close output, close after 5ms.
MOVE(100)

MOVE_OP(opnum,1)

MOVE(50)

END

Path Curve:
DPOS(0) vertical scale 200
OP(0) vertical scale 2

273

OP, MOVE _OP2.
Precision Output Mode SYSTEM ZSET, AXIS ZSET

MOVE_OP2-Output2 in buffer

Special Motion Instruction

Add output to the motion buffer, invert the output status after
determined period.

When LOAD is executed in the buffer, only operate the outputs.

One axis only supports one MOVE_OP2 instruction, if the second
MOVE_OP2 is executed, then the former MOVE_OP2 will be closed
automatically.

MOVE_OP2(ionum,state,offtimems)
ionum: output port NO., default value:0-31.
state: output state.
offtimems: the period after which signal inverts. (ms)

General

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

OP(0,0FF) 'shut the OUTO port.

TRIGGER ‘Trigger the oscilloscope automatically

MOVE(500)

MOVE_OP2 (0,0N,1000) ‘'output 0 outputs 1s pulse after the former
instruction is finished. This instruction will not
obstruct the execution of next instruction.

MOVE(-500)

Motion Path:
DPOS(0) vertical scale 1000

274

OP(0) vertical scale 1

MOVE_OP, OP

MOVE_TABLE — Table in Buffer

Special Motion Instruction

Add one TABLE to motion buffer based on BASE axis motion.
When LOAD is executed in the buffer, only modifies TABLE. MTYPE and
MOVE_OP are the same.

MOVE_TABLE(tablenum, value)
tablinum: TABLE NO.
value: the value to be modified.

General

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

TABLE(0)=0 ‘assign Table(0) as 0

?TABLE(0) 'print the value of Table(0), result:0
TRIGGER 'trigger the oscilloscope automatically
MOVE(500)

MOVE_TABLE(0, 60) ‘after motion finished, assign Table(0) as 60.
MOVE(500)

WAIT IDLE

?TABLE(0) ‘print the changed value of Table(0), result:60

Path Curve:
DPOS(0) vertical scale 1000
TABLE(O) vertical scale 100

275

TABLE

MOVE_PARA-Parameters in buffer

Special Motion Instruction

Modify parameters in motion buffer based on BASE axis motion.
When LOAD is executed in the buffer, only modifies parameters. MTYPE
value of this instruction is same as MTYPE value of MOVE_OP.

MOVE_PARA(PARANAME,INDEX,VALUE)
paraname: parameter’s name, must be non-read only parameters in ?*set
index: parameters NO.
value: Parameters value

With firmware version above 20170503

Example 1: Modify SPEED

BASE(0) 'select axis 0
ATYPE=1

SPEED=100

PRINT SPEED ‘print result: 100

MOVE_PARA(speed,0,200) ‘change SPEED value as 200 of axis 0
DELAY (1000)
PRINT SPEED ‘print result: 200

Example 2: Single-axis speed changing
BASE(0) 'select axis 0
UNITS=1000

ATYPE=1

SPEED=100

ACCEL=1000

DECEL=1000

SRAMP=100

DPOS=0

MERGE=0ON

TRIGGER

276

MOVE(100)
MOVE_PARA(SPEED,0,200)
MOVE(200)
MOVE_PARA(SPEED,0,150)
MOVE(100)

END

Vertical scale 200

Example 3: Multi-axis speed changing
RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(0)

BASE(0,1)

DP0OS=0,0

UNITS=100,100

SPEED=100,100 'set speed

ACCEL=500,500 'set acceleration
DECEL=500,500 'set deceleration
SRAMP=100,100 'S curve

MERGE=ON 'open continuous interpolation

CORNER_MODE=2+8+32 'set corner deceleration
DECEL_ANGLE = 15 * (P1/180) 'set the angle of start deceleration
STOP_ANGLE = 45 * (P1/180) 'set the angle of end deceleration
ZSMOOTH=2

FORCE_SPEED=100 it works when proportional deceleration
TRIGGER ‘trigger oscilloscope automatically
MOVE(100,0)

MOVE_PARA(SPEED,0,200)

277

MOVE(0,100) 'motion angle is over 45, total deceleration

MOVE_PARA(SPEED,0,120)
MOVE(60,100) 'motion angle is 30.96, which is within 15~45,
proportional deceleration

MOVE_PARA(SPEED,0,50)

MOVE(70,100) 'motion angle is 4.03, which is less 15, not to
decelerate

END

Vertical scale 200

5 VP_SPEED(0) y Min:0.00 Maii199,78

MOVE_PWM-PWM in Buffer

Special Motion Instruction

Operate PWM in motion buffer based on BASE axis motion.

When LOAD is executed, only operate the PWM. MTYPE value of this
instruction is same as MTYPE value of MOVE_OP.

When the duty ratio is 0, PWM can be closed, don’t set PWM frequency as 0
for closing it, PWM frequency should be modified before PWM switch
setting.

MOVE_PARA(PWMINDEX,duty[,freq])
pwmindex: PWM NO.
duty: duty ratio, the ratio of valid signal electrical level to entire period,
and the range is 0-1, when it is 0, close pwm. In one period, output
valid electrical level first, invalid will be output next.

278

freq: frequency, the default value is 1KHz, for hardware up to 1MHz, for
software up to 2KHz.

With firmware version above 20170503

RAPIDSTOP(2)

WAIT IDLE

TRIGGER

TICKS=0

BASE(0)

SPEED = 1000

move(10)

MOVE_PWM(0, 0.111, 2000) ‘when axisO reaches 10, PWMO activates.

MOVE_DELAY(111)

MOVE_PWM(0, 0.333)

MOVE_DELAY (111)

MOVE_PWM(0, 0.555, 3000)

move(100)

WHILE NOT IDLE
MOVE_PWM(0,0,1000) ‘close PWM
? -TICKS, PWM_FREQ(0), PWM_DUTY(0)
WA 10

WEND

PWM_DUTY, PWM_FREQ

MOVE_SYNMOVE-Synchronous Axis in Buffer

Special Motion Instruction

Tigger other axis motions in motion buffer based on BASE, the present
axis waits.

MTYPE value of this instruction is same as MYTPE value of MOVE_Delay.

MOVE_SYNMOVE(AXISNUM,DIS[,IFSP])
axisnum: the synchronous axis NO.
dis: relative motion distance
ifsp: use SP function or not, not to use by default.

With firmware version above 20170503

RAPIDSTOP(2)
WAIT IDLE
TRIGGER
TICKS=0
BASE(0,1)
DP0OS=0,0
UNITS=100,100
SPEED=100,100
ACCEL=1000,1000
DECEL=1000,1000

279

MOVE(100)

MOVE_SYNMOVE(1,100,0) ‘axisl starts to move when axisO reaches 100.

MOVE(100) 'wait until axis synchronization finished, axis 0
continues to move

Motion Path:
DPOS(0) vertical scale 200
DPOS(1) vertical scale 200

MOVE_ASYNMOVE

MOVE_SYNMOVE-Synchronous Axis in Buffer 2

Special Motion Instruction

Tigger other axis motions in motion buffer based on BASE, the present
axis doesn’t wait.
MTYPE value of this instruction is same as MY TPE value of MOVE_OP.

MOVE_SYNMOVE(axisnum,dis[,ifsp])
axisnum: the synchronous axis NO.
dis: relative motion distance
ifsp: use SP function or not, not to use by default.

With firmware version above 20170503

RAPIDSTOP(2)
WAIT IDLE
TRIGGER
TICKS=0
BASE(0,1)
DPOS=0,0
UNITS=100,100
SPEED=100,100
ACCEL=1000,1000
DECEL=1000,1000
MOVE(100)
MOVE_SYNMOVE(1,100,0) 'axisl starts to move when axisO reaches 100.

280

MOVE(100) ‘axis 0 continues to move

Motion Path:
DPOS(0) vertical scale 200
DPOS(1) vertical scale 200

MOVE_ASYNMOVE

MOVE_TASK-Start Task in Buffer

Special Motion Instruction

Add TASK to motion buffer.

When LOAD is executed, only operate TASK. MTYPE value of this
instruction is same as MTYPE value of MOVE_OP.

When task is started, error will occur, but no influence on procedure
execution.

MOVE_TASK (tasknum, label)
tasknum: task NO.
label: function name or Label(:).

General

BASE(0)

DPOS=0

UNITS=100

ACCEL=1000

DECEL=1000

SPEED=100

ACCEL=1000

DECEL=1000

MOVE(100)

MOVE_TASK(1,task_move) ‘start task_move as task 1 after former motion
is finished.

MOVE(100)

END

TASK_MOVE:

281

PRINT "TASK_MOVE"
END

RUNTASK, RUN

MOVE_AOUT-Analog Signal in Buffer

Special Motion Instruction

Add one AOUT instruction into BASE axis motion buffer.

When LOAD is executed, only change value of AOUT, MTYPE value of this
instruction is same as MYTPE value of MOVE_OP.

When laser energy output is set, precision output is valid.

MOVE_AOUT (danum, value)
danum: DA NO.
value: value to be modified.

General, controller with DA channels.

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=1000

DECEL=1000

AOUT(0)=0 ‘assign value to DAO.

?A0UT(0) ‘print

TRIGGER 'trigger the oscilloscope automatically
MOVE(500)

MOVE_AQOUT(0, 30.5) ‘assign 30.5 to DAQO after first motion is finished.
MOVE(500)

WAIT IDLE

?A0UT(0) ‘print DAO,it is 30.5.

Motion Path:
DPOS(0) vertical scale 1000
AOQOUT(0) vertical scale 100

282

[IGGE] A0UT

MOVE_DELAY-Delay in buffer

Special Motion Instruction

Add one delay to motion buffer of BASE axis.
When LOAD is executed, only assign the time value of delay.
Speed will decrease to 0 after the former instruction ends.

MOVE_DELAY (timems)
Other Name:

move_wa(timems)
timems: delay time, ms as units.

General

BASE(0)

UNITS=100

DPOS=0

SPEED=200

ACCEL=2000

DECEL=2000

TRIGGER 'trigger the oscilloscope automatically
MOVE(500)

MOVE_DELAY(1000) 'wait 1 second between 2 MOVE instructions.
MOVE(500)

Motion Path:
DPOS(0) vertical scale 1000

DELAY

MOVE_WAIT - Wait in Buffer

Special Motion Instruction

Add one condition judge to BASE axis motion buffer.
When LAOD is executed, don’t do any motions. It only waits the specified

283

condition to be met. And the speed will decrease to 0 automatically when
former motion commands end.

MOVE_WAIT (paraname, paranum, eq, value)
paraname: choose parameter’s name
(it can be DPOS, MPOS, IN, AIN, VSPEED, MSPEED, MODBUS_REG,
MODBUS_IEEE, MODBUS BIT, TABLE, VECTOR_BUFFERED,
REMAIN.)
paranum: parameter No. / axis No.
eq:l >
-1 < Invalid for IN port or other BIT based parameters.
0 Not recommend
value: comparison value.

With firmware version above 150802, or above XPLC160405

BASE(0)

DPOS=0

ATYPE=1

UNITS=100

SPEED=200

ACCEL=2000

DECEL=2000

TRIGGER 'trigger the oscilloscope automatically

MOVE(500)

MOVE_WAIT(IN, 0, 0, 1) ‘execute the next motion buffer until IN(0)
appear signal

MOVE(500)

Motion Path:
DPOS(0) vertical scale 1000
IN(O) vertical scale 1

WAIT_UNTIL

284

MOVE_CANCEL—Stop Buffer

Type Special Motion Instruction
Description | Add CANCEL in motion buffer
Grammar MOVE_CANCEL (iaxis, imode)
iaxis: axis to operate
imode: select CANCEL mode, same as CANCEL instruction
Controller General
Example MOVE_CANCEL(1,0) 'the instruction of stop axisl is written in axisO buffer
Instruction CANCEL

MOVE_HWPSWITCH2 — Buffer hardware comparison

output

Type

Special Motion Instruction

Description

Enter HW_PSWITCH2 command into buffer, hardware comparison
output will be executed in motion buffer.

Same as HW_PSWITCH2, HW_TIMER parameter can be modified
dynamically, but controllers must support HW function.

Grammar

MOVE_HWPSWITCH2(mode,[...])
mode: open different comparers, parameters to be filled also different.
Refer to HW_PSWITCH2 command.

Controller

General

Example

BASE(0)

UNITS=100

SPEED=100

ACCEL=1000

DECEL=1000

DPOS=0

MPOS=0

OP(0,0FF)

TABLE(0,50,100,150,200) 'set compare points’ coordinates

MOVE_HWPSWITCH2(2) ‘'stop and delete uncompleted compare points

MOVE_HWPSWITCH2(1,0,1,0,3,1) ‘compare 4 points, mode 1, operate
ouTo

TRIGGER

MOVE(300)

END

'trigger oscilloscope

Compare output:
Same output effect as HW_PSWITCHZ2, but this example enters 3 commands
into buffer.

285

MPOS(200) vertical scale
OP(0) vertical scale

HW_PSWITCH2

MOVE_HWTIMER - Buffer Hardware Timer

Special Motion Instruction

Enter HW_TIMER command into motion buffer, and execute hardware
timer in motion buffer.

Parameters are the same as HW_TIMER, and HW_TIMER parameters can be
changed dynamically, but controllers must support HW function.

Must use MOVE_OP to trigger HW_TIMER, OP can’t trigger.

When HW_TIMER is not used, calling mode 0 is off, otherwise, following
output will be effected.

MOVE_HWTIMER (mode, [...])
mode: mode 0/ 1/2 /3 /4, the parameters that need to be filled in are
also different, see HW_TIMER syntax description and routine.

General

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DPOS=0

TRIGGER

MOVE_OP(0,0FF)

MOVE_HWTIMER(2, 1000000, 200000, 5, OFF, 0)
‘when output 0 becomes ON, hardware timer triggers to do timing, turn to off
after 500ms, the period is 5 times.
MOVE_OP(0,0N)

END

286

HW_TIMER, HW PSWTICH?

MOVE_ADDAX — Motion Superposition

Single Axis Motion Intructions

Motion superposition adds to buffer, superimposes the motion of one axis
to another axis, supports BASE_MOVE, so that destaxis can be adjusted
at will.

The ADDAX command superimposes the number of pulses, not the set
units.

Conversion relationship: superimposing axis movement distance *
superimposing axis UNITS/superimposed axis UNITS=superimposed axis
movement distance.
Suppose the UNITS of axis A is 100, the UNITS of axis B is 50, and the
superimposing axis movement is 100

Superimpose the movement of axis A to axis B. At this time, axis A
shows a movement of 100, and axis B moves 100*100/50=200.

The movement of axis B is superimposed on axis A. At this time, axis B
shows a movement of 100, and axis A moves 100*50/100=50.

The axes cannot be superimposed on each other at the same time. After A is
superimposed on B, B can no longer be superimposed on A.

Support series superposition, A superimposed to B, then B superimposed to C.
Support parallel superposition, A motion is superimposed on B and C at the
same time.

When superimposing, the speed changes from the superimposed axis, and the
acceleration and deceleration are determined according to the acceleration and
deceleration of the superimposing axis and the ratio of the units of the two
axes.

ADDAX has no effect when the axis MTYPE is FRAME or REFRAME.

287

Grammar

ZMCAXX series and above controllers with 20220728 firmware adds
superposition.
MOVE_ADDAX(srcaxis ,[imode], [para])

destaxis: the superposed target axis number

srcaxis: the superposed axis number of the source axis

imode: superposition mode

0: default value, single-axis superposition, compatible with previous
direct pulse number superposition

1: single-axis superposition, support scale adjustment.
MOVE_ADDAX(srcaxis, 1, ratio)

ratio: ratio value, supports floating point numbers, target axis
distance = source axis distance * ratio.

2: single-axis superimposition, supports gear ratio adjustment
MOVE_ADDAX(srcaxis, 2, ratioin, ratioout)
ratioin: numerator, integer, supports negative numbers
ratioout: denominator, positive integer.
target axis distance = source axis distance * ratioin / ratioin

3: single axis superimposed to two axes, support angle adjustment
BASE (destaxis1, destaxis2)
MOVE_ADDAX(srcaxis, 3, angle)

destaxis: the superposed target axis 1, 2

angle: angle, radian value, target axis 1 distance = source axis
distance * cos(angle).

target axis2 distance = source axis distance * sin(angle).

Note: If needs to cancel, cancel the two axes MOVE_ADDAX(-1,
3, 0) or MOVE_ADDAX(-1) AXIS (the superposed axis No.)
respectively

4: SCAN linkage superposition, use SCAN axis to compensate the
deviation of platform axis, and their directions and amounts must be
consistent, if not, please adjust gear ratio or add ratio for SCAN correction.

BASE (destaxis, destaxis2)

ADDAX(srcaxis, 4, srcaxis2)

Use srcaxis to compensate destaxis, use srcaxis2 to compensate
destaxis2.

Note: two axes should be cancelled together, ADDAX(-1, 4, -1) or
ADDAX(-1) AXIS (superposed axis No.)

5: SCAN linkage superposition, platform axis is superposed at SCAN
axis, their directions and amounts must be consistent, if not, please adjust gear
ratio or add ratio for SCAN correction.

BASE (destaxis, destaxis2)

288

ADDAX(srcaxis, 5, srcaxis2)

srcaxis is superposed at destaxis, srcaxis2 is superposed at
destaxis2.

Note: two axes should be cancelled together, ADDAX(-1, 5, -1) or
ADDAX(-1) AXIS (superposed axis No.)

Add BASE_MOVE support:
BASE_MOVE=moveaxis

BASE(destaxis)
MOVE_ADDAX(srcaxis ,[imode], [para])
BASE_MOVE=-1
General
Example 1: For more mode description, see the ADDAX command
BASE(0,1) ‘select axis number
UNITS = 100,100
DP0OS=0,0
TRIGGER
BASE(1) 'select the axis to be superimposed

ADDAX(0,2,3,5)AXIS(1) 'mode 2 superpose, axis 0 superposes on axis 1
MOVE(100) AXIS(0)

WAIT UNTIL IDLE(0) AND IDLE(1)

?"axis 1 superposing axis number" ADDAX_AXIS(1)

ADDAX(-1) AXIS(1) ‘cancel superposition

END

The pulse equivalent is the same, and the movement distance of axis 1 is 3/5
times that of axis 0.

ADDAX

MOVELIMIT — Speed Limit

_ Special Motion Instruction

289

Add speed limit to the end of present motion, in order to force the axis to
decelerate at the turning corner.

MOVELIMIT (limitspeed)
limitspeed: the limit speed value.

General

BASE(0)

UNITS=100

DPOS=0

SPEED=1000 ‘axis speed

ACCEL=1000 ‘axis acceleration.

DECEL=1000

SRAMP=100

MERGE=0ON ‘open continuous interpolation mode, the speed
will be continuous between multi movements.

TRIGGER ‘trigger the oscilloscope automatically

MOVE(2000)

MOVELIMIT(100) ‘speed between two motions will decrease to

100.
MOVE(2000)

Interpolation Speed (with MOVELIMIT)
MSPEED(0) vertical scale 1000

Interpolation Speed (without MOVELIMIT):
MSPEED(0) vertical scale 1000

290

Instructions

CORNER_MODE

7.4 Synchronization Motion Instruction

CONNECT-Synchronization Motion

Type

Synchronization Motion Instruction

Description

Target position of present axis and measured position of driving_axis will
be linked by electronic gearbox.

The link relationship is calculated in pulse amount, so do take UNITS of axes
into consideration. Use CANCEL to cancel connection.

Suppose UNITS of link axisO is 100, UNITS of link axisl is 10. in this
situation, when using CONNECT to link these two axes, ratio=1, if axisO
moves $1=100, then axis1 will move 1000, s1*UNITS(0)*ratio/UNITS(1).
Ratio can be changed dynamically by calling instruction repeatedly.

Usually used to link Handwheel.

Grammar

CONNECT (ratio, driving_axis)

ratio: the ratio can be negative or positive, it is ratio of pulse amount.
driving_axis: axis NO. of link axis, it is encoder axis when handwheel

Controller

General

Example

RAPIDSTOP(2)
WAIT IDLE(0)
WAIT IDLE(L)
BASE(0,1)
ATYPE=1,1
UNITS=10,100
DP0OS=0,0
SPEED=100,100
ACCEL=1000,1000
DECEL=1000,1000

TRIGGER ‘Trigger the oscilloscope automatically
MOVE(100) AXIS(1) ‘axis1 moves 100, axis 0 moves 0.

WAIT IDLE(2)

CONNECT(1,1) AXIS(0) ‘axis0 is linked to axisl, ratio is 1.
MOVE(100) AXIS(1) ‘axis1 moves 100, then axisO moves 1000.
Motion Path

DPOS(0) vertical scale 1000
DPOS(1) vertical scale 500

291

CLUTCH_RATE, CONNPATH

CONNPATH-Synchronization Motion 2

Synchronization Motion Instruction

Target position of present axis and interpolation vector length of
driving_axis will be linked by electronic gear.

It needs to be connected to the master axis of the interpolation motion to
establish a connection with the length of the interpolation vector, and the
effect of connecting to the slave axis is the same as CONNECT.

The link relationship is calculated in pulse amount, so do take UNITS of axes
into consideration. Use CANCEL to cancel connection.

Ratio can be changed dynamically by calling instruction repeatedly.

CONNECT (ratio, driving_axis)
ratio: the ratio can be negative or positive, it is ratio of pulse amount.
driving_axis: axis NO. of link axis, it is encoder axis when handwheel

General

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1,2)

ATYPE=1,1,1

UNITS=100,100,100

SPEED=100,100,100

ACCEL=1000,1000,1000

DECEL=1000,1000,1000

TRIGGER "Trigger the oscilloscope automatically

CONNPATH(1,0) AXIS(2) ‘axis 2 is linked to axis O (master axis of
interpolation), ratio is 1.

MOVE(100,100) ‘interpolation motion.

Motion Path
DPOS(0) vertical scale 100, offset -50

292

DPOS(1) vertical scale 100, offset -50
DPOS(2) vertical scale 100, no offset

CLUTCH_RATE, CONNECT

CAM-Cam Based Motion

Synchronization Motion Instruction

CAM will determine motion of axis according to data saved in TABLE,
data in TABLE is related to position where the motion should reach, it is
absolute position relative to start position.

Note: two or more CAM instructions can use data in the same TABLE to
generate its path.

Total motion time is determined by set speed and the fourth parameter, actual
speed of motion is determined automatically by motion path based on TABLE
data and total motion time.

Data in TABLE should be filled by manual, first data is guide point, 0 is
recommended to be as this guide point.

Table data*table multiplier=pulse amount to deliver.

Ensure the parameter (distance) delivered by instruction is integer value of
pulse, or it will emerge floats, then motion has minor errors.

CAM(start point, end point, table multiplier, distance)
start point: TABLE No. of start point, save position of first point
end point: TABLE NO. of end point.
table multiplier: position multiply this value, usually this value is set the
same as UNITS.
distance: refer to motion distance.

293

total motion time=distance/Axis SPEED.

General

EXAMPLE 1:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0)

UNITS=100

DPOS=0

ACCEL=1000

DECEL=1000

SPEED=100

TABLE(10,0,80,75,40,50,20,50,0) 'table starts to save data from 10.

TRIGGER ‘trigger the oscilloscope automatically

CAM(10,17,100,500) 'motion path is from table(10) to table(17),
total motion time is 500/100=5.

Path and Speed:
DPOS(0) vertical scale 100
MSPEED(0) vertical scale 100

EXAPMLE 2: application of CAM in high speed, high precision motion.

DIM num_p,scale,m,t 'defined variables

num_p=100

scale=500

FOR p=0 TO num_p
TABLE(p,((-SIN(P1*2*p/num_p)/9P1*2))+p/num_p)*scale

'table save cam motion parameters

NEXT

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0) 'select axis 0

DEFPOS(0)

SERVO=0ON

294

UNITS=500
SPEED=1000
ACCEL=1000000
DECEL=1000000
TRIGGER

m=10

t=0.3

SPEED=1000
CAM(0,100,m,SPPEED*t)
WAIT IDLE

m=10

t=0.3

SPEED=1000
CAM(0,100,-m,SPEED*t)
WAIT IDLE

m=10

t=0.2

SPEED=500
CAM(0,100,m,SPEED*t)
WAIT IDLE

m=10

t=0.2

SPEED=500
CAM(0,100,-m,SPEED*t)
WAIT IDLE

m=20

t=0.3

SPEED=1000
CAM(0,100,m,SPEED*t)
WAIT IDLE

m=20

t=0.5

SPEED=500
CAM(0,100,-m,SPEED*t)
WAIT IDLE

Interpolation Path:
DPOS(0) vertical scale 20

'it means the multiple of distance
‘operation time

MSPEED(0) vertical scale 100

295

Example 3: Continuous Cam
RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0)

UNITS=100

DPOS=0

ACCEL=1000

DECEL=1000

SPEED=100

DIM rad,x,deg

FOR deg=0TO 360 STEP1 'build 0-360¢cam data
rad = deg * 2 * Pl / 360
X =deg * 2+ 10000 * (1 - COS (rad))
TABLE (deg ,x)

print deg,x

NEXT deg

TRIGGER 'trigger oscilloscope automatically

CAM(0,360,100,100) 'motion path is from table 0 to 360, motion total
time is 100/100=1s

CAM(0,360,100,200) 'motion path is from table 0 to 360, motion total
time is 200/100=2s

CAM(0,360,100,300) 'motion path is from table 0 to 360, motion total

time is 300/100=3s
WAIT UNTIL REMAIN_BUFFER(1) >0

'save motion instruction until the buffer space is blank.

CAM(0,360,100,100) 'motion path is from table 0 to 360, motion
distance is 100*table data/units(0)
CAM(0,360,200,100) 'motion path is from table 0 to 360, motion

distance is 200*table data/units(0)

DPOS(0) vertical scale 20000
MSPEED(0) vertical scale 60000

296

CAMBOX

CAMBOX- Following Motion of CAMBOX

Synchronization Motion Instruction

CAMBOX will determine motion of axis according to data saved in
TABLE, data in TABLE is related to position where the motion should
reach, it is position relative to start position. Motion of slave axis is
determined by reference axis.

Note: two or more CAMBOX instructions can use data in the same TABLE to
generate its path.

Total motion time is determined by motion distance and axis speed of
reference axis, and the speed is matched automatically.

Data in TABLE should be filled by manual, first data is guide point, O is
recommended to be as this guide point.

Table data*table multiplier=Pulse amount to deliver.

Ensure the parameter(distance) delivered by instruction is integer value of
pulse, or it will emerge floats, then motion has minor errors.

CAMBOX(start_point, end_point, table_multiplier, link_distance, link_axis[,
link_options][, link_pos][, link_offpos])
start point: TABLE No. of start point, save position of first point.
end point: TABLE NO. of end point.
table multiplier: position multiply this value, usually this value is set the same
as UNITS
link_distance: motion distance of reference axis.
link_axis: axis number of reference axis.
link_options: link mode with reference axis, different binary bits stand for
different meaning.
Bit Meaning
bit 0 Present axis starts to link with reference axis when MARK

297

signal of reference axis is triggered.
Present axis starts to link with reference axis when reference

bit 1 . o
axis reaches set absolute position.

bit 2 Repeat continuous double-direction motion automatically.
(cancel the repeat by setting REP_OPTION=1.)

bit 4 Start from middle position, then use power failure interruption
to realize CAMBOX recovering.

bit 5 Present axis links with reference axis when reference axis is

moving in positive direction.

Present axis starts to link with reference axis when MARKB

bit 8 signal of reference axis is triggered, and latch axis is the

reference axis. Need latest firmware to support.

link_pos: when link_options is set as 2, then it means the absolute position
where link between reference axis and slave axis starts.

Link offpos: when Bit4 of link_options is 1, it means the relative distance that

main axis has finished.

General

ERRSWITCH =3
RAPIDSTOP(2)
WAIT IDLE(0)
WAIT IDLE(2)
BASE(0,1) 'select axis 0
ATYPE=1,1 ‘pulse based stepper or servo
DPOS =0,0
UNITS = 100,100 'pulse equivalent
SPEED = 200,200
ACCEL=2000,2000
DECEL= 2000,2000
‘calculate data in TABLE
DIM deg, rad, x, stepdeg
stepdeg = 2 ‘change sections of data to generate, the more
sections it generates, the smoother speed will be.
FOR deg=0 TO 360 STEP stepdeg
rad = deg * 2 * PI/360 'transfer to rad.
X = deg * 25 + 10000 * (1-COS(rad))/100
TABLE(deg/stepdeg,x) 'save into TABLE

trace deg/stepdeg,x
NEXT deg
TRIGGER ‘trigger the oscilloscope automatically
WHILE 1 ‘cycle motion

IF IN (0) = on then ‘trigger when in(0) is on.
DPOS=0,0
CAMbox(0,360/stepdeg, 100, 500, 1,2,100)
'start to link when axisl reaches 100.
MOVE(600) AXIS(1)

298

WAIT UNTIL IDLE AND IDLE ‘'wait until motion finishes.

DELAY (100) 'time delay
ENDIF
WEND
END 'stop present task.
Motion Path:

DPOS(0) vertical scale 5000
DPOS(1) vertical scale 500

Speed Curve:
MSPEED(0) vertical scale 3000
MSPEED(1) vertical scale 500

CAM

MOVELINK-Auto Cam

Synchronization Motion Instruction

Self-defined cam motion with adjustable acceleration and deceleration
stages.

The connection axis is slave axis, the axis to be linked is reference axis.
Distance of slave axis is divided into 3 parts to match motion of reference

299

axis, they are acceleration, uniform and deceleration.

During the acceleration or deceleration stage, in order to match the speed, link
distance (distance of reference axis) must be two times of distance (distance
of slave axis).

Ensure the parameter(distance) delivered by instruction is integer value of
pulse, or it will emerge floats, then motion has minor errors.

Grammar

MOVELINK (distance, link dist, link acc, link dec, link axis[, link options] [,
link pos][, link offpos])
distance: distance of slave axis during the link, this parameter can be
negative or positive. Units as unit. When it is positive, it will
move in forward direction. When it is minus, it will move in
inverse direction.
link dist: absolute distance of reference axis during the link, units as unit.
link acc: absolute distance of reference axis during acceleration stage of
salve axis, units as unit.
link dec: absolute distance of reference axis during deceleration stage of
salve axis, units as unit.
Note: if sum of link dec and link acc is bigger than link dist, then they
will be minished as per the scale until the sum is equal to link dist.
link axis: axis number of reference axis.
link options: link mode, different binary bits stand for different meaning.

Mode Bit Description
1 Bit 0 link starts when MARK signal of reference axis is triggered.

link starts when reference axis reaches a determined absolute

2 Bit 1l . . .
position. (see link pos parameter description)

MOVELINK will execute repeatedly, and it can be inversed. (this

4 Bit 2
mode can be cancelled by setting the bitl of REP_OPTION as 1.)

curve acceleration or deceleration S mode, firmware version

above 20170502 supports.

start from a position in the middle, then use power failure

interruption to realize link recovering.

link happens only when reference axis is moving in positive

direction

link starts when MARKB signal of reference axis is triggered,

need latest firmware version to support.

link pos: when link options is set as 2, which means absolute position of
reference axis where link starts.

link offpos: when bit4 of link_options is set as 1, which means the
relative distance that master axis has finished, firmware with
version above 20170428 supports.

8 Bit 3

16 Bit 4

32 Bit5

256 Bit 8

Controller

General

Example

Examplel:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1) 'set axisO as slave axis, set axisl as reference axis.

300

UNITS=100,100

ATYPE=1,1

DP0OS=0,0

SPEED=100,100

ACCEL=2000,2000

DECEL=2000,2000

TRIGGER 'trigger the oscilloscope automatically

MOVELINK(100,100,0,0,1) AXIS(0)
'the effect is the same as CONNET when
Acceleration or Deceleration is not set, and no
concern of difference of UNITS, no error
accumulation will happen, motion ratio is 1:1 in
this situation.

MOVE(150)AXIS(1) ‘axis1 moves 150, and axis 0 will moves 100.

Interpolation path and speed curve:
DPOS(0) vertical scale 100, no offset
DPOS(1) vertical scale 100, offset 10
MSPEED(0) vertical scale 100, no offset
MSPEED(1) vertical scale 100, offset 10

MOVELINK(50,100,0,0,1), vertical scales are the same:

301

Example2: Fly Shear Application:

2
3
! 4
s1==[] || 4 5

5. profils Fly shear systematical principle

The sectional material keeps moving, and work station keeps stand first.
When material moves a determined distance, then the station starts to
accelerate until the speed is same as material feeding, the tool S1 will fall
down to cut the material, return after cutting is finished, then station then
starts to decelerate, move back to its starting position. The process cycle will
repeat continuously to get material parts with determined length.

Suppose required length of material is 4m, the motion distance of work station
is 1m, axisl is defined as reference axis (for material feeding), axis 0 is
defined as slave axis (fly shear work station), OUTO is defined as tool cutting
control point, then the code is as follow:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1)

UNITS=10000,10000

302

ATYPE=1,1

DP0OS=0,0

SPEED=1,1 'running speed of profile is 1m/s, 60m/min
ACCEL=2,2

DECEL=2,2

VMOVE(1)AXIS(1) 'the material keep feeding.
TRIGGER 'trigger the oscilloscope automatically

WHILE 1
BASE(0)
MOVELINK(0,1,0,0,1)AXIS(0) 'before the material feeds 1m, station
keeps stand.
MOVELINK(0.4,0.8,0.8,0,1)AXIS(0) 'the station starts to accelerate.
MOVELINK(0.2,0.2,0,0,1)AXIS(0) ‘follow 0.2m with same speed.
MOVE_OP2(0,0n,1000) ‘cutting tool falls down, return after 1s.
(note: time should be calculated)
MOVELINK(0.4,0.8,0,0.8,1)AXIS(0)
‘deceleration stage of work station.
MOVELINK(-1,1.2,0.5,0.5,1)AXIS(0)
'work station returns to starting position.
WEND

Motion Path and Speed Curve:
DPOS(0) vertical scale 1, no offset
MSPEED(0) vertical scale 1, no offset
DPOS(1) vertical scale 1, no offset
MSPEED(1) vertical scale 1, no offset

The operation curve in one period:

303

Station (slave axis) distance:0.4 (acceleration stage) + 0.2 (synchronous
follow) + 0.4 (deceleration stage) = 1m (units), then move back 1 unit.
Material feeding (reference axis):1+0.8+0.2+0.8+1.2=4m, and total process is
in constant speed.

Example 3: when link options bits3=1, slave axis accelerates and
decelerates in S curve.

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

DATUM(0)

BASE(0,1)

UNITS=10000,10000

ATYPE=1,1

DPOS=0,0

SPEED=1,1 'material operation speed is 1m/s, 60m/min

ACCEL=2,2

DECEL=2,2

SRAMP=200,200

VMOVE(1)AXIS(1) 'the material keep feeding.
TRIGGER ‘trigger the oscilloscope automatically

WHILE 1
BASE(0)
MOVELINK(0,1,0,0,1,8)AXIS(0) 'before the material feeds 1m,
station keeps stand.
MOVELINK(0.4,0.8,0.8,0,1,8)AXIS(0) 'the station starts to accelerate.

304

MOVELINK(0.2,0.2,0,0,1,8)AXIS(0) ‘follow 0.2m with same speed.
MOVE_OP2(0,0n,1000) ‘cutting tool falls down, return after 1s.
(note: time should be calculated)
MOVELINK(0.4,0.8,0,0.8,1,8)AXIS(0)
‘deceleration stage of work station.
MOVELINK(-1,1.2,0.5,0.5,1,8)AXIS(0)
'work station returns to starting position.
WEND

Motion Path and Speed Curve:
DPOS(0) vertical scale 1, no offset
MSPEED(0) vertical scale 1, no offset
DPOS(1) vertical scale 1, no offset
MSPEED(1) vertical scale 1, no offset

MOVELINK_MODIFY, MOVESLINK

MOVESLINK-Auto Cam 2

Synchronization Mation Instruction

This instruction is used for self-defined cam motion, it plans the middle
curve automatically, no need of calculating cam table.

The connection axis is following axis, the axis to be linked is reference axis.
During the acceleration or deceleration stage, in order to match the speed,
start sp of the next MOVESLINK must be same as end sp of current
MOVESLINK.

Please ensure the parameter(distance)*UNITS passed by instruction is an

305

integer value of pulse, otherwise there will be small errors caused by floats.

Grammar

MOVELINK (distance, link dist, start sp, end sp, link axis|[, link options] [,
link pos][, link offpos]) behind three are optional parameters, when they are
not set, comma must be added, because controller judges them according to
their position.
distance: distance of slave axis during the link, this parameter can be
negative or positive. Units as unit. When it is positive, it will
move in forward direction. When it is negative, it will move in
inverse direction.
link dist: absolute distance of reference axis during the link, units as unit.
start sp: speed ratio of reference axis and slave axis when starting,
units/units as unit. Negative value means the slave axis moves
in inverse direction.
end sp: speed ratio of reference axis and slave axis when ending,
units/units as unit. Negative value means the slave axis moves
in inverse direction. Note: when start sp = end sp =
distance/link dist, it moves at constant speed.
link axis: axis No. of reference axis.
link options: link mode, different binary bits indicate different meanings.
Mode Bit Description
The connection starts exactly at the moment the MARK event is
triggered on the reference axis.
The connection starts when reference axis arrives at one absolute
position (refer to “link pos”).
When Bit2 is set, MOVELINK will automatically execute in
4 Bit 2 cycle, and it can run inversely (this mode can be OFF through
setting Bitl of axis parameter REP_OPTION as 1).
Use link offpos to start from a position in the middle, then
16 Bit4 recover through power failure interruption. Valid in firmware
version 20170428 or above.
32 Bit5 It connects only when the reference axis runs forward.

The connection starts exactly at the moment the MARK event is
triggered on the reference axis, but it needs the latest firmware.

link pos: when link options is set as 2, which means the connection starts
when the reference axis is at the absolute position value.
link offpos: when bit4 of link_options is set as 1, this parameter is the

relative distance that master axis has finished. Valid in firmware
version 20170428 or above.

1 Bit 0

2 Bit 1

256 Bit 8

Controller

General

Example

Functions are same as MOVELINK, the difference is only the parameter
configuration.

Examplel:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

DATUM(0)

BASE(0,1)

306

UNITS=100,100
ATYPE=1,1
DP0OS=0,0
SPEED=100,100
ACCEL=2000,2000
DECEL=2000,2000
TRIGGER 'trigger the oscilloscope automatically
MOVELINK(50,100,0,1,1) AXIS(0)

‘axis 0 follows axis 1, speed is from 0 to the same
MOVELINK(100,100,1,1,1) AXIS(0)

‘axis 0 follows axis 1, the constant speed 100units
MOVELINK(50,100,1,0,1) AXIS(0)

‘axis 0 follows axis 1, speed is decreased to 0
VMOVE(1) AXIS(1)

Interpolation path and speed curve:
DPOS(0) vertical scale 200, no offset
DPOS(1) vertical scale 200, offset 10
MSPEED(0) vertical scale 200, no offset
MSPEED(1) vertical scale 200, offset 50

Example2: Fly Shear
RAPIDSTOP(2)
WAIT IDLE(0)
WAIT IDLE(1)
DATUM(0)

BASE(0,1)
UNITS=10000,10000
ATYPE=1,1
DP0OS=0,0
SPEED=1,1
ACCEL=2,2
DECEL=2,2

307

SRAMP=200,200

TRIGGER 'trigger the oscilloscope automatically
VMOVE(1) AXIS(1)

WHILE 1

MOVESLINK(0,1,0,0,1)AXIS(0) '1 unit before profile motion, workbench
keeps still

MOVESLINK(0.4,0.8,0,1,1)AXIS(0) ‘'workbench starts to accelerate.
MOVESLINK(0.2,0.2,1,1,1)AXIS(0) 'speed following
MOVESLINK(0.4,0.8,1,0,1)AXIS(0) ‘workbench starts to decelerate.
MOVESLINK(-1,1.2,0,0,1)AXIS(0) ‘workbench returns to starting position.
WEND

Motion Path and Speed Curve:
DPOS(0) vertical scale 1, no offset
DPOS(1) vertical scale 1, no offset
MSPEED(0) vertical scale 1, no offset
MSPEED(1) vertical scale 1, no offset

MOVESLINK

MOVELINK_MODIFY-Link Distance Modification

AXxis Parameters

Relatively modify the synchronous length of MOVELINK.
When bringing into motion buffer, it only takes effect after the synchronous
segment.

308

VAR1 = MOVELINK_MODIFY, MOVELINK_MODIFY = expression

With firmware version above 2160926

Example 1:

RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(2)

BASE(0,1)

UNITS=100,100

ATYPE=1,1

DP0OS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER ‘trigger the oscilloscope automatically
Without modify the link distance

MOVELINK(10,20,20,0,1) ‘acceleration stage of station
MOVELINK(100,100,0,0,1) ‘link distance of slave axis is 100
MOVELINK(10,20,0,20,1) ‘deceleration stage

VMOVE(1) AXIS(1)

Motion Path and Speed Curve:

DPOS(0) vertical scale 200, no offset
DPOS(1) vertical scale 200, no offset
MSPEED(0) vertical scale 200, offset -200
MSPEED(1) vertical scale 200, offset -150

Add link distance, others same as former.
MOVELINK(10,20,20,0,1) ‘acceleration stage of station
MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100
MOVELINK_MODIFY=50 'modify the link distance as 100+50
MOVELINK(10,20,0,20,1) 'deceleration stage

309

Decrease link distance, others same as former.
MOVELINK(10,20,20,0,1) ‘acceleration stage of station
MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100
MOVELINK_MODIDY=-50 'modify the link distance as 100-50
MOVELINK910,20,0,20,1) ‘'deceleration stage

Note: this instruction only can be used until link distance finished, if in the
acceleration or deceleration stage, there will be wrong, and can not modify.
MOVELINK(10,20,20,0,1) ‘acceleration stage of station
MOVELINK_MODIFY=50

MOVELINK(100,100,0,0,1) 'link distance of slave axis is 100

Axis:0 MOVELINK_MODIFY:50.000 failed.

Example 2: (slave axis) fly shear axis accelerates and decelerates in S
curve

310

RAPIDSTOP(2)
WAIT IDLE(0)
WAIT IDLE(1)
DATUM(0)

BASE(0,1)

UNITS=10000,10000

ATYPE=0,0

DP0OS=0,0

SPEED=1,1 'material operation speed 1 m/s, 60m/min
ACCEL=2,2

DECEL=2,2

SRAMP=200,200

STOPTASL1
RUNTASKZ1, Task_FlyShear
DELAY (200)

VMOVE(1) AXIS(1) 'material keeping motion
TRIGGER 'trigger oscilloscope automatically
END

Task_FlyShear:

WHILE1
BASE(0)
'MOVELINK_MODIFY=0 ‘clear first
MOVELINK(3,4,1,1,1,8) AXIS(0)
WAIT UNTIL MPOS(0)>1 ‘wait until slave axis distance > 2
MOVELINK_MODIFY=-1 ‘decrease 1 for slave axis distance
WAIT IDLE(0)
WAIT UNTIL MOVELINK_MODIFY=0

'wait until synchronic offset finished

WAIT IDLE(0)

BASE(0)

DPOS=0

'MOVELINK_MODIFY=0 ‘clear first

MOVELINK(3,4,1,1,1,8) AXIS(0)

WAIT UNTIL MPOS(0)>1 'wait until link distance of slave axis>2

MOVELINK_MODIFY=1 ‘add 1 for slave axis distance

WAIT UNTIL MOVELINK_MODIFY=0

‘wait until synchronic offset finished

WEND

Motion Path and Speed Curve:
DPOS(0) vertical scale 1, no offset
DPOS(1) vertical scale 3, no offset
MSPEED(0) vertical scale 1, no offset

311

MSPEED(1) vertical scale 1, no offset

MOVELINK

MOVESYNC - Sychronous Motion

Motion Setting Instruction

Motion synchronization, Belt objects follow to move. This isn’t
interpolation motion, so it can’t ensure linear path.

The belt axis length unit is required the same as slave axis of BASE.

When BASE axis finished follow motion, this instruction ends. In this
situation, if corresponding inductive position of belt objects has moved a
certain distance, then BASE axis is not in the absolute position, and it is
running in follow speed.

MOVESYNC supports continuous using, it won’t interrupt speed continuity,
and can add MOVE_OP in the middle. In case the high-speed follow motion
stop directly when motion finished, the final instruction, MOVESYNC, please
use Mode -1.

This instruction belongs to CAM instruction, doesn’t support motion pause.

MOVESYNC(mode,synctime,syncposition,syncaxis,pos1[,pos2, pos3...])

Mode Description

synchronization mode ends, motion has reached defined
-1 absolute position. If there are other MOVESYNC instructions
next, it will be covered, syncaxis is invalid under the mode.
force it to end. When -2 is called, original MOVESYNC
instruction will stop, and move to defined ending position. If
there are other MOVESYNC instructions next, it will be
covered, syncaxis is invalid under the mode.

312

0 the first axis(x) of BASE follows Belt axis objects.
10 the second axis(y) of BASE follows Belt axis objects.
20 the third axis of BASE follows Belt axis objects.

mode = 0+ angle, angle: belt rotation angle, angle = forward rotating
angle between belt and the first/second axis of BASE axis. Such as,
Mode=PI1/4, belt is at 45 degrees. Mode=PI/2, belt is at Y direction. Mode=PlI,
belt is at x negative direction. Mode=(PI1*1.75), belt is at -45 degrees.

synctime: synchronization time, ms as unit, and the motion will finish in
defined time, when it finished, BASE axis follows belt and their speed are the
same. 0 means the synchronization time can be estimated according to motion
axis’ speed, acceleration, but sometimes not accurate.

syncposition: belt position when belt objects are reacted, it supports belt
axis coordinate cycle, but if it is called, ensure coordinate is not modified or
operated cycle between the parameter position and belt axis position.
Therefore, don’t use the instruction near the cycle point.

syncaxis: belt axis NO., -1 means no belt axis, moving to pos1 directly.

posl: the first axis(BASE) absolute position when belt object is reacted.

pos2: the n axis(BASE) absolute position when belt object is reacted.

POS1

|
l¢ »l
< >

slave axis 1 origin point

mateial inductive Syncposition

point
belt axis origin point
| ¢

A
A 4

POSn

€ N
I« »

|

|

l slave axis n origin peint
1 |

|

With firmware version above 170601.

Example 1: belt takes the material
RAPIDSTOP(2)
WAIT IDLE(0)
WAIT IDLE(1)
BASE(0,1)
DPOS=0,0
UNITS=100,100
ATYPE=1,1
SPEED=100,100
ACCEL=1000,1000
DECEL=1000,1000

TRIGGER

MOVESYNC(0, 0, 100, 1, 120) 'move to belt objects synchronically

MOVE_OP(1,1) ‘decrease, if axis Z decreases, also can be
used by MOVESYNC

MOVE_OP(0,1) ‘open nozzle

MOVESYNC(0,1000,100,1,120) ‘continue to follow 1s

MOVE_OP(1,0) 'increase

313

MOVESYNC(-1, 0, 0, -1, 400) 'move to position where put materials400

MOVE_OP(1,1) ‘decrease

MOVE_OP(0,0) ‘close nozzle

MOVE_DELAY(2) 'delay 2ms, can’t insert these sentences in
MOVESYNC continuous motion

MOVE_OP(1,0) 'increase

MOVEABS(0) 'back to origin

VMOVE(1) AXIS(1) 'belt axis motion

Motion path and speed curve:

DPOS(0) vertical scale 500, no offset
DPOS(1) vertical scale 500, no offset
MSPEED(0) vertical scale 200, no offset
MSPEED(1) vertical scale 200, no offset

Example 2: Take the material from the belt to another belt.
RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(1)

BASE(0,1,2)

DP0S=0,0,0

UNITS=100,100,100

ATYPE=1,1,1

SPEED=1000,100,150 ‘set different speeds
ACCEL=1000,1000,1000

DECEL=1000,1000,1000

TRIGGER
MOVESYNC(0,0,50,1,80) 'move to belt object synchronically
MOVE_OP(0,1) ‘open the nozzle

MOVE_OP(1,1) 'decrease, if axis Z decreases, can use MOVESYNC
MOVESYNC(0, 300, 50, 1, 80) ‘continue to synchronize 2ms

314

MOVE_OP(1,0) 'increase
MOVESYNC(0, 0, 100, 2, 150) 'move to the second corresponding belt

MOVE_OP(1,1) 'decrease
MOVE_OP(0,0) ‘close the nozzle
MOVESYNC(0,300, 100, 2, 150) ‘synchronize 2ms
MOVE_OP(1,0) 'increase
MOVESYNC(-1, 0,0, -1, 0) 'move to stop position
VMOVE(1) AXIS(1) 'motion of belt axis 1
VMOVE(1) AXIS(2) ‘motion of belt axis 2

Motion path and speed curve:

DPOS(0) vertical scale 200, no offset
DPOS(1) vertical scale 200, no offset
MSPEED(0) vertical scale 200, no offset
MSPEED(1) vertical scale 200, offset -200
DPOS(2) vertical scale 200, no offset
MSPEED(2) vertical scale 200, offset -200

b DPOS[2) Min:0.00 Max:1190.0%

Example 3: Carved on the belt object
RAPIDSTOP(2)

WAIT IDLE(0)

WAIT IDLE(2)

BASE(0,1,2,6,7)
UNITS=100,100,100,100,100

315

DP0S=0,0,0,0,0

SPEED=100,100,100,100,100

ACCEL=1000,1000,1000,1000,1000

DECEL=1000,1000,1000,1000,1000

TRIGGER

ADDAX(6) AXIS(0) ‘carve on the virtual axis, then superpose to actual axis
ADDAX(7) AXIS(1)

BASE(0, 1)

MOVESYNC(0, 0, 50, 2, 80,100) 'move synchronically to belt object
MOVE_TASK(1, taskl) 'trigger superposition axis carving
MOVESYNC(0, 1000, 50, 2, 80, 100)'longer carving motion time
MOVESYNC(-1, 0,0, -1,0,0) 'move to stop position

VMOVE(1) AXIS(2) ‘belt axis motion

END

TASKLI:

DELAY(2) ‘'when superposition carving in process, absolute motion
instruction position will be wrong, delay for avoiding
calling instructions.

BASE(6, 7)

MOVE(100,100) ‘carve with lines in two sides

WAIT IDLE ‘wait until carving ends

BASE(0, 1)

MOVESYNC(-2, 0,0, -1,0,0)

‘when carving finished, force to move to stop position

Motion path and speed curve

MSPEED(0) vertical scale 200, no offset
MSPEED(1) vertical scale 200, no offset
MSPEED(2) vertical scale 200, no offset
MSPEED(6) vertical scale 200, offset -50
MSPEED(7) vertical scale 200, offset -100

316

L MSPEED[Y) Max:70.72

FLEXLINK--Excitation Motion

Synchronization Motion Instruction

This instruction is used to realize excitation motion of axis. It consists of
uniform motion and excitation motion.

lacceleration | |deceleration
|‘disLanoe |

. |
speed |excite_acc

execitation distance excite dist
(now it is positive value)

Dbefore execitation start base_in after excitation end base_out

constant speed stage base_dist

Please ensure the distance (pulse amount, parameters*units) is integer,or will
cause slight motion precision error if it is a float value.

FLEXLINK(base_dist, excite_dist, link_dist, base_in, base_out, excite_acc,
excite dec, link axis, link_options, [start_pos], [link_offpos])
Parameters:

base_dist: uniform motion distance of slave axis.

excite_ist: excitation motion distance of slave axis, +: increase,

-: decrease.
Total distance of slave aixs= base_dist + excite_dist.

link_dist: distance of main axis during the whole link.

317

base_in: percentage of base_dist that distance of slave axis will possess
before the excitation starts.

base_out: percentage of base_dist that remaining distance of slave axis
will possess after excitation motion. (base_in + base_out
should not exceed 100%, or excite_dist will be invalid)

excite_acc: percentage of excite_dist that slave axis' acceleration distance
will possess during the excitation motion, when excite_dist is
minus, indicating deceleration stage.

excite_dec: percentage of excite_dist that slave axis' deceleration distance
will possess during the excitation motion, when excite_dist is
minus, indicating acceleration stage.

(base_in, base_out, excite_acc and excite_dec will be valid only when

excite_dist is not 0.)
link_axis: main aixs NO.
link_options: link mode with reference axis (main axis), different binary

bit value has different meanings.
Bit Description
bit0 | link starts when Mark(latch is triggered) of reference axis is on.
bitl | link starts when reference axis reaches set absolute position.
bit2 | repeat double direction motion continuously. (cancel the repeat by setting
REP_OPTION=1).
bit4 | CAM starts in the middle.
bit5 | link only happens when the reference axis moves in positive direction.
bit8 | link starts when MARKB is on.

start_pos: absolute position trigger

link_offpos: middle position where CAM starts

ZMC4XX series with firmware version above 20170518.
ZMC3XX series with firmware version above 20161212.

Example 1: Round Cutting

roller
blade

blade point

h 4

constant stage | accleration stage |constant stage |constant stage | acceleration stage |constant stage

workpiece

RAPIDSTOP(2)
WAIT IDLE(0)
WAIT IDLE(1)
BASE(0,1)
DP0OS=0,0

318

UNITS=100,100

SPEED = 200,200

ACCEL=1000,1000

DECEL=1000,1000

TRIGGER

FLEXLINK(500,500,500,15,15,20,20,1)
‘cutting tool will move 500 units, material will move 1000 units, the speed
where cutting begin will be the same, it is just the position of one cycle.

FLEXLINK(500,500,500,15,15,20,20,1) AXIS(0)

MOVE(1000) AXIS(1)

Motion path and speed curve:

DPOS(0) vertical scale 1000, no offset
MSPEED(0) vertical scale 300, no offset
DPOS(1) vertical scale 600, no offset
MSPEED(1) vertical scale 200, no offset

7.5 Motion Setting Instructions

CLUTCH_RATE--Link Speed

AXis Parameters

link speed of instruction CONNECT, default value is 1000000.

It is used to define changing time of connection ration from 0 to ratio
configuration, the unit is ratio/s, please see example 1.

If the value is not set far bigger than link ratio of CONNECT, then actual ratio
will be smaller. Please see offset curve graph of example 1.

When it is set as 0, the link will change as per the value of followed axis
speed/acceleration, it is suitable in handwheel link. (When speed is too slow,
link will end after motion continue to move some distance.)

319

CLUTCH_RATE= value

General

Example 1:

BASE(0,1)

ATYPE=1,1

DP0OS=0,0

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

CLUTCH_RATE=1 'set link ratio as 1 ratio/s
TRIGGER ‘trigger oscilloscope automatically
CONNECT(2,1) AXI1S(0) 'link ratio is 2, need 2 seconds to build link.
MOVE(300) AXIS(1) ‘axis 1 moves, axis 0 follows.

Speed curve, link time is based on link ratio and clutch_rate

MSPEED(0) vertical scale 200
MSPEED(1) vertical scale 200

Offset curve, clutch_rate is too small, actual link ratio will be less than 2:1.

MSPEED(0) vertical scale 300
MSPEED(1) vertical scale 300

320

Example 2:

BASE(0,1)

DP0OS=0,0

ATYPE=1,1

UNITS=100,100

SPEED=100,100

ACCEL=500,500

DECEL=500,500

CLUTCH_RATE=0

'link as per value of followed axis speed/acceleration, maybe not synchronized
TRIGGER 'trigger oscilloscope automatically
CONNECT(2,1) AXIS(0)

'link speed is 0.2s, link time is determined by slave axis speed / acceleration
VMOVE(500)AXIS(1)

Speed curve
MSPEED(0) vertical scale 100
MSPEED(1) vertical scale 100

Offset curve:
MSPEED(0) vertical scale 1000
MSPEED(1) vertical scale 1000

CONNECT

321

ENCODER_RATIO-Gear Ratio of Encoder

Type

Motion Setting Instruction

Description

Input Gear Ratio of Encoder, default value is (1,1). The direction can be
changed by setting as minus value.

Grammar

ENCODER_RATIO(mpos_count, input_count,[, mode])

mpos_count: numerator, maximum is 65535
input_count: denominator. maximum is 65535

Mode Description
1 AB 1X Mode
2 AB 2X Mode
3 AB 4X Mode

Please set ATYPE as encoder type, then call mode to set.
Valid in firmware ZMC406 20170502 above.

Controller

General

Example

ENCODER RATIO(4,1) 4 times

ENCODER_RATIO (1,1,4)
ENCODER_RATIO(1,-1) 'encoder input to switch the direction, which equals

to ENCODER_RATIO (-1,1)

‘encoder input, which equals to

Instructions

PP_STEP, ENCODER

STEP_RATIO- Gear Ratio of Motor

Type

Motion Setting Instruction

Description

Set output gear ratio of stepper, default value is (1,1). Range:1-65535.

The motor direction can be changed by setting minus value, but it is not
recommend. Pulse motor uses INVERT STEP, bus motor modifies in the
actuator.

Don’t modify the value frequently, it is better to change the pulse amount to
realize the same effect.

Grammar

STEP_RATIO(output_count, input_count)

output_count: numerator, maximum is 65535
input_count: denominator, maximum is 65535

Controller

General

Example

STEP_RATIO (16,1)
can be achieved through pulse equivalent multiples 16.

‘pulse output 16 times of the set pulse value. Also it

BACKLASH- Reverse Clearance Compensation

‘ Type ‘ Motion Setting Instruction

322

To set reverse compensation of axis, not valid in extended axis.

BACKLASH (enable [,dist[, speed, acceleration]])

enable enable or not.
dist distance, UNITS as unit.
speed speed of reverse compensation.

acceleration acceleration of reverse compensation.

General

Example 1:
BACKLASH(0) 'shut reverse compensation function.
BACKLASH(Z, 0.1) 'set reverse compensation as 0.1mm.

Example 2:
RAPIDSTOP(2)
WAIT IDLE(0)

BASE(0)

ATYPE =5 'with encoder feedback
SPEED =1000

ACCEL = SPEED * 10

DECEL = SPEED * 10

SRAMP =0

DPOS=0

MPOS =0

BACKLASH(0) ‘close reverse gap
TRIGGER

‘apply reverse clearance parameters

BACKLASH(1, 10, 50, 100) '10mm compensation
MOVE(200)

MOVE(-100) ‘'start to compensate when reverse
END

323

T DPOS@] Min:0.00 Max200.00 , ‘ ,
P MSPEEDIO) i . Min-304.00 Wax204.00 i &4 4
B MPOSI) ! Min:0.00 Maxx210.00

PITCHSET -- Screw Pitch Compensation

Motion Setting Instruction

To set axis screw pitch compensation, not valid in extended axis.
The number of compensation pulses of each point are saved into TABLE.

PITCHSET (enable [, startpos, disone, maxpoint, tablenum J)
enable enable or not.
startpos the MPOS position where compensation starts,
UNITS as unit. Note: the point that corresponds to
startpos is not saved.
disone distance between points, UNITS as unit.
maxpoint total points need to be compensated
tablenum TABLE position where saved the compensation point,
it saves starting from next point of “startpos”, the
unit is pulse
Support dynamically modifying compensation parameters.
When the compensation is ON or OFF, adjust dpos and mpos,
but don’t make them correct by the motion.

General

Singe-Axis Pitch Compensation:
Example 1:

ATYPE(6)=6

UNITS(6)=100

DPOS(6)=0

BASE(0)
ATYPE=1
UNITS=100

324

SPEED=100

ACCEL=500

DECEL=500

TABLE(0, 0*UNITS(0), -90*UNITS(0), -50*UNITS(0), 30*UNITS(0),

50*UNITS(0),0)

'TABLE saves pitch compensation value, the value is the number of pulses,

not the pitch compensation value.

DPOS=0

MPOS=0

'//starting compensation position (MPOS) compensation value (the number
of pulses at a distance of 100)

/I 100 0

/I 200 -90

/I 300 -50

/I 400 30

/I 500 50

/I 600 0

PITCHSET(1,0,100,6,0) '‘when MPOS=0, it starts to compensate 6 points,
a space of 100

TRIGGER

MOVE(70)

MOVE(-700)

WAIT IDLE

PITCHSET(0,100,100,6,0)

In this waveform, in order to show compensation effect, connect axis 0 pulse
OUT to axis 6 encoder IN, and do some offsets for obvious compensation
effects.

DPOS(0) — offset -300, vertical scale (Y scale): 200

DPOS(6) — offset -300, vertical scale (Y scale): 200

325

Example 2:
ATYPE(6)=6
UNITS(6)=100
DPOS(6)=0

BASE(0)

ATYPE=1

UNITS=100

SPEED=100

ACCEL=500

DECEL=500

TABLE(0, O0*UNITS(0), -90*UNITS(0), -50*UNITS(0), 30*UNITS(0),

50*UNITS(0),0)

"TABLE saves pitch compensation value, the value is the number of pulses,

not the pitch compensation value.

DPOS=0

MPOS=0

//starting compensation position (MPOS) compensation value (the number
of pulses at a distance of 100)

/I 100 0
/I 200 -90
/I 300 -50
'/l 400 30
/I 500 50
/I 600 0

PITCHSET(1,-700,100,6,0)

'‘when MPOS=700, it starts to compensate 6 points, a space of 100
TRIGGER

MOVE(-700)

MOVE(700)

WAIT IDLE

PITCHSET(0,100,100,6,0)

In this waveform, in order to show compensation effect, connect axis 0 pulse
OUT to axis 6 encoder IN, and do some offsets for obvious compensation
effects.

DPOS(0) — offset 300, vertical scale (Y scale): 200

DPOS(6) — offset 300, vertical scale (Y scale): 200

326

Example 3: Multi-Axis Pitch Compensation
BASE(6,7)

UNITS=100,100

SPEED=100,100

ACCEL=100,100

DP0OS=0,0

MPOS=0,0

BASE(0,1)
ATYPE=55
UNITS=100,100
SPEED=100,100
ACCEL=100,100
DP0OS=0,0
MPOS=0,0

TABLE(0, 100*UNITS(0), 100*UNITS(0), 100*UNITS(0))
"TABLE saves pitch compensation value, the value is the number of pulses,
not the pitch compensation value.

BASE(0)
PITCHSET(0)
PITCHSET(1,50,100,3,0)
‘when MPOS=50, start to compensate 3 points, a space of 100
BASE(1)
PITCHSET(0)
PITCHSET(1,50,100,3,0)
‘when MPOS=50, start to compensate 3 points, a space of 100

TRIGGER

327

BASE(0,1)
MOVE(150,150)
wait IDLE
?PITCH_DIST(0)
?PITCH_DIST(1)
MOVE(100,100)
wait IDLE
?PITCH_DIST(0)
?PITCH_DIST(1)
MOVE(100,100)
wait IDLE
?PITCH_DIST(0)
?PITCH_DIST(1)

In this waveform, in order to show compensation effect, connect axis 0, axis 1
pulse OUT to axis 6, axis 7 encoder IN. and do some offsets for obvious
compensation effects.

DPOS(0) — offset 0, vertical scale (Y scale): 500

DPOS(6) — offset -0, vertical scale (Y scale): 500

DPOS(1) — offset -500, vertical scale (Y scale): 500

DPOS(7) — offset -500, vertical scale (Y scale): 500

PITCH DIST

PITCH_DIST -- Pitch Compensation Distance

AXis State

Read distance value of current axis pitch compensation, the real MPOS
returned value will minus the value.

328

VAL=PITCH_DIST (axisnum)

Grammar . .
axisnum: axis No.

Controller General

Instruction PITCHSET

7.6 Robot Instructions

CONNFRAME - Inverse Solution of Robotic Arm

Type Synchronization Motion Instruction

Description | Target position of current joint coordinate correlates with virtual
coordinate.
When CLUTCH_RATE=0, motion speed and acceleration of joint
coordinate are limited by SPEED and other parameters.
ANWhen there is warning, motion will be canceled by CANCEL.
/\Don’t CANCEL the motion when virtual axis is running at high speed,
axis will stop.
A\ virtual axis coordinate will be modified automatically under LOAD,
making it same as joint axis, so need to use WAIT LOADED for starting
moving.
A\Do not modify the virtual axis coordinate during link process, or do not
call DATUM and other instructions that might modify coordinate, it will
cause joint axis move to a new virtual position rapidly.
ANWhen CONFRAME is taken effect, MTYPE=33, now joint axis can’t
move directly, it needs virtual axis to move joint axis. When wants to move
joint axis directly, call the CANCEL instruction to cancel CONNFRAME at
first, then move joint axis.
ANwWhen virtual axis and actual axis are the rotating axis, their pulse amount
should be the same, for example, terminal axis of rotation.

Grammar CONNFRAME((frame, tablenum, viraxis0, viraxis1,[...])

frame: coordinate type, 1- scara (if needs special defined robotic arm
type, please contact with manufacturers)

tablinum: TABLE position for saving conversion parameters. When
frame=1, save one by one: the first joint axis length, the
second joint axis length, the first joint axis pulse amount as
per round, the second joint axis pulse amount as per round.

viraxis0: the first axis of virtual coordinate

viraxisl: the second axis of virtual coordinate

329

[...]: the N axis of virtual coordinate, it can be actual axis, exact axis is
determined by robotic arm type.

FRAME List of mechanical structures
Please see Zmotion robotic arm instructions for details.
Please contact with manufacturers if needs other special robotic structures.
frame | Structure Type
1 Standard SCARA robotic arm
101 SCARA + swing, 4 defined virtual axes
105 SCARA + swing, 5 defined virtual axes
106 Special SCARA
107 Special SCARA
108 Special 5-axis SCARA
11 Rotary table
17 Double- rotary table
18 Offset rotary table
19 Offset double-rotary table

3 Palletizing robotic arm
103 Palletizing deformation, spraying robotic arm
5 Rotary scalable robotic arm

15 XY sliding table
102 2-axis delta

2 3-axis delta, R type controllers support

12 4-axis delta, R type controllers support

13 3-axis vertical spider hand, R type controllers support
25 5-joint robotic arm

6 Robotic arm with 6 DOF (degree of freedom), R type

controllers support

26 Special 6 DOF

36 Special 6 DOF

100 XY Z+2-axis wrist, defined 3 virtual axes
104 XY Z+2-axis wrist, defined 5 virtual axes

Controller General

Example DIML1,L2

L1=10 'the first joint axis length

L2=10 'the second joint axis length

BASE(0,1) 'joint axis number is 0,1

ATYPE=1,1

UNITS=10,10 ‘pulse amount, degree as unit

DP0OS=0,0 'set joint axis position, and modify it according
to actual situation

BASE(6,7) 'virtual axis number is 6,7

ATYPE=0,0 'set as virtual axis

TABLE(0,L1,L.2,3600,3600) 'parameters are saved starting from TABLE(0),
a round of motor, there are 3600 pulses.

330

UNITS=1000,1000

‘pulse equivalent should be set in advance, and
it can’t be changed in the process.

BASE(0,1)

CONNFRAME(1,0,6,7) 'set reversed solution, coordinate of axis 0/1
calculate motion joint axis according to axis
6/7.

WAIT LOADED

BASE(6,7)

MOVEABS(15,10) 'virtual axis sends motion instructions

END

Connect the simulation tool of robotic arm to view the running effect as

shown below:

B ZRobotView - 127.0.0.1 - FRAMET mESCARATIRE 25

u] X

A4

FeilE =

|

Oiu’:l?:|

b =

~

@

PO :
i |a. 000

1 |51.3nn
[=
[=
|:_
|=

2 REDPOS

A EROS:
0 |s.mnn
L |ﬁl.3DEI

&

[

[

[F

WOBLD_DPOS

k) |15.UUEI

i |IE.UBG

T |10.Uﬂi]

it |10.Ui]ﬁ

1 [7 %

Instructions

CONNREFRAME

CONNREFRAME —-Forward Solution of Robotic Arm

Type

Synchronization Motion Instruction

Description

Virtual axis coordinate correlates with joint axis coordinate, when joint
axis moves, virtual axis will move to corresponding position.

This is the inversed motion instruction of CONNFRAME.

AN When virtual axis CONNREFRAME moved LOAD, joint axis
CONNFRAME will be cancelled automatically by CANCEL.

AN When joint axis CONNFRAME moved LOAD, virtual axis
CONNREFRAME will be cancelled automatically by CANCEL.

Grammar

CONNREFRAME((frame, tablenum, axis0, axisl,[...])
frame: coordinate type, 1-scara (if needs special defined robotic arm

331

type, please contact with manufacturers)

tablinum: TABLE position for saving conversion parameters. When
frame=1, save one by one: the first joint axis length, the
second joint axis length, the first joint axis pulse amount as
per round, the second joint axis pulse amount as per round.

viraxisO: the first axis of joint coordinate

viraxisl: the second axis of joint coordinate

[...]: the N axis of joint coordinate

The position of BASE axis is opposite to parameter axis.

Controller General
Example DIM L1,L2
L1=10 'the first joint axis length
L2=10 'the second joint axis length
BASE(0,1) 'suppose joint axis number is 0/1
UNITS=10,10 ‘pulse amount is 10
DPOS=0,0 ‘set joint axis position, modify it according to actual situation
BASE(6,7)
ATYPE=0,0 'set as virtual axis

TABLE(0,L1,L2,3600,3600)
'parameters are saved starting from TABLE(O), a round of
motor, there are 3600 pulses.
UNITS=1000,1000 ‘pulse amount should be set in advance, and it
can’t be changed in the process.
CONNREFRAME(1,0,0,1) ‘coordinate of axis 6/7 calculate motion joint
axis according to axis 0/1.
BASE(0,1)
MOVEABS(90,0) 'virtual coordinate is changed to 0,20.

Instructions

CONNFRAME

FRAME--Robotic Arm Type

Type

Robotic Arm Instruction

Description

Choose robotic Type, see Robotic Arm Manual for reference.

Instructions

CONNFRAME

FRAME_STATUS-AXis Status of Robot

Type

Robotic Arm Instruction

Description

Indicate current robotic arm attitude.

When the status is not robotic arm, it returns -1, FRAME_TRANS2
instruction will use this attitude. Several attitudes are only for SCARA, kind
of SCARA and 6 DOF.

SCARA left-hand status value is 0, right-hand status value is 1.

332

Grammar VAR1=FRAME_STATUS (AXIS)

Controller General

Example Input online instruction ?FRAME_STATUS, and print the current status.
>>?FRAME_STATUS

Instructions | BASE

FRAME_TRANS2-Coordinate Conversion of Forward and

Inverse Solutions

Type Robotic Calculation Instruction

Description | Coordinate transformation function.

It must be used when the forward or inverse is built.

The axis No. of BASE must be correct when using the instruction. For
inverse solution, base as virtual axis, for forward solution, base as joint axis.
According to correct sequence, fill corresponding data. And data and
number filled in should be the same as ?*frame.

Grammar FRAME_TRANS2(tablein, tableout, dir)

tablein: index No. of table array, from this index, start to continuously
save data. When in forward solution, input joint coordinate,
when inverse solution, input virtual axis coordinate, at last,
plus the status.

tableout: table, this index No. starts to save data. When in forward
solution, output virtual coordinate and then plus status, when
in inverse solution, output joint coordinate list.

Dir: mode selection

Mode Type Description
From virtual axis to joint axis, no status, use
0 Inverse .
current status automatically.
1 Forward | From joint axis to virtual axis, no status output.
2 Inverse Input virtual axis coordinate, at last plus status.

Output virtual axis coordinate, when output the

3 Forward i . .
final position, fill in status.

Controller General

Example Take scara structure as example, the first joint axis L1=10, the second joint
axis L2=10. Table (100) as saved position of input coordinate, table (200) as
saved position of output coordinate.

After linking, origin coordinate of joint axis is (0,0), and the virtual axis
coordinate is (20,0), as below:

333

A

¥

L1=10

Coordinate transformation form:

L2=10

When virtual axis coordinate is (10,10), there are two statuses.
Joint axis (0,90) and joint axis (90,-90).

v

BASE Output joint
Status) Input X,Y, status | Instruction P .Jom
axis coordinate
table(100,20,0,0) | frame trans | table(200,0,0)
table(100,10,10,1
_ able(2 table(200,0,90)
Virtua) (100,200,0)
Inverse I axis frame_trans
table(100,10,10,1 -
able() 2 table(200,90,-90)
(100,200,2)
BASE Input joint . Output X,Y,
Status .) Instruction
axis coordinate status
table(100,0,0) table(200,20,0,0)
frame trans | table(200,10,10,0
table(100,0,90) 2‘ ()
i table(200,10,10,0
Forwar J0|.nt table(100,90,-90) (100,200,1) (
d axis)
frame_trans
- table(200,10,10,1
table(100,90,-90) 2 ()
(100,200,3)

FRAME_ROTATE-Workpiece Coordinate Conversion

Robot Calculation Instruction

Used to translate and rotate workpiece coordinate system.

At present, it only can rotate FRAMES status at the same time, other virtual
axes that has XY Z support 3-axis rotation, but status axis can’t rotate.
After rotation, virtual axis WORLD_DPOS means world coordinate won’t

334

change, virtual axis DPOS means workpiece axis will change.
When using, there needs mechanical link of the controller.

The axis of BASE can be either virtual axis or joint axis. If BASE axis has
no robotic arm link, an error 1025 will appear.

When there are several robotic arm superpositions, identify which is the
robotic arm mode according to BASE axis. If in BASE (axis_1, axis_2),
axis 1 is the robotic arm axis of model, axis 2 is the robotic arm axis of
mode2, so calculating coordinate with robotic arm model, which means in
BASE axis sequence.

FRAME_ROTATE(X,Y,Z,RX,RY,RZ)

X: translation distance of coordinate B towards X*
Y: translation distance of coordinate B towards Y»
Z: translation distance of coordinate B towards Z*
RX: rotation angle of coordinate B towards X*
RY: rotation angle of coordinate B towards Y#
RZ: rotation angle of coordinate B towards Z*

coordinate B

A
AR RA coordinate A
Rotation of coordinate system:
The method: x_y_z coordinate system with fixed angle.
At first, superpose coordinate {B} and coordinate {A}(known reference).
{A} rotates RX angle about Xa, then rotates RY angle about Ya, at last,
rotates RZ angle about Za.

General

Example 1 FRAME=2, DELTA, rotates X axis 90 degrees.
BASE(0,1,2)

RAPIDSTOP

ATYPE=111
UNITS=3600/360,3600/360,3600/360
DP0S=0,0,0

BASE(6,7,8)

ATYPE =0,0,0
TABLE(0,40,10,32,85,3600,3600,3600, 0, 0,0)
UNITS = 100,100,100

BASE(0,1,2)

CONNFRAME(2,0,6,7,8)

WAIT LOADED

335

BASE(6,7,8)

FRAME_ROTATE(0,0,0,P1/2,0,0)
?2"DPOS(7)-WORLD_DPOS(7)=",DPOS(7)-WORLD_DPOS(7)
?"DPOS(8)-WORLD_DPOS(8)=",DPOS(8)-WORLD_DPOS(8)

Output results:
DPOS(7)-WORLD_DPOS(7)=-58.1400
DPOS(8)-WORLD_DPOS(8)=58.1400

Example 2: FRAME=1, SCARA, rotates Z axis 90 degrees.
BASE(0,1,2,3)

RAPIDSTOP

ATYPE=11,11

UNITS=3600/360,3600/360,3600/360,1000

DP0S=0,0,0,0

BASE(6,7,8,9)

ATYPE =0,0,0,0

TABLE(0,100,100,3600,3600,3600)

UNITS = 100,100,3600/360,1000

BASE(0,1,2,3)

CONNFRAME(1,0,6,7,8,9)

WAIT LOADED

BASE(6,7,8,9)

FRAME_ROTATE(0,0,0,0,0,P1/2)
?"DPOS(7)-WORLD_DPOS(7)=",DPOS(7)-WORLD_DPOS(7)
?"DPOS(8)-WORLD_DPOS(8)=",DPOS(8)-WORLD_DPOS(8)

Output result:
DPOS(7)-WORLD_DPOS(7)=-200
DPOS(8)-WORLD_DPOS(8)=0

Instructions

FRAME ROTATE2

FRAME_ROTATEZ2-Coordinate Conversion Calculation

Type Robot Calculation Instruction

Description | Calculate coordinate value after rotation by manually.
When using, there needs mechanical link of the controller.
The axis of BASE can be either virtual axis or joint axis. If BASE axis has
no robotic arm link, an error 1025 will appear.
When there are several robotic arm superpositions, identify which is the
robotic arm mode according to BASE axis. If in BASE (axis_1, axis_2),
axis_1 is the robotic arm axis of model, axis_2 is the robotic arm axis of
mode2, so calculating coordinate with robotic arm model, which means in
BASE axis sequence.

Grammar FRAME_ROTATEZ2(tablein, tableout, dir[, X,y,z[, rx,ry,rz]])

336

ret = FRAME_ROTATEZ2(tablein, tableout, dir[, x,y,z[, rx,ry,rz]])
tablein: before conversion, filled coordinate is saved in TABLE.
tableout: after conversion, output coordinate is saved in TABLE.
dir: direction selection
Value Description
0 From DPOS to WORLD_DPOS
1 From WORLD_DPQOS to DPOS
X: translation distance of coordinate B towards X*
Y: translation distance of coordinate B towards Y*
Z: translation distance of coordinate B towards Z*
RX: rotation angle of coordinate B towards X*
RY:: rotation angle of coordinate B towards Y»
RZ: rotation angle of coordinate B towards Z*
[, x,y,z[, rx,ry,rz]]: use present “rotate” default value when it’s blank.
Ret: return successfully or not. -1: successfully 0: fail

Akr B
coordinate B

Xa
EFRA coordinate A

General

Examplel: FRAME=2, DETLA, rotates X axis at 90 degrees.
BASE(0,1,2)

RAPIDSTOP

ATYPE=111
UNITS=3600/360,3600/360,3600/360
DP0OS=0,0,0

BASE(6,7,8)

ATYPE =0,0,0
TABLE(0,40,10,32,85,3600,3600,3600, 0, 0, 0)
UNITS = 100,100,100

BASE(0,1,2)

CONNFRAME(2,0,6,7,8)

WAIT LOADED

FORi=0TO 2

TABLE(100+i)=DPOS(i+6)

NEXT

BASE(6,7,8)
FRAME_ROTATE(0,0,0,P1/2,0,0)
BASE(6,7,8)
FRAME_ROTATE(0,0,0,P1/2,0,0)

337

WAIT LOADED
ret=FRAME_ROTATE2(100,200,1,0,0,0,P1/2,0,0)
IF ret=-1 THEN
?"calculate value "
?"DPOS(6)=",TABLE(200)
?"DPOS(7)=",TABLE(201)
?"DPOS(8)=",TABLE(202)
?"compare value "
?"DPOS(6)compare”, TABLE(200)-DPOS(6)
?"DPOS(7)compare”, TABLE(201)-DPOS(7)
?2"DPOS(8)compare”, TABLE(202)-DPOS(8)
ENDIF

Output result:

Calculate value
DPOS(6)=0
DPOS(7)=-58.1400
DPOS(8)=0.0000
Compare value
DPOS(6)compare 0
DPOS(7)compare 0
DPOS(8)compare 0.0000

Example 2: FRAME=1, SCARA, rotates Z axis at 90 degrees.
BASE(0,1,2,3)
RAPIDSTOP
ATYPE=1111
UNITS=3600/360,3600/360,3600/360,1000
DP0OS=0,0,0,0
BASE(6,7,8,9)
ATYPE =0,0,0,0
TABLE(0,100,100,3600,3600,3600)
UNITS = 100,100,3600/360,1000
BASE(0,1,2,3)
CONNFRAME(1,0,6,7,8,9)
WAIT LOADED
FORi=0TO 3
TABLE(100+i)=DPOS(i+6)
NEXT
BASE(6,7,8,9)
FRAME_ROTATE(0,0,0,0,0,P1/2)
WAIT LOADED
RET=FRAME_ROTATE2(100,200,1,0,0,0,0,0,P1/2)
IF RET=-1 THEN
?"calculate value"
?"DPOS(6)=",TABLE(200)

338

?"DPOS(7)=",TABLE(201)
?"DPOS(8)=",TABLE(202)
?"DPOS(9)=",TABLE(203)

?"'compare value"

?"DPOS(6)compare"”, TABLE(200)-DPOS(6)
?"DPOS(7)compare ", TABLE(201)-DPOS(7)
?"DPOS(8)compare”, TABLE(202)-DPOS(8)
?"DPOS(9)compare”, TABLE(203)-DPOS(9)

ENDIF

Output result:
Calculate value
DPOS(6)=-0.0000
DPOS(7)=-200
DPOS(8)=0
DPOS(9)=0
Compare value
DPOS(6)compare -0.0000
DPOS(7)compare 0
DPOS(8)compare 0
FRAME ROTATE

WORLD_DPOS-World coordinate system

Axis Parameter

Virtual axis coordinate value refers to world coordinate system, when
there is no rotation, same as DPOS.

varl=WORLD_DPOS(axis)

General

Online instruction, print.

>>?*WORLD_DPOS

MOVER_L/MOVER_LABS-Joint Axis Linear Interpolation

Motion Instruction
Joint axis linear interpolation.
Robot joint interpolation motion, the terminal of robotic arm moves to
defined coordinate in linear direction.
This is used under the forward solution mode, it may change the status if
operating joint axis directly, so please ensure the attitude of starting point
and ending point are the same, or will appear errors.
MOVER_L (distancel [,distance2 [,distance3 [,distance4...]]])

distancel: the first axis motion distance

339

distance2: next axis motion distance

Valid in ZMC4XX series with firmware version above 20170511.

BASE(0,1)

DP0OS=0,0

BASE(6,7)

ATYPE=0,0 'set as virtual axis

UNITS=1000,1000

TABLE(0,L1,L2, 100*360, 100*360, 360)

CONNREFRAME(1,0,0,1) 'the 6/7 axis as virtual XY axis, open connect.
WAIT LOADED

'joint motion

BASE(0,1)

SPEED=400

SRAMP=100

ACCEL=1000

DECEL=1000

MERGE =1

CORNER_MODE=32 'start chamfering
ZSMOOTH=2

MOVEABS(45,90) 'joint motion, which means motion joint angle
MOVER_LABS(90,0) ‘terminal linear motion
WAIT IDLE ‘wait until motion stop
PRINT *DPOS

MOVER C, MOVER C3

MOVER_C/MOVER_CABS-Plane Circular of Joint Axis

Motion Instruction

Joint axis moves circular interpolation directly.

It is used under forward solution mode.

BASE axis should be virtual XYZ axes, or XYZ can’t be determined. And
the parameters are distance of virtual axis.

MOVER_C/MOVER_CABS
(endl,end2,centrel,centre2,mode,[dis1,...,disn])
endl1: motion distance parameter 1 of the first axis
end2: motion distance parameter 1 of the second axis
centrel: motion distance parameter 2 of the first axis
centre2: motion distance parameter 2 of the second axis
mode:
Value Description
0 The present point, the middle point and the end point, three
points set the circular arc.
Distance parameter 1 is the end point distance, distance
parameter 2 is the middle point distance.

340

1 The present point, the center of circle and the end point set the
circular arc.

Moves the shortest arc distance.

Distance parameter 1 is the end point distance, distance
parameter 2 is the center of the circle distance.

2 The present point, the middle point and the end point, three
points set the circle.

Distance parameter 1 is the end point distance, distance
parameter 2 is the middle point distance.

3 The present point, the center of circle and the end point set the
circle.

Moves the shortest arc distance at first, then continues to finish
the full circle.

Distance parameter 1 is the end point distance, distance
parameter 2 is the center of the circle distance.

dis1-disn: the distance of spiral axis

Controller ZMC4XX series with firmware version 20170511 or above support.
Routine L1 =500
L2 =500

TABLE(0,L1,L2,100*360,100*360,360)
‘parameters are saved starting from TABLEDO, a
round of motor means 360 pulses

BASE(6,7)

CONNREFRAME(1,0,0,1)'the 6/7 axis as virtual XY axis, start to connect
WAIT LOADED ‘wait for motion loading

BASE(6,7) 'REFRAME moves to virtual axis directly(MOVER), it

will converse into joint axis automatically.
MOVER_LABS(500)
MOVER_C(500,0, 250,250, 0)

Instructions | MOVER L, MOVER C3

MOVER_C3/MOVER_C3ABS-Space Circular of Joint Axis

Type Motion Instruction

Description | Joint axis moves space circular interpolation directly.

It is used under forward solution mode.

BASE axes should be virtual axes, or XYZ can’t be determined. And now
the parameters are distance of virtual axes.

Grammar MOVER_C3 (endx,endy,endz,midx, midy, midz, mode[, dis1][,dis2][,dis3])
endl: motion distance parameter 1 of the first axis

end2: motion distance parameter 1 of the second axis

end3: motion distance parameter 1 of the third axis

centrel: motion distance parameter 2 of the first axis

centre2: motion distance parameter 2 of the second axis

341

centre3: motion distance parameter 2 of the third axis
mode:

Value Description

0 The present point, the middle point and the end point, three
points set the circular arc.
Distance parameter 1 is the end point distance, distance
parameter 2 is the middle point distance.
1 The present point, the center of circle and the end point set the
circular arc.
Moves the shortest arc distance.
Distance parameter 1 is the end point distance, distance
parameter 2 is the center of the circle distance.
2 The present point, the middle point and the end point, three
points set the circle.
Distance parameter 1 is the end point distance, distance
parameter 2 is the middle point distance.
3 The present point, the center of circle and the end point set the
circle.
Moves the shortest arc distance at first, then continues to finish
the full circle.
Distance parameter 1 is the end point distance, distance
parameter 2 is the center of the circle distance.
dis1- disn: distance of spiral axis

Controller Valid in ZMC4XX series with firmware version 20170511 or above.
Routine L1 =500
L2 =500

TABLE(O,L1,L2, 100*360, 100*360, 360)
‘parameters are saved starting from TABLEO,
a round of motor means 360 pulse amounts.

BASE(6,7)
CONNREFRAME(1,0,0,1) ‘the 6/7 axis as virtual XY axis, start to connect
WAIT LOADED ‘wait for motion loading

BASE(6,7,8) 'CONNREFRAM moves to virtual axis directly(MOVER),
it will converse into joint axis automatically.

MOVER_LABS(400)

MOVER_C3ABS(200,0,0,600,400,0, 0)

Instructions

MOVER_L, MOVER _C

FRAME_CAL-Parameter Correction

Type

Robot Calculation Instruction

Description

It corrects the present robotic arm parameter automatically according
to coordinate and features of robotic arm teaching.

342

Captured robotic arm joint coordinates are saved in Tablein, when present
origin point position has a robotic arm linking relation with arm parameters,
the terminal point of control robotic arm moves to correction point, then get
the joint axis coordinate of correction point.

Correct deviation between present origin position and theorical origin
position, then calculate joint axis coordinate of theorical origin point.
Correct robotic arm parameter values (correct some parameters), then
calculate theorical robotic parameter values.

FRAME_CAL is only for calculation, if return value is -1, which means
succeeds in calculating, if it’s 0, means it fails.

BASE axis of FRAME_CAL must be the axis under FRAME.

Grammar

FRAME_CAL (tablein,space,groups,tableaux, zeroout, [tableout2])

tablein: saved table starting number of joint coordinate, and each
coordinate is saved in sequence, multiple points are separated
by space.

space: table element between every two points.

groups: the number of point

tableaux: table number of assistant parameters, some frame need.

zeroout: calculated table number of joint axis absolute coordinate when
in the theorical origin.

tableout2: calculated store position of robotic arm parameter, it saves in

the origin parameter position when it’s blank.

Controller

General

Routine

See robotic arm instruction description manual chapter for details

343

Chapter VIIlI Program Structure and
Process Instruction

8.1 Procedure Symbol

' --Add Comments

Type Special Character

Description Followed contents are all explanation until next line.

Controller General

_--Change Line

Type Special Character
Continue in next line.

Description , . . e .
Don’t use this instruction in condition judgement, storage, print output.

Controller General

---Label
Type Grammar Structure
. Make the label for user process, which can be used as SUB process
Description .
without parameters.
Grammar Label: label name, but it can’t be same as existing words.
Controller General
GOTO labell
END 'main process ends.
Example
labell: ‘add: define label
END

8.2 Data Definition Instruction

CONST--Define Constant

Type Grammar Instructions

Description Define a symbol to indicate constant value, avoid using value directly.

344

CONST CVARNAME = value
CVARNAME: constant name
value: constant value

General

Example One
CONST MAX_VALUE = 100000 'define constant
TABLE(0)=MAX_VALUE ‘assign 10000 to table(0)

Example two
GLOBAL CONST MAX_AXIS=6 'define total axes number

DIM

DIM—Define Variables

Grammar Instructions

Define file module variables, arrays.

If variables are not defined, then assign directly, file module variables will
be defined automatically.

File module variables only can be used inside this program file.

Array can be used as the character string, one element means one byte.

DIM varname, arrayname (space)
varname: variables name
arrayname: array name
space: array space

Valid in ZMC5XX series controllers with firmware after February 2022.

1. Variables definition initialization:

DIM varname =1

2. Array definition initialization:

DIM arrayname(size) = {1, 2, 3}

DIM arrayname(size) = “string”

3. Structure definition initialization:

DIM strname(size) as structname = {.item =1, .item = {1, 2, 3} }

Initialized assignment value also can be used in other assignment
commands, for example, GLOBAL.

General

DIM ARRAY1(100) ‘define array ARRAY |
DIM VAR1 ‘define variable VAR1
VAR2 =100 ‘assigned command will be defined as file module
variables automatically.
ARRAY 1 = “asdf”
ARRAY1(0, 100, 200, 300) ‘assign consecutively for array
‘ARRAY1(0) =100, ARRAY1(1) = 200, ARRAY1(2) =300

345

_ CONST, LOCAL, GLOBAL

LOCAL—Define Local

Grammar Instructions

Define local variables.

Local variables are usually used in SUB process.

There is limit of local variables in one SUB process, parameters of SUB
process will be converted to local variables automatically.

When different tasks call the same SUB process, then it will generate
different local variables in different tasks, when SUB recursive process of
the same task is called, it will also generate different local variables.

SUB subA()
LOCAL localname 'localname local variable name

ENDSUB

General

SUB aaa()
LOCAL v1 ‘define local variable V1
v1=100

END SUB

DIM,GLOBAL

GLOBAL—Define Global

Grammar Instructions

Define global variables, array. Define global SUB process.
Global variables can be used in any process file of the whole project.

Grammarl: GLOBAL VAR1
Grammar2: GLOBAL SUB SUB1()
Grammar3: GLOBAL CONST CVARNAME = value

Parameters:
VAR1 variable name
SUBL1 process name
CVARNAME constant name
value constant value

Valid in ZMC5XX series controllers with firmware after February 2022.

4. Variables definition initialization:
GLOBAL varname =1

5. Array definition initialization:
GLOBAL arrayname(size) = {1, 2, 3}

346

GLOBAL arrayname(size) = “string”

6. Structure definition initialization:

GLOBAL strname(size) as structname = {.item =1, .item = {1, 2, 3} }
Initialized assignment value also can be used in other assignment
commands, for example, DIM.

Controller

General

Example

GLOBAL SUB g_sub2()

‘define global process g_sub2, which can be used in any file.
GLOBAL CONST g_convar =100 ‘'define global constant.
GLOBAL g_var2 ‘define global variable g_var2

Instructions

RTC_DATE, LOCAL

8.3 Array Operation Instruction

DMINS--Insert Array Link List

Type Grammar Instructions
Description Operation of array link list, when insert one element into one array,
then present element and all later elements will move backward one
space.
Be careful when operating long size array, especially TABLE.
Grammar DMINS ArrayName(pos, size)
arrayname: array name
pos: array index
size: amounts to be modified. Attention: pos+size<array
Controller General
Example DIM aa(6) 'define array aa
FORi=0TO4 ‘assign value:0,1,2,3,4
aa(i)=i
NEXT
?*aa ‘print all elements of array.

DMINS aa(0) 'insert element 0, all behind elements will move backward

one space
aa(0) =10 ‘assign value to aa(0)
?*aa ‘print all array elements after insert operation.

Instructions

DMDEL , DMCPY

DMADD —Arrays Volume Increase

Type

Grammar Instructions

Description

Add array elements value in batch.

347

Don’t modify over 500 elements once.

DMADD ArrayName (pos, size, data)
arrayname: array name
pos: start index
size: element number to be modified. Don’t exceed array size when
adding pos.
data: value to be added

General

dim aaa(20) ‘define a array with 20 elements.
?*aaa ‘print, all is 0.

DMADD aaa(10,5,2) ‘starts from element 10, the value adds 2 when
modifying 5 elements
?*aaa 'print, table(10) to table(14) is 2, the other is 0.

DMADD aaa(10,5,2) ‘starts from element 10, the value adds 2 when
modifying 5 elements
?*aaa 'print, table(10) to table(14) is 4, the other is 0.

DMINS, DMCPY

DMDEL--Delete Array Link List

Grammar Instructions

Operation of array link list, when delete one element from one array,
then present element and all behind parameters will move forward one
space.

Be careful when operating long size array, especially TABLE.

DMDEL ArrayName(pos)
arrayname array name

pos array index

General
DIM aa(6) 'define array aa
FORi=0TO4 ‘assign value 0,1,2,3,4

aa(i)=i
NEXT
?*aa ‘print all array elements
DMDEL aa(0) ‘delete the first element of array.
?*aa ‘print all array elements after delete operation.
DMINS, DMCPY

DMCPY--Array Copy

_ Grammar Instructions

348

Copy array, starting from array Src to array Des.
Be careful when operating long size array, especially TABLE.

DMCPY ArrayDes(startpos) , ArraySrc(startpos)[, size]
arrayname array name

startpos array start index
size elements number to copy, it will reduce automatically
if exceeds maximum value.
General
GLOBAL aa(6),bb(6) 'define array aa, bb
FORiI=0TO 4 ‘assign value 0, 1, 2, 3, 4
aa(i)=i
NEXT
?*aa ‘print all elements in array
7*bb
DMCPY aa(0), bb(0),6 ‘'assign value of bb to aa
?*aa ‘print all array elements after copy operation
7*bb
DMINS, DMDEL

DMSET- Array Assign

Grammar Instructions

Assign array.
Be careful when operating long size array, especially TABLE.

DMSET arrayname(pos, size, data)
pos: start index

size: length

data: array to be set

General

DMSET TABLE(0,10,2) ‘assign value in the array part
FORi=0TO 9

PRINT "TABLE",i, TABLE(i) 'print array
NEXT
DMSET TABLE(0,10,3) ‘assign value in the array part
FORi=0TO9

PRINT "TABLE",i, TABLE(i) 'printarray
NEXT

DMINS, DMDEL

DMCMP- Array Comparison

Grammar Instructions

Array comparison, compare values of elements in array one by one,

349

then return results.
Please cautious to oversize arrays operation, especially array TABLE.

value = DMCMP(arrl, arr2, size)

arrl: array to be compared

arr2: array to be compared

size: the number of elements to compare, which can’t exceed the length
of arrl and arr2.

Gained return values:
arral >arr2 value=1
arral =arr2 value = 0, in comparison range, element values equal
arral <arr2 value=-1

General

DIM value,i
DIM arr3(5), arr5(6)

FORiIi=0TO4
arr3(i) = i*10
NEXT
FORi=0TO5
arr5(i) = i*100+1
NEXT

value = DMCMP(arr3,arr5,5)
?value
IF value = -1 THEN
?"less than"
ELSEIF value =1 Then
?"more than"
ELSE
?"equal”
END IF

DMINS, DMDEL

DMCMP- Array Search

Grammar Instructions

According to element value, search the position of this element in array,
then return the value that indicates the first searched array index, if it
can not be searched, it will return -1.

Please cautious to oversize arrays operation, especially array TABLE.

Pos = DMSearch (array, startpos, offset, maxtimes, value)
array: array name
startpos: starting position of searching
offset: span that jumped in each search
maxtimes: max judged times

350

value: searched value
Return:
Pos: index of array, -1 means no found.

General

DIM ruturn, value
DIM arrl(10)
FORiIi=0TO9
Arrl(i) =i
NEXT
value = DMsearch(arr1,0,1,10,3)
ruturn = DMsearch(arr1,0,1,10,20)
IF value = 3 AND ruturn = -1 THEN
?"success”
ELSE
?2"fail"
END IF

DMINS, DMDEL

SIZEOFARRAY - Get Array Space

Grammar Instructions

Get occupied space.

VAR = SIZEOFARRAY (array name)

return the number of arrays, variables are not supported.
VAR = SIZEOFARRAY (structural name)

return space occupied by structure.
VAR = SIZEOFARRAY (structural variables name)

return structural variables / arrays occupied space

Valid in 5xx series controllers with firmware version above 20180327
Valid in 4xx series controllers of fast version with firmware version above
20190107.

General

Example 1: the number of returned arrays
GLOBAL aa(12),bb 'define array aa, bb

FORi=0TO 4 ‘assign aa as 0,1,2,3,4
aa(i)=i

NEXT

7*aa ‘print all elements of array

?SIZEOFARRAY (aa) 'print result: 12

Example 2: the number of returned structural variables / arrays
'statement structure AA
GLOBAL Structure ClassAA

DIM AA vall 'member variables

351

DIM AA_array(10) 'member arrays
END Structure

'build structure variables
GLOBAL Classl AS ClassAA

Class1.AA vall=123
?Class1.AA _vall ‘print result: 123

class1.AA array="abc"
?class1.AA_array ‘print result: abc

?SIZEOFARRAY (classl) 'print result:11
?SIZEOFARRAY (classAA) 'print result: 11

?SIZEOFARRAY (class1.AA_array) 'print result: 10
?SIZEOFARRAY (Class1.AA _vall) 'print result: 1

Instructions

DMINS, DMDEL

8.4 Self-defined Sub Function Instruction

SUB--Self-defined Subfunction SUB

Type Grammar Instructions

Description Users custom SUB process, GLOBAL description can be added before
to define SUB process for global use.

Grammar

SUB label([paral] [,para2]...)

END SUB

Parameters
label: process name, it can’t be same as current key words.
paral: transferred parameters when calling SUB, and it is changed
into local variables automatically.
para2: transferred parameters when calling SUB, and it is changed
into local variables automatically.

Valid in 5xx series controllers, and the firmware version after February 2022
added this function.
SUB subname(BYREF paraname[(dimsize)] [AS structname])
subname: sub name
dimsize: the length of the array, must be defined as a constant
structname: the name of the structure type, supporting BYREF to
transfer ZVOBJ

BYREF represents a quote, at this time, for calling method, please fill in
variables, arrays or others of corresponding types.
The default BYVAL means transfer by copy, and BYVAL does not support

352

arrays, structures, etc. temporarily.

The array defined by BYREF cannot use {} to assign multiple elements, and
does not support the original array multiple element assignment method.
The data passed by BYREF can no longer use the ZINDEX index function.
In principle, it is not recommended to use ZINDEX for LOCAL data

General

Example 1:
SUB subl() ‘define process SUBL, which is only used in present file.
21

END SUB

GLOBAL SUB g_sub2() 'define global SUB g_sub2, it is used in any file.
22

END SUB
GLOBAL SUB g_sub3(paral,para2) 'define global SUB g_sub3, and

transfer 2 parameters.
?Paral,para2

RETURN paral+para2 ‘function returns, parameters are combined
END SUB
Example 2: valid in 5xx series controllers or above
STRUCTURE POS
DIM a
DIM b(11)
END STRUCTURE

DIM varl

DIM arr2(11)

DIM arr3(300)

DIM str3(2) as pos

SUB2(varl, arr2, str3) 'mode 1

SUB2(varl, arr2(100, 200), str3) 'mode 2: get the middle part of the array
through arr2(100, 200)

SUB SUB2(byref varl, byref arr2(100), byref arr3(2) as pos)
?SUB_IFPARA(0)
?varl
?arr2(1)
?arr3(1).a
END SUB

SUB SUB3(byref varl, byref obj1 as ZVOBJ)
'support BYREF to pass ZVOBJ
?SUB_IFPARA(0)
?varl

353

?arr2(1)
?arr3(1).a
END SUB

Instructions

SUB_PARA, SUB_IFPARA

SUB PARA—SUB Transfers Parameters

Type Grammar Instructions
Description | Choose input parameters of SUB.
Grammar SUB_PARA(address)
address: NO. of input parameters, starts from 0.
Controller General
Example SUB AAA(NUM1,NUM2,NUM3)

?SUB_PARA(0) ‘print the first parameter num1 when calls AAA
?SUB_PARA(1) 'print the second parameter num2
?SUB_PARA(2) 'print the third parameter num3

END SUB

Instructions

SUB,SUB_IFPARA

SUB_IFPARA --Judgement of SUB Input Parameters

Type Grammar Instructions
Description | Judge if SUB parameters were input.
Grammar SUB_IFPARA(address)
-1: already input,
0: -not input
address: NO. of input parameters, starts from 0.
Controller General
Example AAA(0,100) ‘input numl1,num2
AAA(,100) ‘only input num2
END

SUB AAA(NUM1,NUM2)
IF SUB_IFPARA(0) THEN 'check if num1 was input when calls AAA
71 ‘input and print 1
ELSE
20
ENDIF
END SUB

Instructions

SUB, SUB_PARA

354

GOSUB/CALL—SUB Calling

Procedure Structure

Call SUB process, which is only valid for SUB process in present file or
SUB process defined as global.

When call SUB process directly, GOSUB can be omitted.
If there are no parameters in SUB process, “()”in SUB can be omitted

After using GOSUB, the present content will be pushed onto stack, which
means the present local variables can not be accessed in called SUB process.
Contents will pop from stack when RETURN.

GOSUB/CALL label
label: SUB name

General

'‘Main process

main:
GOSUB subl()
sub2(1,2) 'transfer 1 to paral, transfer 2 to para2.
call sub3

END

'defined SUB
SUB subl()

a=100

PRINT "sub1"
RETURN

SUB sub2(paral,para2)

a=200

PRINT "sub2",paral,para2
RETURN

GLOBAL SUB sub3() ‘It can be called in another procedure file
a=300
PRINT"sub3"

RETURN

GSUB--Self-defined Subfunction-G Code

Grammar Instructions

Users customize GSUB process.
GLOBAL description can be added before to define global use GUSB
process. When call GSUB, it will follow G code grammar, no need to add ().

GSUB label([charl] [,char2]...)

355

END SUB

Parameters
label: process name, which can not be same as some key words.
charl: input parameters when call SUB, which is changed into local
variables automatically.
char2: input parameters when call SUB, which is changed into local

variables automatically.

Alphabet Parameters can only be as single character

Controller General
Example G01 X100 Y100 2100 U100 ‘call GO1
END 'main process ends.

GLOBAL GSUB G01(X, Y, Z, U) ‘define GSUB process G01

END SUB

Instructions

GSUB_PARA, GSUB_IFPARA

GSUB_PARA--Input Parameters of GSUB

Type Grammar Instructions
Description Choose input parameters of GSUB.
Grammar GSUB_PARA(char)
char: input alphabet parameter when define GSUB
Controller General
Example GSUB AAA(X,Y,Z)

?GSUB_PARA(X) 'print the first parameter X when calls AAA
?GSUB_PARA(Y) 'print the second parameter Y
?GSUB_PARA(Z) 'print the third parameter Z

END SUB

Instructions

GSUB, GSUB_IFPARA

GSUB_IFPARA-- Judgement of GSUB Input Parameters

Type Grammar Instructions
Description | Judge if GSUB parameters were input.
Grammar GSUB_IFPARA(char)

-1-already input

0-not input

char: input alphabet parameter when define GSUB
Controller General
Example AAA X0Y100 ‘input X,Y
AAA X0 ‘only input X

356

END

GSUB AAA(X,Y)
IF GSUB_IFPARA(Y) THEN ‘check if Y was input when calls AAA
71 if Y was input, print 1.
ELSE
70
ENDIF
END SUB

Instructions

GSUB, GSUB_PARA

END SUB--End of Self-defined Function

Type Procedure Structure
Description | Customized SUB process ends, see SUB for reference.
Controller General

RETURN--Function Value Return

Type

Procedure Structure

Description

It is used for users’ SUB process return or return value.

Default returned value is 0. Externally, read returned value in former SUB
process through RETURN .

Different tasks will return different values.

Grammar

RETURN

Controller

General

Example

CALL subl
?RETUEN
END

‘result is 111
'main procedure ends

SUB sub1()
RETURN 111
END SUB

return 111

XSUB — Custom XSUB Sub-Function

Type Procedure Structure

Description | XSUB is the process customized by users to transfer parameters into
subfunction.
There is one difference between RSUB and XSUB, XSUB needs to add the
brackets when calling.
Grammar is the same as SUB.

Grammar

When calling, it can use the grammar of paraname = value.

357

General

Example 1:
subX(ARR2=a2, VAR1 =al, ARR3=pos4)
XSUB subX(byref varl, byref arr2(100), byref arr3(2) as pos)
?SUB_IFPARA(0)
?varl
?arr2(1)
?arr3(1).a
END SUB

Example 2:
TRVAR1=5VAR2=1
dima

a=10

TX(varl =a ,arr = "Zmotion")

RSUB TR(VAR1,VAR2)
?SUB_IFPARA(0)
?varl
?var2

END SUB

XSUB TX(byref varl,byref arr(100))
?varl
7arr

end sub

SUB, RSUB

RSUB — Custom RSUB Sub-Function

Procedure Structure

RSUB is the process customized by users to transfer parameters into
subfunction.

There is one difference between RSUB and XSUB, RSUB doesn’t need to
add the brackets when calling.

Grammar is the same as SUB.
When calling, it can use the grammar of paraname = value.

General

subR ARR2=a2, VAR1 =al, ARR3=pos4
RSUB subR(byref varl, byref arr2(100), byref arr3(2) as pos)
?SUB_IFPARA(0)
?varl
?arr2(1)
?arr3(1).a
END SUB

358

\ Instructions \ SUB, XSUB

8.5 Structural Definition Instruction

STRUCTURE-Definition of Structural Body

Type Grammar instruction
Description Definition of structural body.
With firmware version above 5 xxx serials of 20180327 support.
With firmware fast version above 4 xxx serials of 20190107 support.
Grammar Structure name of structure

Dim: member 1 name [As data typel]
Dim: member n name [(array length)][As data type 1]
End Structure

Data type only supports structural body. Every element has the same array
element and occupies one array element space.
Structure is not recursive.

Structure variables definition:
DIM: variables name AS structure name
DIM: structure array name [(array length)] AS structure name

GLOBAL.: variables name AS structure name
GLOBAL.: structure array name [(array length)] AS structure name

The reserved function:
LOCAL variables name AS structure name

Support use FLASH_WRITE, FLASH_READ to read and write variables
and arrays of structure definition.

FLASH_WRITE id, structure variables

FLASH WRITE id, structure array

FLASH_WRITE id, structure array(index)

FLASH_WRITE id, structure array(index).item

FLASH_WRITE id, structure array(index).item array(index)
FLASH_READ same as former.

Support use array operation instructions to operate arrays of structural body.
DMINS structure array(index) [,numes]

DMINS structure array(index).item array(index) [,numes]

DMDEL same as former.

DMCPY structure array 1(index1), structure array 2 (index2) [,size]

DMSET only supports operate the last level arrays, it can’t assign structural

359

array.
DMSET structure variables. item array(index, size, data)
DMADD: same as former.

General

'declaration structural body AA
GLOBAL Structure ClassAA

DIM AA vall 'member variables
DIM AA_array(10) 'member array
END Structure

'declaration structural body BB
GLOBAL Structure ClassBB

DIM BB_vall AS ClassAA 'member variables are structural body
END Structure

‘build structural body variables
GLOBAL Classl AS ClassAA
GLOBAL Class2 AS ClassBB

Class1.AA val1=123
?Class1.AA vall

class1.AA_array="abc"
?class1.AA_array

Class2.BB_vall.AA_val1=567
?Class2.BB_vall.AA_vall

Class2.BB_vall.AA_array="zxc"
?Class2.BB_vall.AA_array

AA vall=8
FLASH_WRITE 0,AA vall
AA_vall=123
FLASH_READ 0,AA_vall
?AA vall

END

DIM, GLOBAL, UNION

UNION-Definition of Community

Grammar instruction

Definition of community.
With firmware version above 5 xxx serials of 20180327 support.
With firmware fast version above 4 xxx serials of 20190107 support.

UNION structure name
Dim: member 1 name[As data typel]

360

Dim: member n name[(array length)][As data typel]
End UNION

Structural variables definition:
DIM: variables name AS structure name
DIM: structure array name[(array length)] AS structure name

GLOBAL.: variables name AS structure name
GLOBAL.: structure array name[(array length)] AS structure name

The reserved function:
LOCAL.: variables name AS structure name

Support use FLASH_WRITE, FLASH_READ to read and write variables
and arrays of structure definition.

FLASH_WRITE id, structure variables

FLASH_WRITE id, structure array

FLASH_WRITE id, structure array(index)

FLASH_WRITE id, structure array(index).item

FLASH_WRITE id, structure array(index).item array(index)
FLASH_READ same as former.

Support use array operation instructions to operate arrays of structural body.
DMINS structure array(index) [,numes]

DMINS structure array(index).item array(index) [,numes]

DMDEL: same as former.

DMCPY structure array 1(index1), structure array 2 (index2) [,size]

DMSET only supports operate the last level arrays, can’t assign structural
array.

DMSET structure variables. item array(index, size, data)

DMADD: same as former.

Controller

General

Example

Please refer to STRUCTURE for examples.

Instructions

DIM, GLOBAL, STRUCTURE

8.6 Jump Instruction

GOTO--Forced Jump

Type Procedure Structure

Description | Force to jump, the difference from GOSUB is that process called by
GOTO will not be pushed onto stack.

Grammar GOTO label

361

General

a=100

GOTO labell ‘force to jump to labell
a=1000

END 'main procedure ends

labell:
PRINT a 'result is a=100
END 'labell ends

ON GOSUB--Condition Jump

Procedure Structure

When expression is true, then call label process.

ON expression GOSUB label
expression: judgement condition
label: jump to sub or label

General

a=100

ON a>10 GOSUB labell 'when a>10, call label process.
a=1000

PRINT a

END 'main procedure ends

labell:
PRINT a
RETURN ‘process will return

ON GOTO-- Condition Jump 2

Procedure Structure

Condition jump, procedure jump when expression is true, called
process will not be pushed onto stack.

ON expression GOTO label
expression: judgement condition
label: jump to sub or label

General

a=100

on a>10 goto labell

a=1000

END 'main procedure ends

labell:
PRINT a
END ‘can not return when use goto jump.

362

8.7 Condition Judgement Instruction

IF--Condition Judgement Structure

Type Procedure Structure

Description | Condition Judgement, its structure same as standard BASIC grammar.

Grammar IF <condition1> THEN
commands
ELSEIF <condition2> THEN
commands
ELSE
commands
ENDIF
Parameters
conditionl condition
condition2 condition

Controller General

Example Example one:
DIM a 'define variable
a=12 ‘assign value

IF a>11 then ‘judgement condition
TRACE "the val a is bigger then 11"
ELSELF a<11 then
TRACE "the val a is less then 11"
ENDIF

Example two:

IF IN (0) THEN OUT(0,0ON) 'if there is only one line, no need of endif.

Instructions | THEN, ENDIF

THEN--Condition Judgement Structure

Type Procedure Structure
Description | See: IF
Controller General

ENDIF--Condition Judgement Structure

Type Procedure Structure

Description See: IF

363

General

ELSEIF--Condition Judgement Structure

Procedure Structure

See: IF

General

8.8 Cycle Instruction

FOR - “for” Cycle

Procedure Structure

“Loop”, it uses standard BASIC grammatr.

FOR variable=start TO end [STEP increment]
commands

NEXT variable

Parameters:

variable: variable name

start: starting cycle value

end: end cycle value

increment: incremental value of cycle, it is selectable.

Please don’t use same “variable” (when it is not local) in multi-task,
otherwise, they will bother each other.

General

Example 1:

LOCAL a

FOR a=1to 100 'cycle from 1 to 100
PRINT a ‘print a

NEXT

Example 2:

DIM i

FORi=0TO 50 STEP 2 ‘cycle from 1 to 50, the space is 2
TABLE(i) =i

?TABLE(i)

NEXT

TO,STEP,NEXT

364

TO—for Cycle Structure

Type Procedure Structure
Description | See: FOR
Controller General

STEP--For Cycle Structure

Type Procedure Structure
Description | See: FOR
Controller General

NEXT--For Cycle Structure

Type Procedure Structure
Description | See: FOR
Controller General

WHILE--while Cycle Structure

Type Procedure Structure
Description Execute cycle when condition is met.
Grammar WHILE condition
WEND
Controller General
Example a=0
WHILE IN(4)=OFF ‘exit cycle until input 4 is ON.
a=a+l
PRINT a
DELAY(1000)
WEND

WEND--While Cycle

Type Procedure Structure
Description | see: WHILE
Controller General

365

EXIT--Exit Cycle

Type Procedure Structure
Description Exit cycle sentence.
Grammar EXIT FOR, EXIT WHILE
Controller General
Example LOCAL a
FOR a=1TO 100 ‘cycle from 1 to 100
PRINT a

IF a> 20 THEN EXIT FOR
'must use the method, or IF doesn’t match with ENDIF
NEXT

REPEAT--Condition Cycle

Type Procedure Structure
Description Cycle sentence.
Execute commands by cycle, exit cycle when condition is true.
Grammar REPEAT commands UNTIL condition
Controller General
Example a=0
REPEAT ‘execute followed sentences by cycle
PRINT a
a=a+l
DELAY(1000)

UNTIL IN(4)=ON ‘valid until input 4 is on

UNTIL--Condition Structure

Type Procedure Structure
Description See: REPEAT, WAIT
Controller General

8.9 Wait Execution Instruction

DELAY--Time Delay

Type

Grammar Instructions

Description

delay delay time, unit is ms.
Other name: wa

366

Grammar DELAY (delay time)

Delay time: the number of ms
Controller General
Example DELAY(100) ‘delay 100ms

WAIT UNTIL--Wait for Meeting Condition

Type Procedure Structure

Description | Wait until condition is met.

Grammar WAIT UNTIL conditionl [and codition2 or codition3 ...]
Use logic operation to operate multi conditions.

Controller General

Example Example 1

WAIT UNTIL DPOS(0) >0 ‘wait until position of axis 0 exceeds 0.

Example 2 used with TICKS
TICKS=2000

WAIT UNTIL TICKS<0
?""execute next step”

'set ticks as 2000
'Walit 2 seconds

Example 3 used with logic conditions
WAIT UNTIL IDLE(0)=-1 AND IDLE(1)=-1 AND IDLE(2)=-1
‘wait until axis 0,1,2 stop.

WAIT IDLE--Wait Until Axes Stop

Type

Grammar Instructions

Description

Wait axis or axes of BASE to stop, when BASE axis / axes don’t finish,
following program will not be executed.

Same as WAIT UNTIL IDLE. IDLE is axis parameter, it supports grammar
of axis parameters.

Note: controller succeeds in sending motion that doesn’t represent servo
executed.

Grammar

WAIT IDLE

Controller

General

Example

Example 1:
BASE(0,1)
MOVE(100,100)

WAIT IDLE 'wait until present interpolation motion end

Example 2:
BASE(0,1)
MOVE(100,100)
BASE(2,3)

367

MOVE(200,200)

WAIT UNTIL IDLE(0) AND IDLE(1) AND IDLE (2) AND IDLE(3)
'wait until motion axis 0,1,2,3 end.

?"motion finished"

WAIT LOADED--Wait Until Axes Buffer Clears

Grammar Instructions

Wait until axes buffer clears, this instruction will block and won’t
execute followed procedures.

The last motion in buffer can be executed correctly, followed procedures
continue to execute at the same time.

Same as WAIT UNTIL LOADED, LOADED is axis parameter, it supports
grammar of axis parameters.

WAIT LOADED

General

Difference from WAIT IDLE

BASE(0)

ATYPE=1

UNITS=100

DPOS=0

SPEED=100

ACCEL=1000

MERGE=1

TRIGGER

MOVE(100) 'motion in process

MOVE(50) 'motion in buffer, there is only one motion in buffer
‘when the motion was executed, buffer has been cleared.

WAIT IDLE 'when use wait idle, followed procedures will be executed
until all motions are finished.

OP(0,0ON) ‘open op0

Motion Path:
DPOS(0) vertical scale 100
OP(0) vertical scale 1

368

WAIT LOADED ‘'when use wait loaded, followed procedures will execute
once buffer clears.
OP(0,0ON)

8.10. ZINDEX Pointer Instructions

ZINDEX_ LABEL - Build Pointer Index

Grammar Instructions.

Build pointer index, then it is convenient for behind to call pointer.

Pointer = zindex_label (subname)
subname: array or SUB name

General

DIM arrl1(100) ‘define array

369

Arr1(0,1) ‘assign 1 to array address 0
Pointer = ZINDEX LABEL (arrl) ‘build index pointer
PRINT ZINDEX_ARRAY (Pointer) (0)

‘access array, print the first bit data of array, the result is 1

Instructions

ZINDEX_CALL, ZINDEX_ARRAY, ZINDEX_VAR

ZINDEX CALL - Access SUB Function

Type Grammar Instructions.
Description | Call SUB function through index pointer.
Grammar ZINDEX CALL (zidnex) (subpara, ...)
zidnex: index pointer generated from ZINDEX_LABEL
subpara: sub parameters calling
Controller General
Pointer = ZINDEX LABEL (subl) ‘build index pointer
ZINDEX CALL (Pointer) (2) ‘call function
Example SUB subl (a)
PRINT a
END SUB

Instructions

ZINDEX LABEL

ZINDEX_ARRAY — Access Array

Type Grammar Instructions.
Description | Access array through index pointer.
Grammar var = ZINDEX_ARRAY (Pointer) (index)
pointer: pointer index generated from ZINDEX LABEL
index: array index
Controller General
DIM arr1(100) ‘define array
Arrl(0,1) ‘assign 1 to array address 0
Example Pointer = ZINDEX LABEL (arrl) ‘build index pointer
PRINT ZINDEX_ARRAY (Pointer) (0)
‘access array, print the first bit data of array, the result is 1
Instructions | ZINDEX LABEL

ZINDEX_ VAR — Access Variables

Type Grammar Instructions.
Description | Access variables through index pointer.
Grammar ZINDEX_VAR (zindex)

370

zidnex: index pointer generated from ZINDEX_LABEL

zindex= ZINDEX_LABEL (varname)
ZINDEX_VAR(zindex)=value
VAR2 = ZINDEX_VAR(zindex)

Controller General
global gTestVar
global VarAddl
Example VarAdd1=ZINDEX_ LABEL (gTestVar)

ZINDEX_VAR(VarAdd1)=10
?ZINDEX_VAR(VarAddl)

Instructions

ZINDEX_LABEL

ZINDEX_STRUCT - Access Structure

Type Grammar Instructions.
Description | Access structural variables or arrays through pointer after getting the
pointer of structural variables.
Grammar GLOBAL structarrname(num) As structname
zindex = ZINDEX_LABEL (structarrname)
ZINDEX_STRUCT (structname,zindex)(arrindex).item = var
var = ZINDEX_STRUCT (structname,zindex)(arrindex).item
structarrname: generated structural arrays, variables.
num: the number of generated structural arrays and variables elements.
zidnex: generated index pointer through ZINDEX_LABEL
arrindex: structural array subscript
structname: structure name
item: structure memeber
The structural pointer function is only valid in controllers with special
firmware version.
Controller Valid in ZMC5XX series controllers with firmware above 20180327.
Valid in ZMC4XX series controllers with fast version and firmware version
above 20190107.
Example 1:
GLOBAL Structure ClassAA 'structure statement
DIM AA_vall 'member variables
DIM AA_array(10) 'member arrays
END Structure
Example GLOBAL Class1 AS ClassAA 'structure global variables definition

GLOBAL gStructureAdd
Class1.AA array(0,1,2,3) ‘assign structure arrays
?Class1.AA_array(0) ‘result: 1

gStructureAdd = ZINDEX_LABEL(Classl) 'build structure index pointer

371

?ZINDEX_STRUCT(ClassAA,gStructureAdd).AA_array(0) 'result: 1

ZINDEX_STRUCT(ClassAA,gStructureAdd).AA_array(0)= 10
?ZINDEX_STRUCT(ClassAA,gStructureAdd).AA_array(0) 'result; 10
END

Example 2:
GLOBAL STRUCTURE stru_node 'define structure
DIM m_data
DIM m_Left
DIM m_right
DIM m_Temp
END STRUCTURE

DIM root
GLOBAL g_node(100) AS stru_node
root = ZINDEX_LABEL(g_node) ‘build structure array pointer

ZINDEX_STRUCT(stru_node,root)(99).m_data =11
?ZINDEX_STRUCT (stru_node,root)(99).m_data ‘result: 11
END

ZINDEX LABEL

372

Chapter IX Instructions Related to Task

ZBASIC supports real-time multi tasks run, one file can run multi tasks at the same time. It can
start to run task from the first line through RUN, and can assign any SUB process start to run

through RUNTASK.

9.1 Task Start and Stop Instruction

RUN--Start File Task

Type Task Instructions

Description | Start a new task to execute a file on controller.

Restart the same task that will report error.

When use RUN instruction without task number parameters frequently, one
file will be matched with multi tasks. It is recommended to use RUNTASK
instruction to start task.

Multi-task running instructions:

END: Present task ends normally.
STOP: Stop assigned files.
STOPTASK Stop assigned tasks
HALT: Stop all tasks.
RUN Start file as new task.
RUNTASK Start task that executes on one SUB
Grammar RUN "filename"[, tasknum]
filename: procedure file name, no need to add extension name on bas
file

tasknum: Task NO., find first valid task NO. in default mode.
Controller General

Example RUN "aaa",1 ‘starttask 1 to run aaa.bas file

Instructions | RUNTASK

RUNTASK--Start SUB TASK

Type Task Instructions

Description Make a sub process or a label process as one new task to execute
Restart the same task that will report error.

Grammar RUNTASK tasknum, label

tasknum: Task No.

label: self-defined SUB process (it can attch parameters) or label

373

General

RUNTASK 1, taska 'open task 1 to trace and print position.
MOVE(1000,100)

MOVE(1000,100)

END

taska: ‘print position in cycle
WHILE 1
PRINT*mpos
DELAY(1000)
WEND
END

RUN

END--End Task

Task Instructions

End Present Task.

If there are main process and SUB process in one file, do add END at the
end of main process, or the procedure will continue to execute followed
SUB process after main process is finished, it will end until meeting
subprogram END SUB.

General

RUN, RUNTASK

STOP--Stop File Task

Task Instructions

Force to stop program, and operate file.

Do stop the tasks before restart tasks.

When use STOP instruction without task number, it only stops one task in a
time, not all tasks of the file. When there are multiple tasks in one file, it is
recommended to use STOPTASK to stop tasks.

STOP program name, [tasknum]
program name: procedure file name, no need to add extension name for
bas file.
tasknum: Task NO., when procedure file starts multi tasks, the default
task number is the minimal task.

General

RUN aaa, 1 ‘'execute aaa.bas
STOP aaa, 1 ‘'stoptaskl

STOPTASK, HALT

374

STOPTASK--Stop SUB Task

Task Instructions

Force to stop task. Operate SUB and Label.
Do stop the tasks before restart tasks.

STOPTASK [tasknum]
tasknum: task NO., default value is present task NO.

General

STOPTASK 2 'stop task 2

STOP, HALT

HALT--Stop All Tasks

Task Instructions

Stop all tasks.
This instruction is only used to PC software calling. There will cause whole
process stop if uses it in BASIC, the controller can’t work.

HALT

General

HALT 'stop all tasks

STOP, STOPTASK

PAUSE--Pause All Tasks

Task Instructions

Pause all tasks.

It is usually used in PC, if breakpoint is built successfully, tasks will also
enter pause status.

This instruction is only used to PC software callings, there will cause whole
process stop, the controller can’t work, if uses it in BASIC.

Task will continue when it resumes after pause.

PAUSE

General

PAUSE 'pause all tasks.

PAUSETASK

PAUSETASK--Pause Assigned Tasks

Task Instructions

Pause one specific task.

375

Task will continue when it resumes after pause.

Grammar PAUSETASK tasknum
tasknum: task NO., default value is present task NO.
Controller General
Example PAUSETASK 1 'Pause task 1.
Instructions | RESUMETASK

RESUMETASK--Resume Assigned Tasks

Type Task Instructions
Description Resume a specific task.
Task will continue when it resumes after pause.
Grammar RESUMETASK tasknum
tasknum: task NO., default value is present task NO.
Controller General
Example PAUSETASK 1 ‘pause task 1.

RESUMETASK 1 ‘continue to run task 1.

Instructions

PAUSETASK

9.2 Three-file Task Instruction

FILE3_RUN--Execute FILE3 Task

Type

Task Instructions

Description

Start Three-file procedure file.

Three-file procedure file is a kind of oversize file that can be uploaded
dynamically, it is used in Zbasic grammar. Condition judgement, procedure
jump and other operations are not supported. Three-file procedure can be
downloaded into controller by instructions or by tool: zfile3view to scan,
upload and download.

Grammar

FILE3_RUN "filename", tasknum
filename: the file name of File3, it must be downloaded into controller
first.
tasknum: task No., find the first valid task by default.

Controller

Controllers with large storage size and firmware version above 2015
support.

Example

FILE3 RUN "aaa.z3p",1 'run FILE3 procedure aaa.z3p in task 1.

Instructions

FILES ONRUN

376

FILE3_ONRUN--FILE3 Callback Function

Type Callback Function
Description It will be triggered automatically when File3 starts.
Grammar GLOBAL FILE3 ONRUN: Label NO.
GLOBAL SUB FILE3_ONRUN()
self-defined SUB process (no attached parameters)
Callback functions belong to File3 task.
Controller General
Example FILE3_RUN "aaa.z3p", 1 'run aaa.z3p in task 1.
END
GLOBAL SUB FILE3_ONRUN() 'start automatically when file3 starts
IF 1= PROCNUMBER THEN
BASE(0,1,2) ‘choose axes list for three-time file
SPEED=1000
ACCEL=10000
ELSE
BASE(4,5,6)
ENDIF
END SUB
Instructions | FILE3_RUN

FILE3 GOTO--FILE3 Process Forces to Jump

Type Task Functions
Description | Valid in File3 task, it forces to jump into defined line number to run.
Grammar FILE3_GOTO(linenum)
linenum: line NO. to jump to, starting from 1.
Controller General

Instructions

FILE3 LINE, FILE3 RUN

FILE3_LINE -- FILE3 line NO.

Type Task Functions

Description Return present running line NO. of File3, no matter the three-time file
enters BASIC file due to SUB process calling, it will always return
running line NO. of File3.

Grammar Value=FILE3_LINE([taskid])

taskid: task No. of file 3. When it is not filled, it will return function
calling for the present task.
Controller General

377

Instructions

FILES RUN, FILE3_GOTO

9.3 Task Parameter Instruction

BASE_MOVE--Assign Main Axis

Type

Task Parameters

Description

Force to assign the main axis of interpolation motion fucntion, this
instruction does not change actual motion.

Default value is -1, which is not valid at this time.

Valid in firmware above 20160326.

Each task has its unique BASE_MOVE parameter.

Valid in interpolation instructions after BASE_MOVE setting: MOVE
MOVEABS, MOVECIRC, MOVE_OP, MOVE_TASK etc. are not valid in
single axis functions: cam, point-to-point etc.

Grammar

VAR1 = BASE_MOVE, BASE_MOVE = value

Controller

General

Example

BASE_MOVE=2 ‘force axis 2 as main axis, followed interpolation
motion will execute by using axis 2 as main axis. and
speed related parameters will also obey axis 2.

MERGE(2)=0ON ‘defined as continuous interpolation

SPEED(2)=100

ACCEL(2)=1000

BASE(0,1)

MOVE(100,100) ‘interpolation of axis 0 and axis 1, and axis 2 join this

interpolation as main axis, but its move distance is 0.

MOVE_OP(1,1)

BASE(1)

MOVE(100) ‘axis 1 moves 100, and axis 2 as main axis.

BASE_MOVE=-1 ‘cancel forced axis of present task.

PROC _STATUS--Task Status

Type Task Status
Description Present Task Status
0 task stops
1 taskis running
3 task pauses
Grammar VAR1 = PROC_STATUS(tasknum)
tasknum Task NO.
Controller General

378

Example

PRINT PROC_STATUS(0)
Input remote instructions

>> PRINT PROC_STATUS(0)
Output:1

'Print status of task 0

Instructions

PROC

PROC--Task Serial Number

Type Task amendment subsidiary instructions
Description | Appoint specific tasks when access to task parameters and task status.
Grammar PROC(tasknum)
tasknum task NO.
see instruction AXIS for reference to omit it.
Controller General
Example Example One: full format

Print PROC_STATUS PROC(1) ‘print running status of task 1.

Exmple Two: brief fomat

Print PROC_STATUS(1) ‘print running status of task 1.

Instructions

PROCNUMBER

PROCNUMBER--Present Task NO.

Type Task Specific Status, System Status

Description | Task NO. of present running task.
Get task NO. through this instruction, task can not be modified by PROC in
this situation.

Grammar VAR1 = PROCNUMBER

Controller General

Example Print PROCNUMBER 'Print present task NO.

Instructions | PROC

PROC_LINE--Task Line

Type Task Status
Description Present line NO. of task, which is only valid in other tasks.
Grammar VAR1 = PROC_LINE(tasknum)
tasknum task NO.
Controller General
Example Print PROC_LINE(0) 'Print the code line of task 0.

379

Input remote instructions
>>print PROC_LINE
Output:100

Instructions

PROC

PROC_PROGRESS-Progress of task instruction

Type Task Status

Description | The progress of task instruction, used by FILE, from 0-100.
Every task has the progress instruction.
When LOAD_ZAR in FILE, can see the progress situation in HMII.
Attention: FILE executes, only can be scanned synchronically in HMI task,
do not drive FILE instruction directly through HMI task.

Grammar VARL1 = PROC_LINE (tasknum)
tasknum: task NO.

Controller General

Instructions | PROC

PROC _PRIORITY-Task priority

Type Task Status
Description | Task priority, from 1-10, the highest is 10, the default value is 1, it is
recommended only to modify a task.
Every task has the task priority.
If needs to use the firmware that supports this function, it is recommended
to update the firmware when the configuration doesn’t take effect.
Grammar Command Grammar: PROC_PRIORITY (tasknum)=value
Read Grammar: VAR1=PROC_PRIORITY (tasknum)
tasknum: task NO.
Controller General
Example PROC_PRIORITY(5)=3 'the priority of task 5 is 3

?PROC_PRIORITY(5) ‘check task 5 task priority

Instructions

PROC

ERROR_LINE--Error Line

Type Task Status
Description Error Line NO. of present task.
Usually used through remote command after error happens.
Grammar VAR1 = ERROR_LINE(tasknum)
tasknum: Task NO.
Controller General

380

Example

Input remote instruction
>>ERROR_LINE(1)
‘print error lines of task 1

Instructions

PROC, ERROR_SET

RUN_ERROR--Task Error Code

Type Task Status
Description First error serial number in task.
Grammar VAR1 = RUN_ERROR(tasknum)
tasknum: Task NO.
Controller General
Example ?* RUN_ERROR(0) 'Print error NO. of task 0.
2043
Instructions | ERROR _LINE

TICKS--Task Count Period

Type Task Parameters
Description | Present task count period, minus 1 after every period. The unit is ms.
Each task has its unique TICKS parameters, period is 1ms in ZMC00X
series and ZMC1XX series.
No influence on TICKS count after system refresh period modified.
Grammar VAR1 = TICKS, TICKS = value
Controller General
Example TICKS = 1000
WAITUNTIL TICKS<O0 'wait until ticks<0.
MOVE(100)
Instructions | TIME_TICKUS

TIME_TICKUS-Task Count Period

Type Task Parameters
Description | Present task count period, us 1 after every period.
Each task has its unique TIME_TICKUS parameters, 32 bits integer.
No influence on TIME_TICKUS count after system refresh period
modified.
Grammar VAR = TIME_TICKUS, TIME_TICKUS = value
Controller General
Example TIME_TICKUS=0
DELAY(1) 'delay 1 ms

381

2TIME_TICKUS

‘print result: 1000, unit is us

Instructions

TICKS

382

Chapter X Operator and Mathematical
Function Instructions

ZBASIC supports all operational characters in standard BASIC grammar, and it can also obey
standard BASIC priority.
Priority: arithmetic operation> comparison operation >logic operation. If priority is the same, then

operation will start from left to right in order.

Arithmetic Character Comparison Character Logic Character

Description Character Description | Character | Description | Character

exponentiation A Equal = Logic negation Not
Minus - Not equal <> Logic and And
multiply * Less than < Logic or Or or |
divide / More than > Logic XOR Xor
exact divide \ Less than or <= ITOQiC Eqv
equal to equivalence

More than or

rermainder Mod or % equal o >=
plus +
subtract -
shift left <<
shift right >>

10.1 Arithmetic Operation Instructions

+--Plus Operation

Type Operational Character
Description Plus two expressions.

Grammar expressionl+expression2
expressionl: Any valid expressions
expression2: Any valid expressions

383

Controller

General

Example

Online command input
>>PRINT 1+2
Output: 3

---Minus Operation

Type Operational Character
Description Minus two expressions.
Grammar expressionl-expression2
expressionl: Any valid expressions
expression2: Any valid expressions
Controller General
Example Online command input

>>PRINT 2-(2-1)
Output: 1

* --Multiply Operation

Type Operational Character
Description Multiply expression 1 and expression 2.
Grammar expressionl * expression2
expressionl: Any valid expressions
expression2: Any valid expressions
Controller General
Example Online command input

>>PRINT 10*(1+2)
Output: 30

/ --Divide Operation

Type Operational Character
Description | Use expression 1 to divide expression 2.
Grammar expressionl / expression2
expressionl: Any valid expressions
expression2: Any valid expressions
Controller General
Example Online command input

>>PRINT 10/3
Output: 3.3333

384

\ --Exact Divide

Operational Character

Exact Divide.

expressionl \ expression2
expressionl: Any valid expressions
expression2: Any valid expressions

General

Online command input
>>PRINT 10\ (1+2)
Output: 3

<< --Shift Left

Operational Character

Shift left

expressionl << expression2
expressionl: Any valid expressions
expression2: Any valid expressions

Priority is lower than other operational characters, so use () when they are
commonly used. See example three for reference.

General

Example one: operate number directly.

Online command input

>>PRINT 8<<1 'relevant binary shift left one bit
Output: 16

Online command input
>>PRINT 8<<2 'relevant binary shift left two bits
Output: 32

Example two: operate variable and registers

DIM bb

bb=8

MODBUS_REG(0)=8

PRINT bb<<1,bb<<2

PRINT MODBUS_REG(0)<<1,MODBUS_REG(0)<<2

Example Three: priority comparison
?PRINT 8<<1+1 ‘'relevant binary shift left two bits
Output: 32

?PEINT (8<<1)+1 'relevant binary shift left one bit
Output: 17

385

>>--Shift Right

Operational Character

Shift Right

expressionl >> expression2
expressionl: Any valid expressions
expression2: Any valid expressions

Priority is lower than other operational characters, so use () when they are
commonly used. See example three for reference.

General

Example one: operate number directly.

Online command input

>>PRINT 8>>1 'relevant binary shift right one bit
Output: 4

Online command input
>>PRINT 8>>2 'relevant binary shift right two bits
Output: 2

Example two: Operate variable and registers

DIM bb

bb=8

MDOBUS_REG(0)=8

PRINT bb>>1,bb>>2

PRINT MODBUS_REG(0)>>1, MODBUS_REG(0)>>2

Example Three: priority comparison
?PRINT 8>>1+1 'relevant binary shift right two bits
Output: 2

?PRINT (8>>1)+1 'relevant binary shift right one bit
Output: 5

MOD--Remainder Operation

Operational Character

Remainder Operation

expressionl MOD expression2
expressionl: Any valid expressions, get integer part.
expression2: Any valid expressions, get integer part

General

Online command input
>>PRINT 10 MOD (1+2)
Output: 1

386

ABS--Absolute Operation

Type Mathematical Function
Description | Evaluate absolute value.
Grammar ABS(expression)
expression Any valid expressions
Controller General
Example PRINT ABS(-11) ‘resultis 11

10.2 Comparison Operation Instructions

= --Comparison or Assign Operation

Type Operational Character
Description Comparison Operational Character . if expression 1 is equal to
expression 2, then return TRUE, or it will return False.
Assign Operational Character: assign value of expression 2 to the former
variables or parameters.
Grammar expressionl = expression2
expressionl: Any valid expressions
expression2: Any valid expressions
Controller General
Example Example One:
ON IN(0)=ON GOTO labell
if input channel 0 is ON, then jump to execute
labell. Start to execute from the first line.
labell:
PRINT12 ‘print 12
Example Two:
DIM aaa
aaa=100 ‘assign variable aaa as 100
PRINT aaa
<>--Not Equal
Type Operational Character
Description If expression 1 is not equal to expression 2, then return TRUE, or
return FALSE.
Grammar expressionl <> expression2

387

expressionl: Any valid expressions
expression2: Any valid expressions

General

ON MODBUS_BIT(0)<>0 GOTO labell
'if MODBUS 0 is not 0, then go to execute labell.

labell:
PRINT11 ‘print 11

>--More Than

Operational Character

If expression 1 is more than expression 2, then return TRUE, or return
FALSE.

expressionl > expression2
expressionl: Any valid expressions
expression2: Any valid expressions

General

WAIT UNTIL MPOS>100
‘Wait until position feedback is more than 100.

Example One:

Dimq 'define variable
g=2>1 '2 is more than 1, return TRUE.
PRINT g ‘print return value
Example two:
DIM a ‘define variable
a=0 ‘assign variable
REPEAT 'execute in cycle
a=a+l 'plus 1
?a ‘print
DELAY(200) ‘'delay
UNTIL a>10 ‘when a is more than 10, cycle ends.

>= --More Than or Equal To

Operational Character

If expression 1 is more than or equal to expression 2, then return
TRUE, or return FALSE.

expressionl >= expression2
expressionl: Any valid expressions
expression2: Any valid expressions

General

388

Example

DIM a ‘define variables
a=1>=3 '1<3, so return FALSE
PRINT a ‘print the return value

< --Less Than

Type Operational Character
Description If expression 1 is less than expression 2, then return TRUE, or return
FALSE.
Grammar expressionl < expression2
expressionl: Any valid expressions
expression2: Any valid expressions
Controller General
Example VAR1=1<0

Since 1<0, so varl=false.

<= --Less Than or Equal To

Type Operational Character
Description If expression 1 is less than or equal to expression 2, then return TRUE,
or return FALSE.
Grammar expressionl <= expression2
expressionl: Any valid expressions
expression2: Any valid expressions
Controller General
Example VAR1=1<=1

Since 1=1, so varl=true (-1).

10.3 Logical Operation Instruction

AND--Bit Operation: AND

Type

Operational Character

Description

Operate data bit: AND, only operate integer part.

AND Result
0 0 0
0 1 0
1 0 0
1 1 1

389

expressionl AND expression2
expressionl: Any valid expressions
expression2: Any valid expressions

Result is AND bits operation of expression 1 and expression 2.

General

Online command input
>>PRINT 1 AND 2
Output: 0

Process:

1 bit format 01

2 bit format 10

after AND operation, bit is 00, which is 0 in decimal format.

OR--Bit Operation: OR

Operational Character

Operate data bit: OR, only operate integer part.

OR Result
0 0 0
0 1 1
1 0 1
1 1 1

expressionl OR expression2
expressionl: Any valid expressions
expression2: Any valid expressions

Result is OR bits operation of expression 1 and expression 2.

General

Online command input
>>PRINT 1 OR 2
Output: 3

Process:

1 bit format 01

2 bit format 10

after AND operation, bit is 11, which is 3 in decimal format.

NOT--Bit Operation: NOT

_ Operational Character

390

ON.

NOT

Result

0

-1

1

-2

Operate data bit: NOT, only operate integer part. Be careful to operate

NOT expressionl
expressionl: Any valid expressions

General

Online command input
>>print NOT 1
Output: -2

Process
1 bit format ...0000 0001
after NOT operation, bitis ...1111 1110, which is -2 in decimal format.

XOR--Bit Operation:XOR

Operational Character

Operate data bit: XOR, only operate integer part.

XOR Result
0 0 0
0 1 1
1 0 1
1 1 0

expressionl XOR expression2
expressionl: Any valid expressions
expression2: Any valid expressions

General

Online command input
>>PRINT 1 XOR 1
Output: 0

Process:
1 bit format 01
after XOR operation, bit is 00, which is 0 in decimal format.

EQV--Bit Operation:EQV

_ Operational Character

391

Operate data bit: EQV, only operate integer part.

EQV Result
0 0 1
0 1 0
10 0
1 1 1

expressionl EQV expression2
expressionl: Any valid expressions
expression2: Any valid expressions

General

Online command input
>>print2 EQV 1
Output: -4

Process:

2 bit format ...0000 0010

1 bit format ...0000 0001

after EQV operation, bit is ...1111 1100, which is -4 in decimal format.

10.4 Trigonometry Instructions

SIN-- Trigonometric Function: SINE

Mathematical Function

Evaluate sine, input parameter should be arc unit.

SIN (expression)
expression Any valid expressions

General

PRINT SIN(PI/6) 'result is 0.5000

ASIN--Trigonometric Function: Anti-SINE

Mathematical Function

Evaluate anti-sine, returned value is arc unit.

ASIN (expression)
expression Any valid expressions

General

PRINT ASIN(0.5) ‘result is 0.52360

392

COS--Trigonometric Function: Cosine

Type Mathematical Function
Description Evaluate Cosine, input parameter should be arc unit.
Grammar COS(expression)

expression Any valid expressions
Controller General
Example PRINT COS(PI/3) ‘result is 0.5000

ACOS -- Trigonometric Function: Anticosine

Type Mathematical Function
Description Evaluate anticosine, returned value is arc unit.
Grammar ACOS (expression)

expression Any valid expressions
Controller General
Example PRINT ACOS (0.5) 'result is 1.04720=P1/3

TAN--Trigonometric Function: Tangent

Type Mathematical Function
Description Evaluate Tangent, input parameter should be arc unit.
Grammar TAN (expression)

expression Any valid expressions
Controller General
Example PRINT TAN(pi/3) 'result is 1.732

ATAN--Trigonometric Function: Antitangent

Type Mathematical Function
Description Evaluate antitangent, returned value is arc unit.
Grammar ATAN ((expression)

expression Any valid expressions
Controller General
Example PRINT ATAN(1) ‘result is 0.7854 = (45/180)*PI

393

ATANZ2--Trigonometric Function: Antitangent 2

Type Mathematical Function
Description Evaluate antitangent, returned value is arc unit.
Grammar ATAN2(y, X)
y: y coordinate
X: X coordinate
Controller General
Example PRINT ATAN2(1,0) ‘'resultis 1.5708

10.5 Exponentiation Instructions

EXP--Exponent

Type Mathematical Function

Description Exponent function

Grammar exp([base,] expvalue)
base base number, default value is e
expvalue exponent

Controller General

Example Example One:

PRINT EXP(2,4) result is 16 (2*%2*2%2)

Example Two:
PRINT EXP(1)

result is 2.7183

SQR-- Square Root

Type Mathematical Function
Description | Square root function
Grammar SQR(expression)
expression Any valid expressions
Controller General
Example a=SQR(4)
PRINT a 'result is 2

LN-- Natural Logarithm

| Type

‘ Mathematical Function

394

Description Natural logarithm function
Grammar LN(expression)
expression Any valid expressions
Controller General
Example a= LN(1)
PRINT a ‘resultis 0

LOG--Logarithm of 10

Type Mathematical Function
Description Logarithmo, which base number is 10.
Grammar LOG(expression)
expression Any valid expressions
Controller General
Example a= LOG(100)
PRINT a ‘result is 2

10.6 Data Operate Instruction

SET_BIT--Set Bit

Type

Mathematics Instructions or Functions

Description

Bit operation, only for integer, set bit as 1.
There are command grammar and function grammar.
For VR register, it can be set as 0-24.

Grammar

Command Grammar: SET_BIT(bit#,vr#) Operate VR directly

bit#: bit NO.:0-24

vr#: VR variable NO. to operate, integer part.
There is no returned value when use command grammar, only modify value
of object directly.

Function Grammar: ret=SET_BIT(bit#,int)

ret operation result

bit# bit NO.:0-24

int expression to operate, only get the integer part.
There is returned value after using function grammar, but value of object did
not change.

Controller

General

Example

Example One: Command Grammar
VR(23)=0.333

SET_BIT(0,23) ‘set bit 0 of VR(23) as 1, and clear decimal part.

395

?VR(23) ‘result is 1

Example Two: Function Grammar

Dima,b

a=0.333

b=0

b=SET _BIT (0,a) 'set bit 0 of a as 1, and assign value to b, clear decimal
PRINT a,b ‘print result;0.333,1, a didn’t change, b=1.

CLEAR_BIT, READ_BIT2, READ_BIT

CLEAR_BIT--Operate Bit 0

Mathematics Instructions or Functions

Bit operation, only for integer, modify bit 0.
There are command grammar and function grammar.
For VR register, it can be set as 0-24.

Command Grammar: CLEAR_BIT(bit#,vr#) Operate VR directly

bit#, bit NO.:0-24

vri VR variable NO., integer part.
There is no returned value when use command grammar, only modify value
of object directly.

Function Grammar: ret = CLEAR_BIT(bit#,int)

ret operation result

bit# bit NO.:0-24

int expression to be operated, only operate integer part.
There is returned value after using function grammar, but value of object did
not change.

General

Example One: Command Grammar
VR(23)=3.333

CLEAR_BIT (0,23) 'set hit 0 of VR(23) as 0
?VR(23) ‘print result: 2

Example Two: Function Grammar
Dima,b
a=3.333
b=0
b= CLEAR_BIT(0,a)
‘return value to b after clear bit 0 of a and get integer part.
PRINT a,b 'result is: 3.333,2 a didn’t change, b=2.

SET BIT, CLEAR_BIT, READ BIT2

396

READ_BIT--Read Bit

Type Mathematical Function
Description Bit operation, which is only for integer, read bit status.
Only operate VR, see READ_BIT2 if not VR.
For VR register, it can be set as 0-24.
Grammar ret = READ_BIT(bit#, vr#)
ret: result:1 or O
bit#: bit NO.:0-24
vr#: VR variable No. to operate
Controller General
Example VR(23)=3.333
PRINT READ_BIT(0,23) ‘read bit 0 of VR(23), result is 1.
Instruction SET BIT, CLEAR BIT, READ BIT2

READ_BIT2--Read Bit 2

Type Mathematical Function
Description Bit operation, only for integer, read bit status.
Grammar ret = READ_BIT2(bit#, int)
ret: result:1 or 0
bit#: bit NO.:0-31
int: expression, use integer part.
Controller General, valid in firmware version above 20130813.
Example DIM ab
b=1.64
a=READ_BIT2(0,b) ‘read bit 0 of b, assign value to b.
PRINT a ‘output a, result is 1.
Instruction SET BIT, READ_BIT

FRAC--Return Decimal

Type Mathematical Function
Description Return decimal part, which is always over 0
Grammar FRAC(expression)
expression: number to operate
Controller General
Example a=FRAC(1.235)
PRINT a 'result is 0.235

397

INT--Return Integer

Type Mathematical Function
Description Return integer part.
Grammar INT (expression)
expression: Any valid expressions
Controller General
Example a=INT(1.235)
PRINT a ‘result is 1

?INT(-1.1) 'print result: -2, since decimal part is aways converted to integer.

SGN--Return Sign

Type Mathematical Function
Description Return sign.
1: more than 0
0:equalto 0
-1: less than 0
Grammar SGN(expression)
expression: Any valid expressions
Controller General
Example a=SGN(-1.235)
PRINT a result is -1

IEEE_IN--Combine Float Number

Type Mathematical Function
Description | Combine 4 bytes into a single-precision float point number
Grammar IEEE_IN(byte0,bytel,byte2,byte3)
byteO —byte3 4 bytes
Controller General
Example VAR = IEEE_IN(VR(10),VR(11),VR(12),VR(13))

Make these 4 data into one single-precision float point number.

IEEE_OUT--Select Single Byte

Type Mathematical Function
Description Select one byte from a single-precision float point number
Grammar byte_n=IEEE_OUT(VAR, n)

var: single-precision float point number
N: 0-3, byte to be selected.

398

General

Example 1
VAR = IEEE_OUT(VR(1),2) 'select the second byte of VR(1)

Example 2

GLOBAL VARO,VAR1,VAR2,VAR3
VAR0=0

VAR1=0

VAR2=0

VAR3=0

VR(1)=123.456

VARO = IEEE_OUT(VR(1),0)
VARL1 = IEEE_OUT(VR(1),1)
VAR2 = |[EEE_OUT(VR(1),2)
VARS3 = IEEE_OUT(VR(1),3)

VR(2)=0
VR(2)=IEEE_IN(VARO,VAR1,VAR2,VAR3)
The result:
<t L |
it | ig
varl 66
varl 245
vard 233
var3d 121
wr{2) 1234580

$--Hexadecimal

Special Character

Indicate the followed data is hexadecimal format.

$hexnum

General

Online command input
>>PRINT $F
Output: 15

10.7 Character String Operation Instruction

CHR--ASCII Code Print

String Functions
Return ASCII, which is only used in PRINT.

399

Grammar

CHR(expression)
expression: Any valid expressions

Controller

General

Example

Online command input
>>PRINT CHR(66)
Output: B

HEX--Print Hexadecimal

Type String Functions
Description Return hexadecimal format, which is only used for PRINT.
Grammar HEX(expression)

expression: Any valid expressions, only select integer part.
Controller General
Example Online command input

>>PRINT HEX(15);
Output: f 'hexadecimal

STRLEN-Return String Length

Type String Functions
Description Return string length
Grammar len=STRLEN(str)
str: string
Controller General
Example DIM str_a(20)
str_a="len123"

?STRLEN(str_a)
Print result: 6

TOSTR—Format Output

Type String Functions
Description Format output function. Convert variable to string.
Grammar TOSTR(VARL1, [N],[DOT])

VARL1: Any valid expressions
N: total output digits, including decimal digit and sign digit. when N
is set as minus value, which means right alignment.
DOT: decimal number to output, when N is too small, there is no
decimal digit, then will not output decimal part.

All Output is string type. Only the first parameter is printed to four decimal

400

places by default.

General

Example One

Online command input
>>PRINT TOSTR(2-100,6,2)
Output: -98.00

Example two

Dim aa(20)

aa="asd13"+TOSTR(354)

?aa ‘print result:asd13354.000

STRCOMP--String Comparison

String Functions

String comparison function, return logic result: >0 or =0 or <0 after
comparison of two strings.

The comparison length should not exceed 500 bytes, or the returned value
will appear error.

STRCOMP(strl, str2)
strl: stringl
str2: string2

General

DIM AAA(10)
AAA = "abc"

Online command input
>>PRINT STRCOMP(AAA, "abc™)
Output: 0

STRFIND—String Search

String Functions

String searching function.

STRFIND(strd, str2 [, firstindex])
strl: string to search
str2: search sample string
firstindex: search from that position, default value is 0.

Return:
>= 0, return aimed index after searching.
<0, no string is found.

General

401

Example

DIM AAA(10),BBB(3)
AAA="AD23GF41"
BBB="23G"

?STRFIND(AAA,BBB) 'print aimed index after searching, 2

STRCONV—Encoder Conversion

Type Character string function.

Character string conversion of different codes.
Description Only support encoder without 0, UTF16 is invalid.

Encoders can be supported: CP936, UTF-7, UTF-8, GB2312, etc.
Grammar string2=STRCONV (“srccodename”, “descodename”, “string1”)
Controller Controllers with Linux and 7XX series.

DIM arrstring(100)
Example arrstring = STRCONV/("gh2312","utf8", "folder")

?STRCONV ("utf8", "gh2312", arrstring) ‘output result: folder

VAL--Convert String to Number

Type String Functions
Description | Convert String to number.
Only convert string to number, when meets alphabet or sign, it will stop.
Grammar VAL(strl)
strl string
Controller General
Example Example One

VAR1 = VAL ("123")
?2VAR1 ‘print result, 123

Example two
VAR2 = VAL("123QWE23")
?VAR2 ‘print result, 123

10.8 Constant Instruction

PI--Circular Constant

Type Constant
Value 3.14159
Controller General

402

TRUE--True Value

Type Constant
Value -1
Controller General

FALSE--False Value

Type Constant

Value 0

Controller General
ON--Open

Type Constant

Value 1

Controller General
OFF--Close

Type Constant

Value 0

Controller General

10.9 Advanced Operational Instruction

CRC16 --CRC Verification Calculation

Type Mathematical Function
Description CRC16 CCITT calculation.
Grammar CRC16(arrayname, index, size[, inital] [, poly])
arrayname: array where data are saved, one byte occupy one position
index: array index
size: array size.
initial: default value of CRC calculation, default is $FFFF.
poly: polynomial, only supports $A001 of MODBUS and $1021 of
CCITT, default value is $A001
Controller General

403

Example

TABLE(0, $FE, $48 , $06 , $00 , $6D , $00 , $00 , $00)

'store 8 data in TABLE.
CRCVALUE = CRC16(TABLE, 0, 8) 'CRC calculation, result is $1A0D
TABLE(8)= CRCVALUE\ 256 'add CRC to end of data, big end mode.
TABLE(9)= CRCVALUE and $FF

DTSMOQOTH--Table Smooth

Type

Mathematical Function

Description

Smooth coordinate in TABLE

Grammar

DTSMOOTH (axes, dtfirst, space, points, imode, referradius)
axis: axis number
dtfirst: TABLE index of first coordinate
space: index interval of two points. or space one point consumes.
Points: total points.
Imode: 0-absolute mode, adjust when curvature radius is under
reference value.
referradius: reference curvature radius, equal to speed”2/corner speed.

Controller

ZMC3X series with firmware above 20161206.
ZMC4 series with firmware above 20170508.

Example

TABLE(0, 0,0)
TABLE(5, 99,0)
TABLE(10, 100,0)
TABLE(15, 100, 1)
TABLE(20, 101, 1)
TABLE(25, 200, 1)
DTSMOOTH(2, 0, 5, 6,0, 5)
2*TABLE(0, 2)
P*TABLE(S, 2)
2*TABLE(10, 2)
P*TABLE(15, 2)
P*TABLE(20, 2)
2*TABLE(25, 2)

B_SPLINE--B-Spline Smooth

Type Mathematical Function
Description Use data in table to do B-spline smooth.
Grammar B_SPLINE(type, data_start, points, data_out, ratio)

type: Type, valid in 1-B-spline.

data_start: graphics data starting position in TABLE

points: the number of graphics data.

data_out: graphics data starting position in TABLE after smooth.

404

ratio: smooth ratio of B_SPLINE function, the number after smooth is
points * ratio.

Add the automatic calculation function of spline control point. It is used
together with MOVESPLINE spine curve motion. Products above 4 series
support, 4 series with firmware above 20170621.
B_SPLINE(type, axises, dtstartpos, dtendpos, dtlastpos, dtnexpos,
dtoutcontroll, dtoutcontrol2)
type:
1: compatible with original functions
11: calculate spined control points for the first segment of
continuous line segment.
12: calculate spined control points for the middle segment of
continuous line segment.
13: calculate spined control points for the last segment of
continuous line segment.
axises: axes to do spline interpolation
dtstartpos: table array index of segment starting point coordinate,
multi-axis saved in different table continuously. Same as
follow.
dtendpos: table array index of segment ending point coordinate
dtlastpos: front point’s coordinate index of segment starting point is
used to calculate for reference, the first segment parameter
is invalid.
dtnexpos: back point’s coordinate index of segment starting point is
used to calculate for reference, the last segment parameter is
invalid.
dtoutcontroll: output control point data of spline, the first control point
of Bessel. (except starting point as control point)
dtoutcontrol2: output control point data of spline, the second control
point of Bessel.
There are four control points of Bessel, including starting point,
dtoutcontroll, dtoutcontrol2 and ending point.

Controller

General

Example

Example 1 typel

B_SPLINE(1,0,10,100,10)
'smooth 10 picture data, saved in table(0) to table(9), after
smooth, become 100 data, save in table(100) to table(199).

Example 2 New Mode
TABLE(0,0,0,0,100,100,100,200,100)

'Coordinate data of 4 consecutive points on XY axis.
B_SPLINE(11, 2,0, 2, -1, 4, 100,200) 'the first segment
?TABLE(100),TABLE(101),TABLE(200), TABLE(201)
B_SPLINE(12, 2, 2, 4, 0, 6, 100,200) 'the second segment

405

?TABLE(100), TABLE(101), TABLE(200), TABLE(201)
B_SPLINE(13, 2, 4, 6, 2, 6, 100,200) 'the third segment
?TABLE(100), TABLE(101), TABLE(200), TABLE(201)

TURN_POSMAKE--Rotating Center Calculation

Type Mathematical Function
Description Center point calculation of rotating, positive direction of rotating
should be same as positive direction of XY.(right hand rule)
Grammar TURN_POSMAKE((tablenum, posx, posy, disR, tableout)
tablenum table NO. where save rotating parameters.
pOsX X coordinate.
posy Y coordinate
disR relative offset of rotating axis.
tableout save coordinate after calculation..
Controller General

Instructions

MCIRC_TURNABS

ZCUSTOM--Motion Parameters Calculation

Type Mathematical Function

Description | Calculate parameters in all kinds of motion commands, for detailed
grammar function, please refer to following.

Grammar Function 2: calculate the position of a point at a certain distance on a

space arc or straight line.
In Table parameters, according to 3-point circle making mode, fill in other
two parameters.
Fill in relative coordinates, then the returned coordinates are also relative.
Grammar: ZCUSTOM (2,tableend, tablemid, tableout, mode, vectdis)
tableend: table index that saves end point of circular arc.
tablemid: table index that saves middle point of arc, which together
with the current point constitutes the three points of the arc.
tableout: table index that outputs calculation data
mode: value meanings as follow:

Mode | Description

1 Space circular arc length relates to starting point.

2 Space circular arc length relates to end point.

3 Linear distance, relate to starting point, now, tablemid is
invalid.

4 Linear distance, relate to end point, now, tablemid is
invalid.

5 Relatively calculate circle center of space arc, now, vectdis
is invalid, and tableout only outputs circle center xyz,

406

‘ ‘ radian range, and arc length in sequence.
vectdis: the distance of point (to be calculated) that relates to “mode”,
minus value means forward. In arc mode, positive value
means clockwise, minus value means anticlockwise.

Function 6: calculate tangent angle direction of space arc’s starting
point and end point, the unit is radian.
Fill in relative coordinates, and returned coordinates are also relative.
Grammar: ZCUTOM (6, tableend, tablemid, tableout)
tableend: table index that saves end point of arc.
tablemid: table index that saves middle point of arc, consist 3 points of
arc together with present point.
tableout: table index that saves result data. It will output starting point
XY, starting point Z, end point XY, end point Z.

Function 7: input speed ratio, then calculate salve and main axis
position of MOVESLINK.
Grammar: ZCUSTOM(7, distance, link_dist, start sp, end_sp, speed ratio,
tableout)
distance: distance that the slave axis moves during the link, unit is
units.
link_dist: absolute distance that reference axis moves during the link,
units is units.
star_sp: the speed ratio of slave axis to reference axis when starts, unit
is units/units, minus value means slave axis moves in negative
direction.
end_sp: the speed ratio of slave axis to reference axis when ends, unit
is units/units, minus value means slave axis moves in negative
direction.
speed ratio: speed ratio of points that needs calculating
tableout: forward salve axis distance, forward main axis distance, slave
axis distance from reverse, and main axis distance from the
reverse, they occupy 4 TABLE. (for one curve, there are
many several solutions of speed ratio.)

Function 8: MOVESLINK inputs slave axis position, then calculates
master axis position.
Grammar: ZCUSTOM(8, distance, link dist, start sp, end_sp,
distancemoved, tableout)
distance: distance that slave axis moves during links.
link_dist: absolute distance that master axis moves during links.
start_sp: speed ratio of starting pulse
end_sp: speed ratio of end pulse
distancemoved: motion distance that slave axis already moved
tableout: table index that saved position of master axis, if there are
multi results, return the first one.

407

Function 9: FLEXLINK inputs slave axis position, then gets main axis
position.
Grammar: ZCUSTOM (9, base_dist, excite_dist, link dist, base_in,
base_out, excite_acc, excite_dec, distancemoved, tableout)
base_dist: uniform motion distance of slave axis.
excite_dist: excite motion distance of slave axis, when the value is
opposite to base_dist, it can’t calculate the main axis’
position.
link_dsit: whole process, after slave axis motion finished, motion
distance of main axis.
base_in: before excite motion, the percent of salve axis motion distance
to base_dist.
base_out: after excite motion, the percent of salve axis remain distance
to base_dist. Don't add them more than 100%.
excite_acc: in the process of excite motion, the precent of slave axis
acceleration distance to excit_dist, when excite_dist is
minus value, it’s the deceleration stage.
excite_dec: in the process of excite motion, the precent of slave axis
deceleration distance to excit_dist, when excite_dist is
minus value, it’s the acceleration stage.
distancemoved: pulse amounts of slave axis that had moved
tableout: output Table index, output relative main axis position, if there
are several solutions, return to the first one.

Function 10: calculate FRAME_ROTATE parameters in original
coordinate according to workpiece coordinate three
points. Every point needs to store xyz coordinates.

Grammar: ZCUSTOM (10, dtzero, dtx, dty, dtout)

dtzero: workpiece origin point position in original coordinate.

dtx: point (on the workpiece coordinate X) position at original
coordinate.

dty: point (on the workpiece coordinate Y) position at original
coordinate.

dtout: output TABLE index, and store respectively: X,Y,Z,RX,RY,RZ

Function 12: calculate circle center according to arc’ end point, radius.
Grammar: ZCUSTOM (12, xpos, ypos, radius, anticlock, dtout)

xpos: relative coordinate in X

ypos: relative coordinate in' Y

radius: radius, negative value means the arc sector angle > 180%

positive value means < 180<
anticlock: 0: clockwise, 1: anticlockwise
dtout: output circle center relative distance xy, it needs two positions.

Note: dtzero, dtx, dty, and dtout are table index, it only needs to write index,
table saves x, y, z of three directions, for robotic arm algorithm, it fills in

408

virtual axis’ coordinates.

General

Example one Use function 2

A
the middle point (50,50)
50
circular length 235.62
&«

0 | the present point 100

-50
end point (50, -50)

TABLE(0,50,-50,0) 'set end coordinate, relative position.
TABLE(3,50,50,0) 'set middle coordinate, relative position.

'model, relative to start point

ZCUSTOM(2,0,3,10,1,78.54) ‘'relative to start point, clockwise, arc length
is 78.54

?TABLE(10),table(11),table(12)'output relative coordinate:0,0,0

ZCUSTOM(2,0,3,10,1,-78.54) 'relative to start point, anticlockwise, arc
length is 78.54

?TABLE(10), TABLE(11),TABLE(12) 'output relative coordinate:50,-50,0

'mode2, relative to end point

ZCUSTOM(2,0,3,10,2,78.54) 'relative to end point, clockwise, arc length
is 78.54.

?TABLE (10),TABLE (11), TABLE (12) 'output relative coordinate: 50,-50,0

ZCUSTOM(2,0,3,10,2,-78.54) 'relative to end point, anticlockwise, arc
length is 78.54

?TABLE (10),TABLE (11), TABLE (12) ‘output relative coordinate:100,0,0

'mode5, calculate center, radian, arc length.

ZXUTOM(2,0,3,10,5,0) 'distance parameters are not valid in this situation.
?TABLE (10),TABLE (11), TABLE (12) ‘output relative coordinate: 50,-50,0
?TABLE(13), TABLE(14) ‘output arc angle: 4.712, arc length: 235.62

Example two function 6, calculate tangent radian of start point and
end point

409

the middle point (50, 50)

50

start point cutting
direction 90°

v

o | the present 100
point
180°
end point cutting
direction

_50 —
end point (50, -50)

TBALE(0,50,-50,0) 'set end point, relative position.

TABLE(3,50,50,0) 'set middle point, relative position
ZCUSTOM(6,0,3,10) ‘calculate tangent radian of present and end point.
?TABLE(10), TABLE(11) 'output present point:1.571,0 (1.571=90*P1/180)
?TABLE(12), TABLE(13) 'output end point:-3.142,0 (-3.142=-180*P1/180)

Example Three Function 8, calculate master axis position of

MOVESLINK

BASE(0,1)

DPOS=0,0

UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

TRIGGER

MOVESLINK(50,100,0,1,1) 'build MOVESLINK connection

MOVEABS(100) AXIS(1)

ZCUSTOM(8,50,100,0,1,25,10) ‘calculate master axis position when slave
axis moves 25.

?TABLE(10) ‘output master axis position:73.801

Motion Path:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

410

ZMATHG64-64 Bits Calculation

64 bits calculation instruction

Calculate 64 bits stored in D Register. (MODBUS Register).

A 64 bits integer with symbol occupies 4 registers (the small end mode).
Only operate MODBUS register, not to VR mapping, etc.

4xxx series controller with firmware version above 20170629.

ZMATH64(opmode, dindex1, dindex2)
opmode: operation NO.
dindex1. dindex2: MODBUS register NO.

i
ope;\rlilon Execute operation Description

64-bit integer . 3 .

1 addition D64(dindex1)+=D64(dindex2)

o | BaDIL T dnteger | e dindext)-=D64(dindex2)
subtraction
64-bit int

3 o IMOEN) e dindex1)*=D64(dindex2)
multiplication
64-bit int

4 o "MEYET | b6a(dindex1)/=D64(dindex2)
division

5 | B4bIt integer S| o dindexd)%=D64(dindex2)
redundant

11 64-bit integer read D64(dindex1)=D64(dindex2)
i -

1p | 84PIL o Integer | s dindex1)=D64(dindex2)
conversion

13 64-bit integer read D64(dindex1)=D32IEEE(dindex2)
64-bit int

14 o M baoEEE(dindex1)=D64(dindex2)
conversion

411

15 assign D64(dindex1)=double64(dindex2)

16 assign double64(dindex1)=D64 (dindex2)

17 assign double64(dindex1)=D32EEE(dindex2)

18 assian D32IEEE (dindexl) = double64
g (dindex2)

21 | double addition double64 (dindex1) += double64

(dindex2)
22 double subtraction do_uble64 (dindex1) -= double64
(dindex2)
double64 (dindexl) *= double64
23 double multiplication (c(I)il;d:xz) (dindex1) ouble
24 double division dquble64 (dindex1) /= double64
(dindex2)
25 double remainder, | double64 (dindexl) %= double64
decimals (dindex2)

D321IEEE means float points storage, same as MODBUS_IEEE.
D64 means 64-bit integer with symbol storage, which can read 32-high-bit
and 32-low-bit through two MODBUS_LONG.

Controller

General

Example

MODBUS_LONG(0)=100

MODBUS_LONG(8)=20

ZMATH64(1,8,0) '64-bit integer addition, then stores in the start
address of MODBUS_LONG(8)

?MODBUS_LONG(0) ‘print result, 100

?MODBUS_LONG(8) 'print result, 120

Instructions

MODBUS_IEEE, MODBUS_LONG, MODBUS_REG

MODBUS_DOUBLE- Read MODBUS

Type 64-bit instruction
Description | Read double data from MODBUS, and it can assign to other variable
arrays.
3 series and below arrays with float don’t support the instruction.
Grammar MODBUS_DOUBLE(index)
Index: modbus register NO.
Controller General
Example MODBUS_LONG(0)=100

MODBUS_LONG(8)=200
ZMATH64(16, 0, 8) ‘assign 64-bit
?MODBUS_DOUBLE(0) 'print result, 200

412

?MODBUS_LONG(0)
PMODBUS_LONG(8)

‘print result, 0
‘print result, 200

Instruction

ZMATHG64

413

Chapter XI Axis Parameter and Axis Status
Instruction

Axis parameters modification grammar: SPEED=value, here is the speed of default axis:
BASE axis. If needs to modify appointed axis parameters through SPEED AXIS(axisnum)=value,
then grammar is: SPEED(axisnum)=value, and “axis” can be omitted.

Multiple BASE axis parameters can be set at the same time through SPEED=valuel,

Axis parameters are able to be read or written, such as, VAR1=SPEED (axisnum).
AXxis status is only able to be read, value will change as per inside variation, while some
unique axis status is also able to be written, such as MPOS, DPOS etc.
& when in interpolation movement, parameters of main axis will be as interpolation

parameters. When BASE several axes, the first axis is the main axis.

11.1 Axis Selection

BASE-AXxis Selection/Axis Group Selection

Type AXis parameter

Description | Select axes to set parameters and to join in motion.

Default values:0, 1, 2...

Before the next BASE instruction is executed, select axis based on the
former BASE instruction.

Every task has its own axis list, axis or the axis group selected by BASE in
the task will be used to control different machines.

In the interpolation motion, the first axis motion parameter is interpolation
parameter. See example 1 for details.

If there is no axis list in BASE, BASE will place the remaining axes in
sequence. See example 2 for details.

Grammar BASE (axis<,second axis><,third axis>...)

axis: the first axis

second axis: the next axis

Parameter is most as the axis amount supported by controller, please refer to
relative controller hardware manuals.

Controller General

Example Example 1

BASE(0,1,2,3) ‘axis list selection: 0,1,2,3

414

SPEED=100,10,20,30 ‘axis 0,1,2,3 sets corresponding speed, but in
interpolation, only speed 100 of main axis
(axis 0) is valid.
MOVE(100,100,100,100) 'axis 0,1,2,3 combined interpolation motion, the
resultant motion speed is 100, the speed
of each axis is partial speed

Example 2
BASE(1) ‘axis list selection: 1
MOVE(100,100,100) ‘axis 1,2,3 do interpolation motion

Example 3
BASE(0,2,5) ‘axis list selection: 0,2,5
MOVE(100,100,100) ‘axis 0,2,5 do interpolation motion

AXIS-Temporary Axis

Type Assistant instruction
Description Modify a motion instruction or axis parameter temporarily to execute a
defined axis.
For axis parameters, AXIS can be omitted.
Grammar AXIS(expression)
expression: new temporary modified axis, axis selection is still based
on BASE instruction after finish execution.
Controller General
Example Example 1
BASE(0)
MOVE(1000) AXIS(1) ‘force axis 1 to move 1000units
MOVE(100) ‘axis 0 moves 100 units
Example 2
BASE(1)
UNITS AX1S(0)=100
'force defined axis 0 to set UNITS as 100, UNITS(0)=100
UNITS(2)=200 ‘force defined axis 2 to set UNITS as 200
UNITS=10 'set axis 1 UNITS as 10
Instruction BASE

11.2 Basic Parameter Instruction

UNITS--Pulse Amount

| Type

‘ Axis Parameters

415

Pulse Amount, assign pulse amount to send per unit, maximum precision is
5 decimal bits.

Controller takes UNITS as basic unit, the coordinate will change with
UNITS after it is modified.

For Example:

UNITS=10

Relative DPOS=3000, MPOS=3000

Modification: UNITS=100

Relative DPOS=300, MPOS=300

For read: VAR1=UNITS / VR1=UNITS(axis number)
For written: UNITS=expression / UNITS (axis number) = expression

General

How to set

Suppose Motor U need 3600 pulse to run one circle, and the screw pitch of

guide screw p is 2mm(motor runs 1 circle, it moves 2 mm)

Set relative UNITS value of 1°rotation, as below:
UNITS=U/360=3600/360=10, now MOVE(1), 'motor runs 1°

Set UNITS value of 1 mm movement, as below:
UNITS=U/P=3600/2=1800, now MOVE(1), 'guide screw runs 1<

Usually there is reduction ratio between motor and machine, suppose it is

2:1(i=2:1), then UNITS vale of 1 mm movement is:
UNITS=U*i/P=3600*2/2=3600

How to Program
BASE(0,1,2) ‘choose axis 0,1,2.
UNITS=10,100,1000,30 'UNITS of axis 0,1,2,3 is 10,100,1000,30

When UNITS setting axes exceed BASE list, additional UNITS value will
be mapped to followed axes automatically, however, if no more than BASE
list, then only set relevant axes.

UNTIS(2)=100 'set UNITS of axis 2 directly, no influence from BASE list.

ATYPE--Axis Type

AXxis Parameters

Axis functions types configuration, only can set as axis types available.
(Find axis ATYPE in hardware manual or check in ZDevelop / RTSys.)

It is better to set ATYPE before initialization.

ZCAN extended axis should set AXIS_ADDRES first, and set delay 2 ticks,
then call motion instructions.

Due to limit of field bus bandwidth, extended axes through ZCAN should
not exceed 2.

416

For some products which have independent encoder inputs, then we can
appoint virtual axes as encoder. For example, In ZMC206, motor axes are 0-
5, then encoder axes can be 6-11, see details in ZDevelop / RTSys.

Grammar

VAR1 = ATYPE, ATYPE = expression

ATYPE | Description of Axis Type
0 Virtual-Axis
1 Stepper / Servo of Pulse Direction
2 Servo by Analog Signal Control
3 Quadrature Encoder
4 Pulse Dir OUT+ Quadrature Encoder IN
5 Pulse Dir OUT + Pulse Dir Encoder IN
6 Encoder of Pulse Dir
7 ATYPE 1 + EZ Signal IN
8 ATYPE 1 Expansion by ZCAN
9 ATYPE 3 Expansion by ZCAN
10 ATYPE 6 Expansion by ZCAN
SCAN-AXis with galvanometer State.
Bit2 of AXISSTATUS will reset when SCAN can’t be
20 connected, then ENCODER returns to original sending position,
the unit is Pulse.
Only for ZMC408SCAN.
SCAN-AXis, used by real controller.
Default System Period: 250us, SCAN Refresh Period: 50us
21 (Dpend on firmware).
All motion control commands of ordinary axes are valid,
including axis hybrid interpolation.
SCAN-AXxis with galvanometer position feedback.
Bit2 of AXISSTATUS will reset when SCAN can’t be
connected, and bit3 resets when SCAN alarms.
22 MPOS returns to measurement position, anti-correction is done.
ENCODER returns to original feedback position, the unit is
Pulse.
Only for ZMC408SCAN.
24 Remote Encoder Axis
Used in ZHD500X handwheel, some controllers support.
Define one encoder axis, coordinates are read from MODBUS /
NODE_PDOBUFF.
Valid in version after Version_build 230810.
Example:
BASE(axisnum)
AXIS_ADDRESS = (slot <<16) + nodenum
25 ENCODER_ID=index<<16+subindex<<8+bites
ATYPE=25
Slot:
-1: read encoder position from MODBUS_LONG (hodenum)
0-n: read encoder position from NODE_PDOBUFF (slot,
nodenum, index, subindex, type)
ENCODER _ID: No. that saves data dictionary
Custom encoder: use C language to update encoder position,
26 support closed-loop, valid in version after version_build

240702.

417

48 SSI Absolute Encoder

49 BISS Absolute Encoder

50 RTEX Period Position Mode, only for RTEX controller.

51 RTEX Period Speed Mode, only for RTEX controller.

59 RTEX Period Torque Mode, only for RTEX controller.
Please off driver 2-DOF mode, and set speed limit.

65 EtherCAT Period Position Mode, only for EtherCAT controller.

EtherCAT Period Speed Mode, only for EtherCAT controller.

66 Note: PROFILE > 20.

67 EtherCAT Period Torque Mode, only for EtherCAT controller.
Note: PROFILE > 30.

70 EtherCAT Custom, read encoder only, and only for EtherCAT

controller.

For motion mode “INVERT STEP” instruction configuration, it is pulse
direction by default.

Controller General

Example Example 1: Pulse type
BASE(0,1)
ATYPE=1,1 'set axis 0,1 as pule type
UNITS=100,100 'set pulse amount as 100
SPEED=100,100 'set speed as 100 units/s
ACCEL=1000,1000 'set acceleration as 1000 units/s/s
DECEL=1000 'set deceleration as 1000 units/s/s
MOVE(100,100) ‘linear interpolation

Example 2: EtherCAT Field bus control

SLOT_SCAN(0) ‘scan field bus

BASE(0)

AXIS_ADDRESS(0)=1 'map first drive to axis 0.
ATYPE(0)=65 ‘axis type is 65, position control.
SLOT_START(0) 'start field bus
AXIS_ENABLE=1 ‘axis enable

WDOG=1 ‘enable all axes
UNITS=100 ‘pulse amount is 100
SPEED=100 'speed 100units/s
ACCEL=1000 ‘acceleration 1000units/s/s
DECEL=1000 ‘deceleration 1000units/s/s
MOVE(5000)

Example 3: Rtex torque mode

SLOT_SCAN(0) ‘scan field bus

BASE(0)

AXIS_ADDRESS(0)=1 'map first drive to axis 0.
ATYPE(0)=52 ‘axis type is 52, Rtex torque mode.

DRIVE_WRITE(6*256+47,0) ‘close 2 DOF control.
DRIVE_WRITE(3*256+17,0) 'choose parameter 3.21 as speed limit.

418

DRIVE_WRITE(3*256+21,2000) 'maximum speed limit is 2000r/min
SLOT_START(0) 'start Field bus

AXIS_ENABLE=1 ‘axis enable

WDOG=1 ‘enable all axes

DAC=100 'send control value by DAC, see DAC for details.

Example 4: galvanometer axis

BASE(4,5)

UNTIS=1,1

ATYPE=21,21 'set as galvanometer axis

Example 5: remote encoder axis
BASE (axisnum)
AXIS_ADDRESS = lcd NO
ATYPE=24

Example 6: define one encoder axis
BASE(0)

AXIS_ADDRESS = (0<<16) + 0
ENCODER_ID = $60640020
ATYPE =25

Example 7: custom encoder

Added C function interface:

// read DAC_OUT, rea axis DAC output value
double motionrt_getaxisdacout(uint32 iaxis);

// virtual, custom encoder update “encoder”
uint32 motionrt_updatecoder(uint32 iaxis, int32 icoder);

/[virtual, custom encoder update “encoderdot”, float -1 to 1
[/l usually don’t call
uint32 motionrt_updatecoderdot(uint32 iaxis, float fdot);

BASE(0)

ENCODER_SERVO = 2 ‘configure closed-loop, AOUT output is not
used, read output by motionrt_getaxisdaout

ATYPE=26

‘closed-loop processing, please refer to <<C Language Support>>
datum(0)

FE_LIMIT = 10000

FE_RANGE = 10000

axis_enable =1

servo=1

AXIS_ADDRESS, INVERT_STEP

419

AXIS_ADDRESS--Axis Address Configuration

AXxis Parameters

Axis address configuration of extended axes.

1. When the axis extended by ZCAN, there is one 8-code DIP switch
(hardware version should be above V1.3)
Due to limit of ZCAN bandwidth, extended axes should not exceed 2.
Do set AXIS_ADDRESS first, then set ATYPE of extended axes. After
modification, ATYPE must be reset.
see example one for reference.
Bit 1-4 | CAN address DIP code, combination value is 0-15
Bit 5-6 | CAN speed DIP code, different values have different speed.
Bit 7 Special function: Reserved
Bit 8 1200hm resistor DIP code, be connected when ON.
Rule:

AXIS_ADDRESS(axis NO.)=(32*0)+CAN ID

‘local axis0 of expansion module.
AXIS_ADDRESS(axis NO.)=(32*1)+CAN ID

‘local axis1 of expansion module.

2. Bus driver axis No. mapping, map connected drives correspondingly
according to No. sequence.

Drive No. is sorted by connecting sequence, it ranges from 0 to EtherCAT
drive number - 1.
Drive No. is different from device No., device No. includes all connected
devices, but drive No. only includes drives.
Do set AXIS_ADDRESS first, then set ATYPE. After modification, ATYPE
must be reset.
See Example two for reference

Bit 0-15 Drive No.+1, 0-Auto Assign

Bit 16-31 Slot No. (when there are multiple slots)
Rule:
AXIS_ADDRESS(Axis No.)=(Slot No.<<16)+Drive No.+1

3. Local pulse axis No. remapping, 4 series motion controllers support
local pulse axis or encoder axis No. remapping, please note the
firmware should be above 160608.

While remapping, set ARTPE of original local pulse axis as virtual axis.

After modification, ATYPE must be reset.

see example three as reference.

Bit 0-15 Mapped local pulse axis No.

Bit 16-31 | High 16-bit are set as 1 (under decimal system, high 16-bit

=-1).

420

Rule:

BASE(axis No. to be remapped)

ATYPE=0 set axis type as 0, low version will report errors if not be set.

BASE(local axis No. to be modified)

ATYPE=0 set axis type as 0

AXIS_ADDRESS(remapped axis No.)= (-1<<16) + local pulse axis
No. to be modified

BASE (axis No. to be remapped)

ATYPE=1/7

4. Pulse-axis, encoder axis (sub-card on MotionRT control card)
mapping. While mapping, it must set AXIS_ADDRESS at first, then
set ATYPE. If there is modification, please reset ATYPE.

Bit 0-15 On sub-card, Axis No. + 1

Bit 16-31 | Sub-card CARD No.

Rule:

BASE (axis No. that is to be remapped)

ATYPE = 0, set axis type as 0, it will report error if there is no setting
in low version.

BASE (local pulse axis No. that is to be modified)

ATYPE =0, set axis type as 0.

AXIS_ADDRESS (axis No. to be remapped) = (sub-card No. << 16) +
physical axis No. on sub-card + 1

BASE (axis No. that is to be remapped)

ATYPE=X (reset required axis type)

5. Cancel axis mapping: AXIS_ADDRESS =0
BASE (remapped axis No.)
ATYPE (remapped axis No.) =0
AXIS_ADDRESS =0

VARL = AXIS_ADDRESS, AXIS_ADDRESS = expression

General

Example 1: ZCAN expansion-axis
AXIS_ADDRESS (6)=2+(32*1)
'map axis 6 to axis 1 of ID2 on ZCAN module

ATYPE(6)=8 'set ZCAN extended axis type, stepper or servo in
pulse direction

UNITS(6)=100 ‘pulse amount 100

SPEED(6)=100 'speed is 100uits/s

ACCEL(6)=1000 ‘acceleration is 1000units/s/s

MOVE(100) AXIS(6) 'extended axis moves 100units

Example 2: EtherCAT axes mapping by Manual
AXIS_ADDRESS(0)=0+1 ‘first Ecat drive, No. is 0, mapped as axis 0
AXIS_ADDRESS(2)=1+1 'second Ecat drive, No. is 1, mapped as axis 2

421

AXIS_ADDRESS(1)=2+1 'third Ecat drive, No. is 2, mapped as axis 1
ATYPE(0)=65 'set as Ecat type

ATYPE(1)=65

ATYPE(2)=65

Example 3: EtherCAT axes mapping automatically

AXIS_ADDRESS (0)=0

‘automatically specify slotO drive, the start to map axis No. from axis 0
according to the connection sequence (not recommended in this way.
example 2 is better)

ATYPE(0)=65 ‘axis 0 is set as ECAT mode

Example 4: change pulse axis No. of EtherCAT controller.

‘before change, operate axis 0 (axis 0 interface on controller)

BASE(16) ‘axis No. that is remapped

ATYPE(16)=0

BASE(0) 'the local pulse axis No. to be modified

ATYPE=0 'set local pulse axis 0 as virtual axis

AXIS_ADDRESS (16)= (-1<<16)+0

'bind with local pulse axis 0, high16 bits = -1.

ATYPE(16)=1
'set axis 16 as pulse axis, use local pulse axis 0. Then, at this
time, operate axis 0, corresponding to ECAT encoder,
operate axis 16, corresponding to controller axis 0 port.

Example 5: galvanometer axis remapping

ATYPE(4)=0

ATYPE(5)=0

BASE(X) ‘axis NO. to be mapped
AXIS_ADDRESS = (-1<<16)+4 'remap the first SCAN axis
ATYPE =21

BASE(Y) ‘axis No. to be mapped
AXIS_ADDRESS = (-1<<16)+5 ‘'remap the second SCAN axis
ATYPE =21

Example 6: axis of sub-card on MotionRT control card remapping
‘remap axis 0 as axis 16

BASE(16) ‘axis No. to be remapped
ATYPE=0

BASE(0) ‘original axis No. to be modified
ATYPE=0 'set axis type as 0
AXIS_ADDRESS(16)=(0<<16)+ 0+ 1
BASE(16)

ATYPE =1 'configure axis 16 as pulse axis

ATYPE

422

AXIS_ENABLE--Axis Enable

Type Axis Parameters

Description Enable each axis.
EtherCAT Bus axis should be configured, and WDOG=1 general enable
must be set.

Grammar AXIS_ENABLE =1/0, 1-open enable,0-close enable.

Controller General

Example AXIS_ENABLE(0) =1 ‘open axis 0 enable

Instruction WDOG

11.3 Speed Parameter Instruction

SPEED--Motion Speed

Type Axis Parameters

Description | Axis speed, unit is units/s.
When multi-axis is in motion, SPEED as interpolation motion speed.
After modification of SPEED, SPEED will take effect immediately,
dynamic speed changing can be done in this way, but the moment of speed
changing, it may cause speed jumping, which will also cause machine
vibration, then we can use SPEED_RATIO to realize smooth speed
changing.
When SP instruction: FORCE_SPEED is more than SPEED, SPEED will
also take effect. (SPEED will not take effect in this situation in firmware
version above 140716).

Grammar VAR1 = SPEED, SPEED = expression

Controller General

Example BASE(0)
UNITS=100 ‘pulse amount
SPEED =500 ‘set speed of axis 0 as 500units/s
ACCEL=1000 ‘acceleration:1000units/s/s
DPOS=0 ‘coordinate clears
TRIGGER ‘trigger oscilloscope automatically
VMOVE(1) ‘continuous motion
WAIT UNTIL DPOS(0)>1000 ‘'wait until axis O reaches 1000.
SPEED=1000 ‘change speed as 1000
Speed Curve:

MSPEED(0)=1000(vertical scale)

423

FORCE_SPEED, SPEED_RATIO

ACCEL--Axis Acceleration

AXis Parameters

AXis acceleration, unit is units/s/s.

In multi-axes motion, acceleration of interpolation motion will obey main
axis.

It is better to set acceleration and deceleration before motion starts, and
don’t change in motion, or will cause change of speed curve.

To read:VAR1=ACCEL (axis number)
To write: ACCEL (axis number) = expression

General

Example 1

BASE(1,2,3,4) '‘BASE select axis
ACCEL=100, 100, 100, 100 'set acceleration of axis 1,2,3,4
ACCEL(2)=200 'set acceleration of axis 2.

Example 2

BASE(0)

UNITS=100 ‘pulse amount
DPOS=0 ‘coordinate clears
ACCEL=2000

SPEED=100

MOVE(100)

Speed curve of Acceleration Process
MSPEED(0)=100(vertical scale)

424

Speed curve after acceleration and deceleration
ACCEL=500
DECEL=500

DECEL, SPEED

DECEL--AXxis Deceleration

AXis Parameters

Axis deceleration, unit is units/s/s.

In multi-axes motion, deceleration of interpolation motion will obey main
axis.

When it is set as 0, it will get value of ACCEL, then deceleration and
acceleration will be symmetric.

It is better to set acceleration and deceleration before motion starts,and don’t
change in motion,or will cause change of speed curve.

VAR1 = DECEL, DECEL = expression

General

Example one

BASE(1,2,3,4)

DECEL =100, 100, 100, 100 'set deceleration of axis 1,2,3,4.
DECEL (0)=200 'set deceleration of axis 0.

425

PRINT DECEL (0)

Example two

BASE(0) ‘choose axis 0.

SPEED=100 'set speed as 100 units/s
DECEL=500 'deceleration is 500units/s/s
TRIGGER 'trigger oscilloscope automatically
MOVE(200) 'move 200units

Speed Curve
MSPEED(0) vertical scale 100

DECEL=200

ACCEL, FASTDEC

CREEP--Creep Speed

AXis Parameters

Axis creep speed while homing, which is used to search origin point, unit
is units/s.

VARL1 = CREEP, CREEP = expression

General

BASE(0)

426

UNITS=100

ACCEL=1000

DECEL=1000

SPEED =100

CREEP=10 'set creep speed as 10units/s

DATUM_IN=0 'set INO as origin point of axis 0

INVERT_IN(0,0ON) 'invert electric level.

TRIGGER 'trigger oscilloscope automatically

DATUM(3) 'search origin point at speed of 100, leave at speed of

10 after meeting origin point.

Speed Curve
MSPEDD(0) vertical scale 100

DATUM

LSPEED--Initial Speed

AXis Parameters

Axis starting speed, also can be used as stop speed, default value is 0,
unit is units/s

As the starting speed of interpolation in multi-axis motion.

When the motion needs efficiency, LSPEED starting speed can be set.
Please note in most of applications, LSPEED value is recommended to be 0,
otherwise, it may cause severe shake.

VARL = LSPEED, LSPEED = expression

General

Example

BASE(0,1) 'select axis 0 as main axis
DPOS=0,0

UNITS=100,100 'pulse amount 100
SPEED=100,100 'main axis speed 100units/s
ACCEL=1000,1000

DECEL=1000,1000

427

LSPEED=40 'initial speed 40 units/s
TRIGGER ‘trigger oscilloscope automatically
MOVE(100,100) 'motion distance of per axis

Speed Curve
MSPEED(0)=100(vertical scale), no offset
MSPEED(1)=100(vertical scale), offset 10

SPEED

FORCE_SPEED--SP Speed

AXis Parameters

Forced speed of self-defined speed SP motion, unit is units/s.

This parameter will enter buffer.

When FORCE_SPEED is bigger than SPEED, then SPEED value will also
limit the maximum speed in motion. (SPEED will not take effect after
firmware 140716)

If need FORCE_SPEED to decrease to required value before a new motion
segment, then set STARTMOVE_SPEED.

VAR1 = FORCE_SPEED, FORCE_SPEED = expression

General

BASE(0)

DPOS=0

UNITS=100 ‘pulse amount100

ACCEL=500

DECEL=500

SPEED =100 'speed is 100units/s
FORCE_SPEED=150 'self-defined speed is 150units/s
SRAMP=100 'S curve

MERGE=ON

TRIGGER= 'trigger oscilloscope automatically
MOVE(100) ‘normal motion without SP
MOVESP(100) 'speed is 150

428

FORCE_SPEED=200

MOVESP(100) 'speed is 200
FORCE_SPEED=50

MOVESP(100) 'speed is 50
END

Speed Curve:

MSPEED(0)=100(vertical scale)

*SP

STARTMOVE_SPEED--Start Speed of SP Motion

AXis Parameters

Starting speed of SP motion, this parameter will enter buffer.
Only valid in motion instruction with SP.

Set a big value when this instruction is not required any more. Default value
of controller is 1000.

VAR1=STARTMOVE_SPEED, STARTMOVE_SPEED=expression

General

RAPIDSTOP(2)

WAIT IDLE(0)

BASE(0) ‘select XY axis
DPOS =0

MPOS =0

ATYPE=1 ‘pulse stepper / servo
UNITS =100 ‘pulse amount
SPEED =100

ACCEL =200

DECEL = 200

SRAMP =100 ‘S curve

MERGE = ON ‘open continuous interpolation

429

“first segment
FORCE_SPEED = 30 ‘the first segment speed is 30
STARTMOVE_SPEED = 1000 ‘not set, default value is 1000
ENDMOVE_SPEED = 1000 ‘not set, default value is 1000
MOVESP(40)

‘second segment

FORCE_SPEED =50 ‘the second segment speed is 50
STARTMOVE_SPEED = 20 ‘the second segment’s initial speed is 20
ENDMOVE_SPEED =40 ‘end speed is 40

MOVESP(50)

‘third segment

FORCE_SPEED =60 ‘the third segment speed is 60
STARTMOVE_SPEED = 1000 ‘not set, default value is 1000
ENDMOVE_SPEED = 1000 ‘not set, default value is 1000
MOVESP(60)

END

Speed & Position Curve:
MSPEED(0) — vertical scale 50
DPOS(0) — vertical scale 100, offset -100

FORCE_SPEED, *SP.ENDMOVE_SPEED

ENDMOVE_SPEED--End Speed of SP motion

AXis Parameters

End speed of self-defined speed SP motion, this parameter will enter
motion buffer.

Only valid when SP mation instructions are used.

Set a big value when not used. Default value of controller is 1000.

430

VAR1 = ENDMOVE_SPEED, ENDMOVE_SPEED = expression

General

BASE(0)

DPOS=0

UNITS=100

MERGE=1 ‘open continuous interpolation
SPEED=100

ACCEL=500

DEVEL=500

FORCE_SPEED=150 'limit speed is 150units/s
ENDMOVE_SPEED=50 ‘forced end speed is 50units/s
TRIGGER ‘trigger oscilloscope automatically
MOVESP(100)

MOVESP(100)

Speed Curve with speed limit:
MSPEED(0) vertical scale 100

Speed Curve without speed limit (END_SPEED)

FORCE_SPEED, *SP, STARTMOVE_SPEED

431

FASTDEC--Fast Deceleration

AXxis Parameters

Fast deceleration, unit is units/s/s.

Activated automatically when CANCEL is used and position limit or
unusual stop happens.

When set value is O or less than DECEL, then will set as DECEL
automatically.

VAR1 = FASTDEC, FASTDEC= expression

General

BASE(0) 'select axis 0

DPOS=0

UNITS=100

SPEED=100 ‘set speed as 100
ACCEL=500

DECEL=500 'set deceleration as 500
FASTDEC=2000 'set fast deceleration as 2000
TRIGGER 'trigger oscilloscope automatically
VMOVE(1) ‘continuous positive motion
DELAY (1000) ‘wait 1 second

CANCEL(2) ‘motion stops

Deceleration Curve
MSPEED(0) vertical scale 100

When FASTDEC=10, use DECEL to decelerate.

432

DECEL

MSPEED--Actual Speed Feedback

AXis Status

Measured speed feedback of axis, unit is units/s.

VAR1 = MSPEED

General

UNITS, VP_SPEED

SPEED_RATIO--Speed Proportion

AXis Parameters

AXis speed proportion ratio:0-1.

Actual axis speed=SPEED*SPEED_RATIO.

It is used to smooth change speed of motion in process based on
acceleration or deceleration.

SPEED_RATIO (axis number) = value
value: ratio is 0-1

If not assign axis NO., use defined axis NO. by BASE instruction default.
Interpolation motion can be used in all axes, or only be valid in the first axis
of BASE.

When online command without axis NO., be valid in axis 0 by default.

Controller with latest hardware version

RAPIDSTOP(2)

WAIT IDLE

SPEED_RATIO =1

TRIGGER

BASE(0) 'select axis 0
DPOS =0

UNITS =100

433

SPEED =100

ACCEL = 1000

DECEL = 1000

MERGE = ON

SRAMP =50

MOVE(100)

DELAY (500) 'wait 0.5s

SPEED _RATIO =0.5 'speed decrease to 50
WAIT UNTIL VP_SPEED < 80

DELAY (100) ‘wait 0.1s
SPEED_RATIO =0.3 'speed decrease to 30
END

Speed Curve
VP_SPEED(0) vertical scale 100

FORCE_SPEED,SPEED

SRAMP--Acceleration Curve

AXis Parameters

S curve setting of acceleration or deceleration process.

VAR1=SRAMP, SRAMP=smoothms
smoothms 0-250ms, acceleration or deceleration process time will
increase after setting.

General

BASE(0) 'select axis 0

DPOS=0

UNITS=100 ‘pulse amount is 100

SPEED=100 'speed is 100units/s
ACCEL=1000 ‘acceleration is 1000units/s/s
DECEL=1000 'deceleration is 1000units/s/s
SRAMP=100 'S curve time is 100ms

TRIGGER 'trigger oscilloscope automatically

434

MOVE(100) 'move 100units

Speed Curve
MSPEED(0) vertical scale 100

When SRAMP=0

ACCEL ,DECEL

VP_MODE—Acceleration & Deceleration Curve

AXis Parameters

Acceleration and deceleration curve’s type selection:

0: default value, use sramp to set S curve.

4: at the very beginning of motion, it uses the max acceleration, then
acceleration will gradually decrease to 0 when achieving the highest
speed.

6: new added SS curve, which belongs to the curve type of jerk continuity.
Deceleration time under SS mode will be more 87% than T mode. Mode
0 is used in this mode’s acceleration stage, but it will take effect until
decelerating, in this way, continuous small segment interpolations are
easy to achieve.

7: new added SS curve, which belongs to the curve type of jerk continuity.
If axis parameters or continuous interpolations are modified dynamically,
maybe jerk can’t be realized, then it will switch to mode 0, therefore,

435

SRAMP is recommended to set a suitable value.

VP_MODE and SRAMP both can smooth the “speed” parameter,
followings show difference:

% v
A A
> >
S curve: continuous acceleration T SS curve: continuous jerk T

VAR1=VP_MODE / VP_MODE(axis) = mode
mode: select mode

General

Example 1: mode 6

BASE(0) 'select axis 0 and axis 1
ATYPE=1,1

UNITS=100,100

DPOS=0,0

MPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

SRAMP=100,100

VP_MODE=6,0 ‘axis 0 with mode 6, axis 1 with mode 0
TRIGGER

MOVE(25) AXIS(0)

MOVE(25) AXIS(1)

Speed Curve: under mode 6, acceleration stage is not processed, it is only
for deceleration.

MSPEED(0) vertical scale 50

MSPEED(1) vertical scale 50

436

Example 2: mode 7

VP_MODE=7,0 ‘axis 0 with mode 7, axis 1 with mode 0

Others are same as example 1, mode 7 processed both acceleration and
deceleration stages.

Example 3: mode 4

VP_MODE=4,0 ‘axis 0 with mode 4, axis 1 with mode 0

Others are same as example 1, the max acceleration is at the very beginning
of motion, and acceleration will decrease to 0 when achieving the highest

speed.

437

MSPEED, SPEED, SRAMP

VP_SPEED--Present Motion Speed

AXis Status

Return present axis motion speed, unit is units/s.

In terms of muti axes interpolation motion, returned speed of main axis is
interpolation resultant speed, not component speed of main axis.

Returned speed of non-main axis is relevant component speed, the same as
MSPEED.

VP_SPEED is designed to show multi-axis resultant speed, no minus value,
except set SYSTEM_ZSET bit0 value as 0, in this way, it shows single axis
speed, and it can be positive or minus value.

VAR1 = VP_SPEED

General

BASE(0,1)

DP0OS=0,0 ‘coordinate clears
UNITS=100,100 ‘pulse amount
SPEED=100,100 'main axis speed is 100units/s

ACCEL=1000,1000 ‘acceleration is 1000units/s/s
DECEL=1000,1000 ‘deceleration is 1000units/s/s

TRIGGER ‘trigger oscilloscope automatically
MOVE(100,100) 'two axes move 100units respectively
Speed Curve:

VP_SPEED of main axis is interpolation resultant speed.

VP_SPEED of non-main axis is relevant component speed, the same as
MSPEED.

VP_SPEED(0)=100(vertical scale), no offset

VP_SPEED(1)=100(vertical scale), no offset

438

MSPEED(0)=100(vertical scale), offset -20
MSPEED(1)=100(vertical scale), offset -40

MSPEED,SPEED

INTERP_FACTOR--Interpolation Speed

AXis Parameters

Axis participates speed calculation or not, default: participate (1).

This parameter only valid for any axis in linear interpolation or third axis in
helical interpolation.

Do cancel after motion, or will cause incorrectness to followed motion.
When some axes don’t participate speed calculation, calculate out
component speed and total motion time of axis which participate
interpolation motion, then speed of axis which don’t participate calculation
= motion distance/total motion time. See Example Two for reference.

Don’t set INTERP_FACTOR of all axes as 0, or will cause infinite actual
speed.

INTERP_FACTOR=0/1
0-not participate calculation 1-participate calculation

General

Example one: All axes participate in speed calculation

BASE(0,1,2) ‘axis 0 as main axis

DP0OS=0,0,0

ATYPE=1,1,1

UNITS=100,100,100 'pulse amount:100
SPEED=100,100,100 ‘'main axis speed:100units/s
ACCEL=1000,1000,1000

DECEL=1000,1000,1000

INTERP_FACTOR=1,1,1 ‘axis 0,1,2 participate speed calculation.
TRIGGER 'trigger oscilloscope automatically

439

MOVE(100,200,300) ‘component distance of each axis

Calculate out component speed of each axis based on resultant motion
speed:100.

VP_SPEED(0)=100(vertical scale)

MSPEED(0)=100(vertical scale)

MSPEED(1)=100(vertical scale)

MSPEED(2)=100(vertical scale)

Example Two: Some axes don’t participate speed calculation
INTERP_FACTOR=0,1,1 'axis 0 don’t participate speed calculation.

Calculate out component speed and total motion time of axis 2 and axis 3,
then speed of axis 0=motion distance of axis 0/total motion time.
Scale same as the former.

Example Three: only one axis participates speed calculation
INVERT_FACTOR=0,1,0 ‘only axis 1 participates speed calculation.

Axis 1 in main axis in this situation, speed is 100, total motion time is
200/100, speed of axis 0 and axis 2=motion distance/total motion time.
Vertical scale same as the former example.

440

BASE_MOVE

CORNER_ACCEL - Corner Acceleration

AXis Parameter

Corner acceleration, the unit is units/s/s.

Used to set curve deceleration, default is 0 (not take effect), after setting,
replace FULL_SP_RADIUS.

When CORNER_MODE sets as “apart mode”, each axis’ set corner
acceleration all take effect.

Recommend use together with ZSMOOTH_MODE to smooth the speed and
curve.

Please refer to each axis’ acceleration limit, set machine real allowed corner
acceleration.

To read: VAR1 = CORNER_ACCEL (axis No.)
To write: CORNER_ACCEL (axis No.) = expression

Valid in ZMC4XX controller’s fast firmware, after 230926.

SPEED = 500, 500, 500, 2000, 313
ACCEL = 8000, 5000, 5000, 4000, 4200
CORNER_ACCEL = 5000, 2000, 3000, 3000, 3000

ACCEL, SPEED

11.4 Axis Status Checking Instruction

MTYPE--Type of Present Motion

441

Type of present motion in process.
In terms of interpolation motion, slave axis always returns to master axis.

VAR1 = MTYPE

0 IDLE (no motion)

1 MOVE

2 MOVEABS

3 MHELICAL

4 MOVECIRC

5 MOVEMODIFY

6 MOVESP

7 MOVEABSSP

8 MHELICALSP

9 MOVECIRCSP

10 FORWARD, VMOVE(1)

11 REVERSE, VMOVE(-1)

12 DATUMING

13 CAM

14 |FWD_JOG

15 | REV_JOG

16 MOVESYNC

20 CAMBOX

21 CONNECT

22 MOVELINK

23 CONNPATH

25 MOVESLINK

26 MSPIRAL

MECLIPSE/ MECLIPSEABS/
27 MECLIPSESP/
MECLIPSEABSSP

MOVE_OP/MOVE_OP2
28 | MOVE_TABLE
MOVE_TASK

442

MOVE_PARA
MOVE_PWM
MOVE_ASYNMOVE
MOVE_AOUT

MOVE_DELAY
29 MOVE_WAIT
MOVE_SYNMOVE

31 MSPHERICAL/ MSPHERICALSP

32 MOVE_PT

33 CONNFRAME

34 CONNREFRAME

General

WHILE 1 ‘cycle judgment
IF MTYPE=0 THEN
?""'no motion™
ELSEIF MTYPE=1 THEN
?"Linear Interpolation™
ELSEIF MTYPE=4 THEN
?"Circular Interpolation™
ENDIF
WEND

NTYPE, REMAIN_BUFFER

NTYPE--Motion Type of Next Motion

AXis Status

The next motion type of present motion instruction.
In terms of interpolation motion, slave axis always returns to master axis.

VAR1 = NTYPE

General

WHILE 1 'cycle judgment
IF NTYPE=0 THEN
?"End the motion"
ELSEIF NTYPE=1 THEN
?"Linear Interpolation”
ELSEIF NTYPE=4 THEN
?"Circular Interpolation™
ENDIF
WEND

443

‘ Instruction

\ MTYPE

AXISSTATUS--AXxis Status

Type Axis Status
Description | Check axis status.
Show value as per denary, check bit status as per binary.
Grammar VAR1 = AXISSTATUS
Bit | Description Value
1 Alarm: Follow-Up Error Exceeds. 2 2h
2 Communication with Remote Axis Error 4 4h
3 Remote Driver Error 8 8h
4 Positive Hard Limit 16 10h
5 Negative Hard Limit 32 20h
6 Origin Searching 64 40h
7 Hold Signal IN at HOLD Speed 128 80h
8 Error: Follow-Up Error Exceeds. 256 100h
9 Positive Soft Limit Exceeds 512 200h
10 Negative Soft Limit Exceeds 1024 400h
11 CANCEL in Process 2048 800h
12 Pulse Frequency > MAX_SPEED. Please | 4096 1000h
Low the Speed / Reset MAX_SPEED.
14 | “Robot” Command Coordinates Error 16384 4000h
18 Power Abnormal 262144 | 40000h
19 Buffer of Precision OUT Exceeds 524288 | 80000h
20 Speed Protection. Axis Speed > | 1048576 | 100000h
MAX_SPEED, it will Alarm.
21 Fail to Trigger Special Commands in | 2097152 | 200000h
Motion.
22 | Alarm Signal Input 4194304 | 400000h
23 | Axis Paused 8388608 | 800000h
Controller General
Example Example one: Read bit directly (it is recommended when programming)
When meeting positive limit.
VAR = READ_BIT2(4,AXISSTATUS(0))
‘check if axis O meets positive limit
Print VAR ‘print result, it is 1, then already met positive limit
Example two: Check returned value
?AXISSTATUS(1) 'check status of axis 1, it is 48
'48=32+16, axis is met positive and negative limit at the same time, it
usually happens when limit electric level is not reversed.
Example Three: Field bus communication error
After enabling motor correctly:
Disconnect the communication wiring, then AXISSTATUS will show 4,
which means communication error with remote axes.
If disconnect encoder wiring, then AXISSTATUS will show 8, which means

444

remote drive error.
AXIS STOPPREASON

IDLE--Motion Status

AXis Status

Axis motion status, only to judge whether motion is in process or stops.
0-in motion, -1-motion ends.

If motion parts are robotics, then in CONNFRAME mode, joint axis will
always return IDLE value 0, in CONNREFRAME mode, virtual axis will
return IDLE value 0.

VAR1 = IDLE

General

Example One:

IF IDLE(0) then 'if axis O stops
BASE(1)
MOVE (100)

ENDIF

Example Two:

BASE(0,1)

MOVE(100,100)

BASE(2,3)

MOVE(200,200)

WAIT UNTIL IDLE(0) AND IDLE(1) AND IDLE (2) AND IDLE(3)
‘wait until axis0,1,2,3 stops

LOADED, WAITIDLE

ADDAX_AXIS--Added Axis NO.

AXis Status

Axis NO. of added axis by instruction ADDAX, -1 means no axis was
added.

VAR1 = ADDAX_AXIS

General

ADDAX(0) AXIS(1) ‘add motion of axis 0 to axis 1.
?ADDAX_AXIS(1) ‘print added axes on axis 1, result is 0.
ADDAX(-1) AXIS(1) ‘cancel axis add.

ADDAX

445

AXIS _STOPREASON--Axes Stop Reason

Type Axis Status
Description Latch history reasons of axes stop.
Grammar Write as 0, which means clear. Latch as per bit, same meaning as
AXISSTATUS.
Valid in firmware above 20150731
Controller General
Example If AXIS_STOPREASON AND (512+1024) THEN
PRINT "axis el stoped"
ENDIF
Instruction AXISSTATUS

LINK_AXIS--Link Axis NO.

Type Axis Status

Description Return reference axis NO. of present link motion. Return -1 if there is
no link.

Grammar VAR1 = LINKAX

Controller General

Example CONNECT(2,1) AXIS(0) 'link axis 0 to axis 1.
?LINK_AXIS(0) ‘print result:1

Instruction CAMBOX, MOVELINK, CONNECT

11.5 Motion Look-ahead Instruction

CORNER_MODE--Corner Speed Setting

Type Axis Parameters
Description Corner deceleration mode configuration.
Grammar CORNER_MODE=mode

mode: different bits indicate different meanings, and bit can be used at
the same time.

Bit [Value
0 | 1 |Reserved
1 | 2 |Automatic corner deceleration.
Acceleration, deceleration follow the value of ACCEL, DECEL.
This parameter is activated before MOVE is called.
See DECEL_ANGLE and STOP_ANGLE for the definition of
deceleration angle.

Description

446

Reference speed of deceleration angle follows FORCE_SPEED,
do set reasonable FORCE_SPEED.

Reserved

8 |Auto speed limit of small circle, when radius is smaller than
set value, there is speed limit, if radius is bigger than set
value, there is no speed limit.

This parameter is activated before MOVE is called.

Speed limit will follow FORCE_SPEED.

Limit speed = FORCE_SPEED* actual radius /
FULL_SP_RADIUS

The radius of limit speed is set by FULL_SP_RADIUS.

16 |Reserved

5 | 32 |Auto chamfer setting.

This parameter is activated before MOVE is called.

Present MOVE motion will chamfer with former MOVE motion
automatically, chamfer radius refers to ZSMOOTH.

This chamfer is valid in all axes which are doing interpolation
motion, firmware should be above 20150701.

6 | 64 |Multi-axis interpolation separation speed, automatically
corner decelerate.

The same as mode 2, the difference is interpolation motion of
mode 2 uses speed parameter of main axis, but interpolation of
mode 64 uses speed parameters of each axis.

Itis valid in the latest firmware above 4 series.

7 | 128 When MOVE runs robotic arm virtual axis, using joint-axis
speed and acceleration to limit combined speed and acceleration
at the same time.

It takes effect when it is used together with BIT6, the controller
firmware “version_build” of ZMC4XX and above should be
after 240521.

It only supports MOVE line command, doesn’t support circular.
8 | 256 IMOVER command uses SP mode.

9 | 512 |Reserved

10 11024 Max speed limit, if the axis speed exceeds MAX_SPEED,
please reduce the speed, it only supports line and screw axis.

General

Example below only shows function of each bit, functions of multi-bit are
also available.

For Example, CONNER_MODE=2+8, it means bit 1 and bit 3 are opened,
then functions of auto corner deceleration and small circle speed limit are

447

opened.

Example One: Corner Speed Limit

BASE(0,1)

DPOS=0,0

UNITS=100,100

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SPEED=100,100 'set speed

MERGE=ON ‘open continuous interpolation
CORNER_MODE=2 'start corner deceleration
DECEL_ANGLE =15 * (P1/180) ‘'set angle where starts to decelerate
STOP_ANGLE =45 * (PI/180) 'Set angle where deceleration ends.

FORCE_SPEED=100 ‘geometric deceleration activates

TRIGGER ‘trigger oscilloscope automatically

MOVE(100,0)

MOVE(0,100) 'motion angle is over 45<total deceleration.

MOVE(60,100) 'motion angle is 30.96 <between 15°and 45<
geometric deceleration

MOVE(70,100) ‘motion angle is 4.03below 15< no deceleration.

Trace Curve
DPOS(0) vertical scale 200
DPOS(1) vertical scale 200

Speed Curve:
MSPEED(0)=100(vertical scale)
MSPEED(1)=100(vertical scale)

448

Some precision errors may happen in simulator, it is better to check with
actual controllers connected.

Example Two: Speed Limit of Small Circle

BASE(0,1)

DP0OS=0,0

UNITS=100,100

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SPEED=100,500 'running speed

CORNER_MODE=8 'start speed limit of small circle

FORCE_SPEED=120 'limit speed of small circle

FULL_SP_RADIUS=60 'speed limit radius is 60

TRIGGER ‘trigger oscilloscope automatically

MOVECIRC(200,0,100,0,1) ‘when motion radius is over limit, there is no
limit speed, and it will follow SPEED, at the
speed of 100.

Trace Curve:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

Speed Curve:
MSPEED(0)=100(vertical scale)
MSPEED(1)=100(vertical scale)

449

‘When radius is smaller than limit value, limit speed = FORCE_SPEED*
actual radius/FULL_SP_RADIUS
MOVECIRC(-60,0,-30,0,0) 'now speed 60=120*30/60

Trace Curve:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

Speed Curve:
MSPEED(0)=100(vertical scale)
MSPEED(1)=100(vertical scale)

450

Example Three: Chamfer

Chamfer mode can be used in linear, circular, helical motion etc. here only
shows chamfer linear motion.

BASE(0,1)

DP0OS=0,0

ACCEL=500,500 'set acceleration

DECEL=500,500 'set deceleration

SPEED=100,100 'running speed

CORNER_MODE=32 ‘'start chamfer

ZSMOOTH=10 ‘chamfer reference radius.

TRIGGER ‘trigger oscilloscope automatically
MOVE(100,0)

MOVE(0,100) ‘chamfer between former two linear motions.

Interpolation trace with chamfer.
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

Interpolation trace without chamfer:
DPOS(0) vertical scale 100
DPOS(1) vertical scale 100

451

MERGE, STOP_ANGLE, DECEL_ANGLE, FULL SP RADIUS
ZSMOOTH.

DECEL_ANGLE--Corner Deceleration Angle

AXis Parameters

Angle where deceleration starts, unit is rad.

Corner deceleration speed refers to FORCE_SPEED, FOR_SPEED should
be set properly.

Convert angle to radian: angle*(P1/180).

Deceleration Angle means the changing value between reference angle of
the motor and its former motion. Please see the below figure.

This angle value is not the actual path angle, which converts to motion
changing angle and is only for reference.

full decelerati
ull deceleration area \\ sEsHRE

mz \
SWEEN \ refer to angle
\ \ o
dec atio \changing
\ \ \
DECEL_NGLE % Vo

(o S

s

FHERE -~

E—RIESBNBE

motor angl ormer instruction

If the next interpolation motion is under below, then get its absolute value
instead.

When line links with circle arc, calculate angle according to the tangent
direction of arc.

DECEL_ANGLE is usually used with STOP_ANGLE together, when angle
of actual motion is between DECEL_ANGLE (upper limit) and

STOP_ANGLE (lower limit) , then deceleration will happen.

452

VAR1 = DECEL_ANGLE, DECEL_ANGLE = expression

General

Refer to CORNER_MODE routine 1.

CORNER_MODE=2

DECEL_ANGLE =25 * (PI/180) ‘set start angle of deceleration.
STOP_ANGLE = 45 * (P1/180) 'set end angle of deceleration.
FORCE_SPEED=SPEED 'FORCE_SPEED must be set.

STOP_ANGLE

STOP_ANGLE--Corner Deceleration Stops

AXis Parameters

Angle where deceleration stops, unit is rad.

Corner deceleration speed refers to FORCE_SPEED, FOR_SPEED should
be set properly.

Convert angle to radian: angle*(P1/180).

Deceleration Angle means the changing value between reference angle of
the motor and its former motion. Please see the below figure.

This angle value is not the actual path angle, which converts to motion
changing angle and is only for reference.

BHAEZN
motor angle changes

refer to angle
full deceleration area changing

2REX

E-FEQCe|NBE

motor angleefformer instruction

If the next interpolation motion is under below, then get its absolute value
instead.

When line links with circle arc, calculate angle according to the tangent
direction of arc.

DECEL_ANGLE is usually used with STOP_ANGLE together, when angle
of actual motion is between DECEL_ANGLE (upper limit) and

STOP_ANGLE (lower limit) , then deceleration will happen.

VAR1 = STOP_ANGLE, STOP_ANGLE= expression

General

See example one in CORNER_MODE

453

CORNER_MODE=2

DECEL_ANGLE = 25 * (P1/180)

STOP_ANGLE = 90 * (P1/180)

FORCE_SPEED=SPEED 'FORCE_SPEED must be set

Instruction

DECEL_ANGLE, CORNER_MODE

FULL_SP_RADIUS--Speed Limit Radius

Type

AXis Parameters

Description

Maximum arc radius of speed limit, unit is units.

When radius is over FULL_SP_RADIUS, motion speed will follow the
value assigned by user procedure, or if below FULL_SP_RADIUS, motion
speed will decrease in proportion.

VP_SPEED=FORCE_SPEED * radius/FULL_SP_RADIUS
It refers to radius of chamfer in auto chamfer mode.

Grammar

VARL = FULL_SP_RADIUS, FULL_SP_RADIUS = expression

Controller

General

Example

BASE(0,1) 'select axis 0 as main axis
DP0OS=0,0 ‘coordinate clears
UNITS=100,100

ATYPE=1,1 'set axis type

SPEED=100,100 'main axis speed is 100units/s
ACCEL=1000,1000 ‘acceleration speed is 1000units/s
DECEL=1000,1000 'deceleration speed is 1000units/s
FORCE_SPEED=150 ‘'self-defined speed is 150units/s
CORNER_MODE=8 ‘open small circle speed limit
FULL_SP_RADIUS=8 'limit radius is 8

TRIGGER ‘trigger oscilloscope automatically
MOVECIRC(10,10,0,10,1)arc radius is 10, no speed limit, and move at
speed = 100

MOVECIRC(4,4,0,4,1) ‘arc radius is 4, speed limit is activated, and move
at the speed 4/8*150=75.

Speed Curve:
MSPEED(0)=100(vertical scale)
MSPEED(1)=100(vertical scale)

454

mk:@MSITStore:C:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV4/TrioBASIC.chm::/VP_SPEED.html
mk:@MSITStore:C:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV4/TrioBASIC.chm::/FORCE_SPEED.html

CORNER_MODE, FORCE_SPEED, SPLIMIT_RADIUS

SPLIMIT_RADIUS--Speed Limit Value

AXis Parameters

Minimum speed in small circle limit mode, unit is units.
When value is below LSPEED, follow LSPEED.

VAR1 = SPLIMIT_RADIUS, SPLIMIT_RADIUS = expression

ZMC4XX series controller with firmware above 170518 supports.

CORNER_MODE, FULL_SP_RADIUS

ZSMOQOTH--Chamfer Radius

AXis Parameters

See chamfer radius and CONER_MODE for reference.

Calculate actual corner radius based on corner angle. if exceeds angle, it is
50% of set value(ZSMOOTH).

When it is 90< corner radius is set value (ZSMOOTH).

VAR1 = ZSMOOTH, ZSMOOTH=smoothdistance

General

See Example Three in CONER_MODE

CORNER_MODE

MERGE--Continuous Interpolation

AXis Parameters

Motions in buffer will be integrated without deceleration, which is used

455

to realize continuous interpolation.

When MERGE is ON, multi-interpolation motions still decelerate in
between, some possible reasons as follow:

1.MERGE is not set successfully, print result to check.

2.Controller is point-to-point model, which means it doesn’t support
continuous motion. Please contact with manufacturers.

3.CORNER_MODE was set to define corner deceleration, print result to
check.

4.SP motion instructions are in process, and ENDMOVE_SPEED and
STARTMOVE_SPEED are set, then speed will follow value of these two
instructions.

5.Main Axis was switched between interpolation motions, and main axis
parameters were also changed.

6.MOVE_DELAY was added between interpolation motions, even
MOVE_DELAY was set as 0, it also will cause deceleration.

MERGE = ON/OFF

General

BASE(0) 'select axis 0

DPOS=0

UNITS=100

SPEED=1000 ‘set speed as 1000units
ACCEL=1000

DECEL=1000

MERGE=0ON 'open continuous interpolation
TRIGGER ‘trigger oscilloscope automatically
MOVE(100) 'move 100units

MOVE(100)

Speed Curve:
MSPEED(0) vertical scale 100

When MERGE=0FF
MSPEED(0) vertical scale 100

456

11.6 Motion Buffer Instruction

LOADED--Buffer Empty

AXis Status

If there are no other motion instructions in buffer except present
motion, return TURN.

This instruction can’t judge whether axis stops or not. Please use IDLE
command to judge.

VAR1 = LOAED

General

IDLE, WAIT LOADED

MOVES BUFFERED--Present Buffer Number

AXis Status

Return motion instructions number in buffer

Do not use total buffer space minus MOVES_BUFFERED to judge how
many buffers are left, since special instructions may consume multi buffers.
It is more accurate to use REMAIN_BUFFER.

VAR1 = MOVES_BUFFERED

General

Print MOVES_BUFFERED 'result: 0

LOADED, LIMIT_BUFFERED, REMAIN_BUFFER

REMAIN_BUFFER--Rest Buffers

_ Special Axis Status

457

Description

Return rest motion buffers number.

Since this status instruction has its own parameters, AXIS can’t be omitted
when try to modify axis NO..

If returned value is 0O, it means buffer space is full, when try to call
additional motion instructions of axis, then task will be blocked until there is
space in buffer.

Grammar VAR1 = REMAIN_BUFFER ([mtype]) AXIS(AXISNUM)
Default value of Mtype is type of motion which is most complex, such as
spherical interpolation.
Controller General
Example DIM movetime 'define variable
movetime =0
WHILE movetime <100 ‘condition cycle
IF REMAIN_BUFFER(1) >0 THEN 'if there is buffer left, call linear
motion instruction
MOVE(10)
movetime = movetime +1
ENDIF
WEND 'MOVE(10) was 100 times called
Instruction LOADED, LIMIT_BUFFERED

MOVE_MARK--Move Mark

Type Axis Parameters

Description MARK number of next motion instruction, and it will enter buffer
together with motion instructions.
Every time an instruction was called, MOVE_MARK will increase with 1
automatically.
If needs to set required MOVE_MARK value, then set MOVE_MARK
before motion instruction.
To pause motion between different MARK numbers through
MOVE_PAUSE

Grammar VAR1 = MOVE_MARK, MOVE_MARK = expression

Controller General

Example MOVE_MARK =1 'set mark number as 1
MOVE(100)
MOVE_MARK =1 'set mark number as 1
MOVE(100)
MOVE_MARK =2 ‘set mark number as 2
MOVE(200)
MOVE_PAUSE (2) ‘pause before MOVE(200)

Instruction MOVE_CURMARK

458

MOVE_CURMARK--Return Move Mark

Type Axis Status
Description Return MOVE_MARK value of present motion instruction in process.
Grammar VAR1 = MOVE_CURMARK
Controller General
Example MOVE_MARK =1

MOVE(100)

MOVE_MARK =2

MOVE(200)

MOVE_MARK =3

MOVE(300)

WAIT UNTIL MOVE_CURMARK=2

'wait until MOVE(200) starts to run, open output 1 OP(1,0N)

Instruction MOVE _MARK

LIMIT_BUFFERED--Motion Buffer Limit

Type System Parameters
Description Limit motion buffer numbers, it can not exceed maximum buffer value
of controller.
Grammar LIMIT_BUFFERED=value, VAR1 = LIMIT_BUFFER
Controller General
Example Online print commands:
>»?LIMIT_BUFFERED
4096
Modify motion buffer number limit:
>>LIMIT_BUFFERED=2000
>»?LIMIT_BUFFERED
2000
Instructions | REMAIN BUFFER,MOVES BUFFERED

11.7 Instructions Related to Position

DPOS--AXis Instruction Position

Type

AXis Status

Description

Virtual coordinate position of axis, or required position.
Value written into DPOS will not cause motor motion, it will be converted
to OFFPOS offset automatically.

459

UNITS as unit.

Grammar VAR1 = DPOS, DPOS=expression

Controller General

Example DPOS(0) =0 ‘coordinate of axis 0 offsets to 0.
?7*DPOS 'print DPOS, result:000000000000

Instruction MPOS, ENDMOVE, OFFPOS, DEFPOS

MPQOS--Encoder Feedback Position

Type AXxis Status
Description Measured position feedback of axis, unit is units.

Written MPOS value will be converted to OFFPOS amount
Grammar VAR1 = MPOS, MPOS=expression
Controller General
Example MPOS(0) =50 'MPQOS offset is 50

?7*MPOS ‘print result:5000000000000
Instruction DPOS,ENDMOVE

DEFPQOS--Position Offset

Type Coordinate instruction.
Description | Set the present position as another new absolute position value, which
has no influence on the motion in process or motion in buffer.
Grammar DEFPOS(posl [,pos2[, pos3[, pos4.....]J11)
posl: Absolute position, using units as unit
pos2: Absolute position of next axis, using units
Controller General
Example Example 1:
BASE(0,1) ‘choose axis 0 and 1
ATYPE=1,1
UNITS=100,100 'set units as 100
DPOS=0,0 ‘clear DPOS
MOVE(100,100) ‘axis 0 and axis 1 move 100
WIAT IDLE
?DPOS(0),DPOS(1) 'print present DPOS, both are 100
DEFPOS(0,10) 'set present DPOS

?DPOS(0),DPOS(1) 'print present DPOS, DPOS are 0,10

Example 2:

Different from OFFPOS, DEFPOS is used to change the absolute position.
BASE(0,1) ‘choose axis 0,1

DP0S=100,100 'set position as 100,100

?DPOS(0), DPOS(1) 'print position, the present position is 100,100

460

DEFPOS(10,20) 'set present position as 10,20
?DPOS(0), DPOS(1) 'print position, they are 10,20
DEFPOS(10,20) 'set the present position again

DEFPOS(10,20)
?DPOS(0), DPOS(1) ‘print position, they are still 10,20
OFFP0OS=10,20 ‘call OFFPOS several times

OFFP0OS=10,20
?DPOS(0),DPOS(1)'now present position is 30,60 (10+10+10,20+20+20)

Instructions

DPQOS, OFFPOS

OFFPOS--Offset Position

Type Axis Parameters

Description Relative offset to change all coordinates, which has no influence on
motion in process or motion in buffer.
After modification was finished, OFFPQOS recovers to 0.

Grammar VAR1 = OFFPOS, OFFPQOS = expression

Controller General

Example Example One: relative offset position

BASE(0)

MOVEABS(1000)

WAIT IDLE

OFFPOS=-1000 ‘coordinate offset is 1000
PRINT DPOS(0) ‘print result is 0

Example Two: no change of motion in process

BASE(0)

MOVEABS(1000) 'move to absolute position 1000
OFFPOS=500 ‘position offset is 500

WAIT IDLE

PRINT DPOS(0) ‘print present coordinate position: 1500, motor

still runs 1000.

Example Three
DEFPOS is to change absolute coordinate position, while OFFPOS is to
change relative coordinate position.

BASE(0,1) 'select axis 0, axis 1

DP0OS=100,100 'set present position as:100,100
?DPOS(0), DPOS(1) ‘print to check

DEFPOS(10,20) 'set present coordinate position as 10,20
?DPOS(0), DPOS(1) ‘print result:10,20

DEFPOS(10,20) ‘call DEFPOS several times
DEFPOS(10,20)

?DPOS(0), DPOS(1) ‘print result;10,20

461

OFFP0OS=10,20
OFFP0OS=10,20
2DPOS(0), DPOS(L)

‘call DEFPOS several times

‘print result: 30,60(10+10+10,20+20+20)

Instruction

DPOS , DEFPOS

ENDMOVE--Target Position

Type AXis Status

Description | Absolute target position of present axis motion.
For instructions: VMOVE, DATUM, etc. ENDMOVE is not accurate, it
changes as per the motion status.

Grammar VAR1 = ENDMOVE

Controller General

Example BASE(0)
SPEED =10 'speed is 10units/s
DPOS =0 ‘coordinate clears
MOVE(100) 'move 100units
WAIT IDLE
PRINT ENDMOVE(0) 'result:100
MOVE(200)
WAIT IDLE
PRINT ENDMOVE(0) "result:300

Instruction DPOS, MPOS, ENDMOVE BUFFER

VECTOR_MOVED--Present Motion Distance

Type Axis Status

Description Return motion distance of present axis, unit is units.
This distance is vector distance in terms of muti axes interpolation motion.
It is better to clear value of this parameter before use.
This command is only valid for motion instructions, invalid in superposition
instructions, such as, ADDAX, CONNECT, etc.

Grammar VAR1=VECTOR_MOVED, VECTOR_MOVED=0

Controller General _

Example Example 1: single axis

VECTOR_MOVED=0
MOVE(100)

WAIT IDLE

? VECTOR_MOVED

‘clear parameter

‘print motion distance of axis 0, result is 100.

Example 2: multi-axis
BASE(0,1)
DPOS=0,0

462

VECTOR_MOVE =0 'manually clear resultant vector motion
distance of axis 0 as 0

BASE(2,3)

DPOS =0,0

VECTOR_MOVE =0 'manually clear resultant vector motion
distance of axis 2 as 0

BASE(0,1)

MOVE(-300,-400)

WAIT IDLE(0)

?VECTOR_MOVED

MOVE(300,400)

WAIT IDLE(0)

?VECTOR_MOVED ‘print resultant vector motion distance
of axis 0, result: 500

BASE(2,3)
MOVE(30,-40)
WAIT IDLE(2)
?VECTOR_MOVED
MOVE(30,40)
WAIT IDLE(2)
?VECTOR_MOVED

ENDMOVE

REMAIN--Rest Target Motion Distance

AXis Status

Return remain distance need to move, unit is units.

VECTOR_BUFFERED

General

BASE(0) ‘select axis 0

DPOS=0

UNITS=100

SPEED=100 'speed is 100units/s

ACCEL=1000 ‘acceleration is 1000units/s
DECEL=1000

TRIGGER ‘trigger oscilloscope automatically
MOVE(100) ‘'move 100units

WAIT UNTIL REMAIN<20 ‘wait until remain distance is less than 20
SPEED=10 ‘change speed

Speed Curve:
MSPEED(0) vertical scale 100

463

VECTOR_BUFFERED

VECTOR_BUFFERED--Remain Distance in Buffer

AXis Status

Return distance of motion in process and motion in buffer, unit is units.
This distance is vector distance in terms of muti axes interpolation motion.

VAR1 = VECTOR_BUFFERED

General

BASE(0) 'select axis 0

UNITS=100 ‘pulse amount is 100

SPEED=100 'speed is 100units/s

ACCEL=1000 ‘acceleration is 1000units/s/s

MOVE(100) ‘motion in process is 100units

MOVE(300) ‘'motion in buffer is 300units

MOVE(-1000) ‘'motion in buffer is -1000units
?VECTOR_BUFFERED ‘return remain motion distance, result is 1400

REMAIN

VECTOR_BUFFERED2—Target Vector Distance

AXis Status

It is used to read the target vector position after current interpolation
command is called, unit is units.
VECTOR_BUFFERED2=VECTOR_BUFFERED+VECTOR_MOVED

It can be read for HW comparison output.

VAR = VECTOR_BUFFERED2

General

BASE(0,1) 'select axis 0 and axis 1
UNITS=100,100

SPEED=100,100

ACCEL=1000,1000

464

DECEL=1000,1000
MERGE=0,0

DP0OS=0,0

MOVE(100,100)
MOVE(200,200)
MOVE(-100,-100)

?“start to move”
?VECTOR_BUFFERED
?VECTOR_MOVED
?VECTOR_BUFFERED2

DELAY(1000)

?“in motion”
?VECTOR_BUFFERED
?VECTOR_MOVED
?VECTOR_BUFFERED2

WAIT IDLE

?“motion ends”
?VECTOR_BUFFERED
?VECTOR_MOVED
?VECTOR_BUFFERED2

VECTOR_BUFFERED2=0,0

'3 interpolation motions

‘return remain motion distance, result is 565.68
‘current motion distance, result is 0

‘return required target vector distance, result is
565.68

‘delay is 1s

‘remain motion distance, result is 470.63

‘the current motion distance, result is 95.05
‘return required target vector distance, result is
565.68

‘wait until axis stops

‘remain motion distance, result is 0

‘current motion distance, result is 565.68
'required target vector position of interpolation
command, result is 565.68

VECTOR_BUFFERED

ENDMOVE_BUFFER--Final Position in Buffer

AXis Status

position, see Example Two.

ENDMOVE is not accurate
After REP_OPTION

Final target position based on present motion and motion in buffer.
It can be used to realize conversion between absolute position and relative

Instructions have no fixed distance, such as, VMOVE, DATUM, etc.
, it changes as per the motion status.

cycle coordinate instruction is used,

ENDMOVE_BUFFER will decrease as per set value: REP_DIST in
REP_OPTION mode, which means minimum precision is REP_DIST

(model) or 2*REP_DIST (mode0), see Example Three.

VAR1 = ENDMOVE_BUFFER

465

General

Example One

BASE(0)

SPEED =10

DPOS =0

MOVE(100)

MOVE(200)

PRINT ENDMOVE_BUFFER(0)

‘print final absolute coordinate, result:300.

Example Two: conversion between absolute and relative
Use ENDMOVW_BUFFER and relative motion instructions together to

realize absolute motion, such as MOVE, MSPHERICAL, etc.
BASE(0)
UNITS=100
SPEED=100
ACCEL=1000
DPOS=0
WHILE 1
MOVE(100- ENDMOVE_BUFFER(0))'move to position 100, then stop.

WEND

Example Three: returned value of cycle coordinate.
BASE(0)

UNITS=100

SPEED=100

ACCEL=1000

DPOS=0

TRIGGER

MOVE(1000)

REP_DIST=100 'set coordinate cycle range.

REP_OPTION=1 ‘cycle range: 0~100
WHILE 1
?ENDMOVE_BUFFER(0) 'print result:1000,900,800...,100,0

‘'minimum precision:100
WEND

DPGS, MPOS, ENDMOVE

11.8 Instructions for Origin Homing

DATUM _IN--Origin Input

_ Axis Parameters

466

Description

Configure general input as origin signal input, -1 means invalid.
Input is valid when signal is OFF in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

Grammar

VAR1 = DATUM_IN, DATUM_IN = expression

Controller

General

Example

BASE(0,1,2,3)

DATUM_IN =6,7,8,9 ‘origin inputs of axis 0,1,2,3 relate to input 6,7,8,9.
INVERT_IN(6,0N) ‘reverse origin signal.

INVERT_IN(7,0N)

INVERT_IN(8,0N)

INVERT_IN(9,0N)

Instruction

DATUM, FWD_IN, REV_IN, INVERT_IN

HOMEWAIT—Reversely Find Delay when Homing

Type Axis Parameters
Description | This parameter sets waiting time, units is millisecond.
In terms of pulse servo drives, there needs time delay when back finding
origin point.
Default value of controller is 2ms.
Grammar VAR1 = HOMEWAIT, HOMEWAIT = expression
Controller General
Example BASE(0)
DPOS=0 ‘axis 0 clears
UNITS=100 ‘coordinate clears
ATYPE=1
SPEED=100 'speed of finding origin point is 100units/s.

ACCEL=1000,1000 ‘acceleration is 1000units/s
DECEL=1000,1000 ‘deceleration is 1000units/s
CREEP=10 ‘speed of backing finding origin point
DATUM_IN=0 'INO as homing signal input

INVERT _IN(0,0ON) ‘'reverse signal

HOMEWAIT=1000 ‘set time delay of back finding

TRIGGER 'trigger oscilloscope automatically
DATUM(3) ‘positive finding origin point
Speed Curve:

When meeting INO, it will stop for 1 second, then back to find origin point
at speed of CREEP
MSPEED(0) vertical scale 100

467

When HOMEWAIT=2, it almost doesn’t stop.
MSPEED(0) vertical scale 100

DATUM

11.9 JOG Motion Instruction

FAST JOG--Jog Input Mapping

Axis Parameters
Fast Jog input NO., -1 means invalid.

If fast jog input was set, then speed of motion will follow SPEED, or it will
follow JOGSPEED. See Example One.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to
reverse the electric level. (except for ECI)

VARL = FAST_JOG, FAST_JOG = expression

General

BASE(0) ‘select axis 0

DOPS=0 ‘axis o clears

UNITS=100

ATYPE=1

SPEED=100 'set speed as 100 units/s
ACCEL=500 ‘set acceleration is 500 units/s

468

JOGSPEED=200 ‘'jog move speed is 200units/s
FAST_JOG(0)=0 ‘'fast jog input of axis 0 is INO.
FWD_JOG(0)=1 'positive jog move input IN1
INVERT_IN(0,0ON) 'reverse electric level
INVERT_IN(1,0N)

TRIGGER ‘trigger oscilloscope automatically

Speed Curve:

When INO doesn’t input, button IN1 and keep this status, axis speed is
JOGSPEED=200

MSPEED(0)=200(vertical scale)

INO:ON, IN1:ON, axis speed is SPEED=100

REV_JOG, FWD_JOG, SPEED, JOGSPEED

FWD_JOG--Positive JOG Input Mapping

AXxis Parameters

Input number relates to positive JOG input, -1 means invalid.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)
When there is input signal, axis will move at speed of JOGSPEED in
positive direction.

469

VAR1 = FWD_JOG, FWD_JOG= expression

General

Example One

BASE(0) 'select axis O

DPOS=0 ‘axis 0 clears

UNITS=100

ATYPE=1

SPEED=100 'set speed as 100

ACCEL=500 'set acceleration is 500 units/s/s
DECEL=500

JOGSPEED=50 'JOG speed is 50
FWD_JOG=0 'INO as positive JOG switch
INVERT_IN(0,ON) 'reverse signal

TRIGGER ‘trigger oscilloscope automatically

When INO is ON, axis move at speed of 50 in positive direction.
When INO is OFF, axis motion stops.

Speed Curve:
MSPEED(0) vertical scale 100

REV_JOG, JOGSPEED, FAST_JOG

REV_JOG--Negative JOG Input Mapping

AXxis Parameters

Input number relates to negative JOG input, -1 means invalid.

Input is valid when signal is off in ZMC controller, do use INVERT_IN to
reverse the electric level. (except for ECI)

When there is input signal, axis will move at speed of JOGSPEED in
negative direction.

When both signals of REV_JOG and FWD_JOG come, axis moves as per
FWD_JOG

470

mk:@MSITStore:D:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV3/TrioBASIC.chm::/REV_IN.html

Grammar VAR1 = REV_JOG, REV_JOG= expression
Controller General

Example See in Example FWD_JOG.

Instruction FWD_JOG, JOGSPEED, FAST_JOG

JOGSPEED--JOG Speed

Type AXxis Parameters
Description | JOG motion speed, unit is units/s.
When REV_JOG or FWD_JOG is activated, motor will run at speed of
JOGSPEED slowly. When input port is loosened, motion will stop.
Grammar JOGSPEED= value, VAR1=JOGSPEED
Controller General
Example Example One:
BASE(0) 'select axis 0
DPOS=0 ‘axis O clears
UNITS=100 ‘pulse amount
SPEED=100 'main axis speed is 100 units/s
ACCEL=1000 ‘acceleration is 1000 units/s/s
DECEL=1000 ‘deceleration is 1000 units/s/s
TRIGGER ‘trigger oscilloscope automatically
JOGSPEED=50 'JOG speed is 50
FWD_JOG=0 'INO as positive JOG input
REV_JOG=1 'IN1 as negative JOG input

INVERT_IN(0,ON) ‘reverse signal
INVERT_IN(1,0N)

When INO=ON, axis 0 moves at speed of 50 in positive direction.

When IN1=0N, axis 0 moves at speed of 50 in negative direction.

When INO=ON and IN1=0ON, axis 0 moves at speed of 50 in positive
direction.

Speed Curve:
MSPPED(0) vertical scale 100

471

REV_JOG, FWD_JOG, FAST_JOG

FHOLD_IN--Hold Input Mapping

AXis Parameters

Hold related input number, -1 means invalid.

If there is input signal, then speed of motion axis is FHSPEED, present is
not cancelled. when input signal is cancelled, then motion speed will follow
speed defined in procedure. See example one.

Input is valid when signal is OFF in ZMC controller, do use INVERT_IN to
reverse the electric level. (except for ECI)

This parameter is only valid in speed control mode (instruction with sp
suffix). If motion is not controlled by speed, such as, CAMBOX,
CONNECT, MOVELINK, then it will not activate.

VAR = FHOLD_IN, FHOLD_IN = expression

General

BASE(0) 'select axis 0

DPOS=0 ‘coordinate clears
UNITS=100

ATYPE=1

SPEED=100

ACCEL=500 ‘acceleration is 500 units/s/s
DECEL=500

FORCE_SPEED=200 ‘set speed as 200 units/s
FHSPEED=200 ‘set hold speed as 200units/s

FHOLD_IN(0)=0 'set hold input of axis 0 as INO
INVERT_IN(0,ON) 'reverse electric level

TRIGGER 'trigger oscilloscope automatically
VMOVE(1) ‘continuous motion

472

When INO=OFF, axis moves at FORCE_SPEED of 200.

When INO=ON, axis moves at FHSPEED of 100, turn INO into off, speed
becomes 200.

Speed Curve:
MSPEED(0) vertical scale 200

FHSPEED

FHSPEED--Hold Speed

AXis Parameters

Axis holds speed, the speed when FHOLD_IN is activated, unit is
units/s.
When input position keeps hold status, it can move at this speed.

VARL = FHSPEED, FHSPEED = expression

General

See example in FHOLD_IN

FHOLD_IN, SPEED

11.10 Instructions Relate to Encoder

ENCODER—Original Value of Encoder

AXis Status

Original value of encoder hardware register.
Inner parameters are only valid after correcting ATYPE setting.
If drive encoder is multiturn, then multiturn value is read.

VAR1 = ENCODER(axis No.)

General

?7*ENCODER ‘print encoder value, result:00 0000000000

MPQOS, ENCODER_RATIO

473

ENCODER_STATUS--Encoder Status

Type Axis Status
Description | Status of encoder EA, EB, EZ.
Grammar VAR1 = ENCODER_STATUS
Bit | Value | Description
0 1 EA Status
1 2 EB Status
2 4 EZ Status
Controller General
Example ?7*ENCODER_STATUS 'print encoder status of all axes
Instruction ATYPE, MPOS

ENCODER_FILTER—EnNcoder Filter

Type AXxis parameters

Description Inner encoder filter setting, motion speed of belt encoder can be
uniform, default value is 1, from 0.001~1.
Default 1- no filter, 0.5- 2 periods filter, 0.25- 4 periods filter.
ZMC5XXX series controllers support, ZMC 4XXX series with firmware
version above 170706 supports.

grammar ENCODER_FILTER = VALUE

controller General

Instruction ENCODER _RATIO

PP_STEP--Encoder Internal Proportion

Type Axis Parameters
Description Internal inputs of encoder will multiply this parameter.
The parameter effect superposes ENCODER_RATIO, default value is 1.
Grammar PP _STEP = value
Controller General
Instruction ENCODER_RATIO

ENCODER_BITS — Encoder Absolute Value Setting

Type

AXis Parameters

Description

Set SSI/BISS encoder absolute value.

474

Grammar

ENCODER_BITS = VALUE

Encoder Type | Bit Value Function Description
SSI/BISS Bit0-5 0-32 The total bit of encoder
communication.
Bit6 64 Whether it is Gray code
Bit8-10 256*(0<n<15) | Invalid bit, BISS = 8
(usually)
Bit16-18 65536*(0<n<7) | Frequency division
adjustment, default O-
2MHz.
ATYPE =48 °SSI absolute encoder

ATYPE =49 ‘BISS absolute encoder
Before using this commands, axis mapping must be done.

Controller General
Example SSI Example:
BASE(n)

AXIS_ADDRESS = (-1<<16) + 4
ENCODER_BITS = 26
ATYPE =48

‘map the fourth physical axis position
¢26-bit absolute value

BISS Example:

BASE(n)

AXIS_ADDRESS = (-1<<16) + 5
ENCODER_BITS =26

‘26-bit absolute value, it is with 8 state bits automatically
ATYPE =49

‘map the fifth physical axis position

DRIVE_POSMIN — Encoder Transfer Original Min Value

Type Axis Parameters
Description | Set the minimal value of original value range transferred by encoder.
Grammar DRIVE_POSMIN = VALUE
Set before modifying ATYPE.
If MPOS also does coordinates loop, modify REP_OPTION.
Range: 32-bit integer, 0 to 2*32-1
DRIVE_POSMAX = 2"32-1
DRIVE_POSMIN = -2731
Controller General
Example BASE(0)

AXIS_ADDRESS=(0<<16)+nodenum
ENCODER_ID=$60640020
DRIVE_POSMIN=0

DRIVE_POSMAX =2718-1 ‘PDOBUFF value is in this range

475

ATYPE=25
Instruction DRIVE_POSMAX

DRIVE_POSMAN - Encoder Transfer Original Max Value

Type AXxis Parameters
Description Set the maximal value of original value range transferred by encoder.

Grammar DRIVE_POSMAX = VALUE

Set before modifying ATYPE.

If MPOS also does coordinates loop, modify REP_OPTION.
Range: 32-bit integer, 0 to 2*32-1

DRIVE_POSMAX = 2/32-1

DRIVE_POSMIN = -231

Controller General

Example Same as DRIVE_POSMIN.
Instruction DRIVE_POSMIN

11.11 Instructions Relate to Latch

REGIST-Position Latch

Type Position Latch Instruction
Description REGIST is used to latch the measured position of axis.

It can latch encoder axis and bus axis. Different controller models can latch
different axis types. ZMC4XX series controllers or above with the latest
firmware support latching virtual axis and pulse axis.

Support drive latch in EtherCAT based motion controller through 10 of
drive, see the instructions for details.

For Rtex, it only supports controller latch.

ZMC4XX series controller or above supports 4 latch channels.

channels refer to MARK, MARKB, MARKC, MARKD, using
REG_INPUTS to define high-speed input that corresponds to each latch

channel, default IN ports are 0, 1, 2, 3. For details, please refer to IN of user
manual.

Latches in EtherCAT based drive and latches in controllers can be used
synchronously, but it should support 4-channel latching. For bus latching,
please use MARK and MARKB channels. For controller latching, please
use MARKC, MARKD channels.

Latch mode corresponding rising edge and falling edge are determined by

476

PNP or NPN.

When latch occurs, MARK status of axis will turn into ON, position latch
will be saved in REG_POS.

Each axis’ latch channel is mutually independently.

Grammar

Grammar 1:
REGIST(mode)

mode: latch mode

Rising or falling edge is determined by the inner status of controller.
Different inputs type may cause difference, which needs to confirm depend
on the actual latch edge. (if sets as rising edge, latch will be triggered when
external input port change linking status to cut-ff status in a flash. Instead, if
sets as falling edge, latch will be triggered when external input port changed
its cut-off status to linking status in a flash.)

Pulse axis type uses RO, R1 and Z these 3 latched generally, bus axis
type uses R2 and R3 latches:

value | Description

1 Save absolute position in REG_POS when meets rising edge of
Z pulse

2 Save absolute position in REG_POS when meets falling edge of
Z pulse

3 Save absolute position in REG_POS when meets rising edge of
RO signal

4 Save absolute position in REG_POS when meets falling edge of
RO signal

6 Save absolute position in REG_POS when meets rising edge of
RO signal, save absolute position in REG_POSB when meets
rising edge of Z signal

7 Save absolute position in REG_POS when meets rising edge of

RO signal, save absolute position in REG_POSB when meets
falling edge of Z signal
8 Save absolute position in REG_POS when meets falling edge of

RO signal, save absolute position in REG_POSB when meets
rising edge of Z signal
9 Save absolute position in REG_POS when meets falling edge of

RO signal, save absolute position in REG_POSB when meets
falling edge of Z signal
10 Save absolute position in REG_POS when meets rising edge of

RO signal, save absolute position in REG_POSB when meets
rising edge of R1 signal.
11 Save absolute position in REG_POS when meets rising edge of

RO signal, save absolute position in REG_POSB when meets
falling edge of R1 signal.
12 Save absolute position in REG_POS when meets falling edge of

477

RO signal, save absolute position in REG_POSB when meets
rising edge of R1 signal.
13 Save absolute position in REG_POS when meets falling edge of

RO signal, save absolute position in REG_POSB when meets
falling edge of R1 signal.
14 Save absolute position in REG_POSB when meets rising edge of

R1 signal (in controller with firmware version above 14XXXX,
each latch channel is individual and supports 4 latch channels.)
15 Save absolute position in REG_POSB when meets falling edge

of R1 signal.

16 Save absolute position in REG_POSB when meets rising edge of
Z signal.

17 Save absolute position in REG_POSB when meets falling edge
of Z signal.

18 Save absolute position in REG_POSC when meets rising edge of
R2 signal.

19 Save absolute position in REG_POSC when meets falling edge
of R2 signal.

20 Save absolute position in REG_POSD when meets rising edge of
R3 signal.

21 Save absolute position in REG_POSD when meets falling edge
of R3 signal.

Grammar 2:

REGIST(100+mode, tableindexn, numes)
mode: latch mode
tableindex: table position of saving continuously latched content. The
first table element saves latched numbers, later saves
latched coordinates, maximum number = numes-1, write
cycle when overflow.
numes: occupied table numbers.

Through mode + 100 to support continuous latch, the result is saved in
TABLE

Continuous latch to two channels separately, which can realize rising and
falling edge of continuous latch.

ECI: with firmware version above 20150829.

4XXX series Controller: with firmware version above 20170523.

100+mode: only used in single channel, +100 means use continuous latch.
value | Description
1 Save absolute position in REG_POS when meets rising edge of

Z pulse

478

2 Save absolute position in REG_POS when meets falling edge of

Z pulse

3 Save absolute position in REG_POS when meets rising edge of
RO signal

4 Save absolute position in REG_POS when meets falling edge of
RO signal

14 Save absolute position in REG_POSB when meets rising edge of
R1 signal

15 Save absolute position in REG_POSB when meets falling edge
of R1 signal

16 Save absolute position in REG_POSB when meets rising edge of
Z signal

17 Save absolute position in REG_POSB when meets falling edge
of Z signal

18 Save absolute position in REG_POSC when meets rising edge of
R2 signal

19 Save absolute position in REG_POSC when meets falling edge
of R2 signal

20 Save absolute position in REG_POSD when meets rising edge of
R3 signal

21 Save absolute position in REG_POSD when meets falling edge
of R3 signal

23 Save absolute position in REG_POSB when meets rising edge of
RO signal

24 Save absolute position in REG_POSB when meets falling edge
of RO signal

33 Save absolute position in REG_POS when meets rising edge of

RO signal, the next time switches to falling edge. Switch in turn.
34 Save absolute position in REG_POS when meets falling edge of

RO signal, the next time switches to rising edge. Switch in turn.
35 Save absolute position in REG_POSB when meets rising edge of

R1 signal, the next time switches to falling edge. Switch in turn.
36 Save absolute position in REG_POSB when meets falling edge

of R1 signal, the next time switches to rising edge. Switch in
turn.

Controller Controllers with latch input ports
Example Examplel: latch position of pulse axis 0 when meets jumping edge of RO
(based on signal, and print
ZMC432) BASE(0)
REG_INPUTS=0 'R0O-R3 are matched with input port 0
ATYPE=1 ‘pulse axis
REGIST(3) 'select RO latch mode

479

WAIT UNTIL MARK ‘wait until latch be triggered
PRINT REG_POS ‘print latch position

Example2: latch position of encoder axis 0 when meets jumping edge of
R1 signal, and print

BASE(0)

REG_INPUTS=0 'RO-R3 are matched with input port 0

ATYPE=3 ‘encoder axis

REGIST(14) 'select R1 latch mode

WAIT UNTIL MARK ‘wait until latch be triggered

PRINT REG_POS ‘print latch position

Example3: latch position of EtherCAT bus axis 0 when meets jumping
edge of R2 signal, and print
‘before latch, please do bus initialization enable, use R2R3 latch.
BASE(0)
REG_INPUTS=$1000 'map latch channel R3-RO0 into input 1,0,0,0
REGIST(imode)
IF imode = 15 OR imode = 19 THEN 'latch channel R2
WAIT UNTIL MARKC ‘probe
?7“mode”, Imode, “latch position REG_POSC”, REG_POSC
ELSELF imode = 20 OR imode =21 THEN ‘latch channel R3
WAIT UNTIL MARKD ‘wait until latch be triggered
?7“mode”, Imode, “latch position REG_POSD”, REG_POSD
ENDIF

Example 4: transfer latched position data between controller and PC,
which is used to capture motion, then get the actual position
through latch function while the Capture happened.

GLOBAL g_start

GLOBAL g_posx, g_posy

WHILE 1
WAIT UNTIL g_start=1 'wait until PC is triggered.
REGIST(4) AXIS(0) 'latch input 0, when 24V become OV.
REGIST(4) AXIS(1)
WAIT UNTIL MARK(0) AND MARK(1)

g_start=0

g_posx=REG_POS(0)

g_posy=REG_POS(1)

PRINT g_posx, g_posy
WEND

Example 5: 100+mode continuous latch
DIM num
num=1

480

BASE(6)
ATYPE=6
REGIST(100+4,5,100) ‘cycle automatically, no need to write in WHILE
cycle, table(5) saves latched times, table(6)-
table(105) save latched data over 99 every time,
table(5) clears 0, restarts to memorize data from
table(6).
WHILE 1
local test
test = table (5)
WAIT UNTIL table (5)
?reg_pos,TABLE(num),TABLE(0) ‘print
IF num=100 THEN

num=1
ELSE
num=num+1
ENDIF
WA 1 'delay 1ms, anti-shake

WEND

Example 6: bus drive latch, which should be configured
DRIVE_PROFILE with probe mode.

BASE(iaxis) 'select axis No. to latch position
REGIST(imode) 'latch mode
IF imode =3 OR imode =4 THEN
WAIT UNITL MARK 'probe 1
?7“mode”, imode, “latch position REG_POS”, REG_POS
DELAY (100)
ELSELF imode = 14 OR imode = 15 THEN
WAIT UNITL MARKB 'wait until latch to be triggered
?7“mode”, imode, “latch position REG_POS”, REG_POS
DELAY (100)

ELSELF imode =11 TEHN
WAIT UNTIL MARK OR MARKB ‘wait until latch to be triggered
IF MARK THEN
?7“mode”, imode, “latch position REG_POS”, REG_POS
WAIT UNTIL MARKB
?“latch position REG_ POSB”, REG_POSB
ELSELF MARKB THEN
?7“mode”, Imode, “latch position REG_POSB”, REG_POSB
WAIT UNTIL MARK
?7“latch position REG_POSB”, REG_POS
ENDIF
DELAY(100)
ENDIF

MARK, MARKB, REG_POS, REG_POSB

481

REG_INPUTS--Latch Input Mapping

Type Axis Status
Description Configure inputs of position latch signals: RO-R3, every 4 bits was
mapped to one latch signal input.
Grammar VAR1 = REG_INPUTS
Bit Latch signal | Input range (ZMC306E)
Bit0-3 RO 0-3
Bit4-7 R1 0-3
Bit8-11 R2 0-3
Bit12-15 R3 0-3
Inputs Range: Different controller modes have different inputs ranges.
Controller Some ZMC3XX series and ZMC4XX series with latest firmware version
support latch function.
Example BASE(6)
ATYPE=3
REG_INPUTS=$3210 ‘R0-R3 are mapped to inputs:0,1.2.3
REG_INPUTS=$1111 ‘R0-R3 are all mapped to input 1.
Instruction REGIST

MARK--Latch Trigger

Type AXxis Status
Description Return value to check if position latch happened.
When REGIST is executing, MARK is true, returned value is -1, once
execution of REGIST is finished, MARK becomes false, returned value is 0.
Grammar VAR1 = MARK
Controller General
Example BASE(0) 'select axis 0
MOVE(100) ‘'move 100units
REGIST(3) rising edge trigger, get signal RO.
WAIT UNTIL MARK 'wait to be triggered.
Instruction REG_POS, REGIST

MARKB--Latch 2 Trigger

Type Axis Status

Description Return value to check if position latch 2 happened.
When REGIST is executing, MARKB becomes true, returned value is -1,
once execution of REGIST is finished, MARKB becomes false, returned
value is 0.

Grammar VAR1 = MARKB

482

Controller General
Example BASE(0) 'select axis 0
MOVE(100) 'move 100units
REGIST(14) 'rising edge trigger, get signal R1.
WAIT UNTIL MARKB ‘'wait to be triggered.
Instruction REG POSB, REGIST
MARKC-- Latch 3 Trigger
Type Axis Status
Description Return value to check if position latch 3 happened.
When REGIST is executing, MARKC is true, returned value is -1, once
REGIST is finished, MARKC becomes false, returned value is 0.
Grammar VAR1 = MARKC
Controller General
Example BASE(0) 'select axis 0
MOVE(100) 'movel00units
REGIST(18) rising edge trigger, get signal R2
WAIT UNTIL MARKC ‘wait to be triggered.
Instruction REG_POSC, REGIST
MARKD-- Latch 4 Trigger
Type AXxis Status
Description Return value to check if position latch 4 happened.
When REGIST is executing, MARKD is true, returned value is -1, once
REGIST is finished, MARKD becomes false, returned value is 0.
Grammar VAR1 = MARKD
Controller General
Example BASE(0) 'select axis 0
MOVE(100) 'move 100units
REGIST(20) 'rising edge trigger, get signal R3
WAIT UNTIL MARKD ‘wait to be triggered.
Instruction REG_POSD, REGIST

OPEN_W!IN--Coordinate Range for Latch Starts

Type Axis Parameters

Description Start coordinate range point of position latch
Reserved

Grammar OPEN_WIN = pos

483

Instruction

REGIST, CLOSE_WIN

CLOSE_W!IN-- Coordinate Range for Latch Ends

Type AXxis Parameters

Description End coordinate range point of position latch.
Reserved

Grammar CLOSE_WIN = pos

Instruction REGIST, OPEN WIN

REG_POS--Latch Position

Type Axis Status
Description | Save latched measurement feedback position (MPOS), unit is units.
Grammar VARL1 = REG_POS (axis No.)
Controller General
Example MOVE(100) 'move 100units
REGIST(3) ‘trigger when meets rising edge of signal RO.
WAIT UNTIL MARK ‘wait until position latch happens
PRINT REG_POS ‘print latched position
Instruction REGIST, MARK

REG_POSB--Latch 2 Position

Type Axis Status

Description Return MPOS latched by register 2, unit is units.

Grammar VAR1 = REG_POSB (axis No.)

Controller General

Example MOVE(100) 'move 100units
REGIST(16) 'trigger when meets rising edge signal EZ
WAIT UNTIL MARKB ‘wait until the second latch happens.
PRINT REG_POSB ‘print latched position

Instruction REGIST, MARKB

REG_POSC--Latch 3 Position

Type Axis Status

Description Return MPOS latched by register 3, unit is units.
Grammar VAR1 = REG_POSC (axis No.)

Controller General

484

Example

MOVE(100) 'move 100units

REGIST(18) 'trigger when meet rising edge signal
WAIT UNTIL MARKC ‘'wait until the second latch happens.
PRINT REG_POSC 'print latched position

Instruction

REGIST, MARKC

REG_POSD--Latch 4 Position

Type AXis Status

Description Return MPOS latched by register 4, unit is units.

Grammar VAR1 = REG_POSD (axis No.)

Controller General

Example MOVE(100) 'move 100units
REGIST(20) ‘trigger when meets rising edge signal
WAIT UNTIL MARKD ‘wait until the second latch happens.
PRINT REG_POSD ‘'print latched position

Instruction REGIST, MARKD

11.12 Position Limit Parameter Instructions

FS_LIMIT--Soft Positive Limit

Type Axis Parameters
Description | Soft positive position limit setting, unit is units.
When FS_LIMIT is bigger than REP_DIST, FS_LIMIT will become
invalid, and soft positive position limit function is forbidden.
If needs to cancel soft positive position limit, it is not recommended to
modify value of REP_DIST, it is better to set FS_LIMIT as a bigger value.
Default value of FS_LIMIT is 200000000.
Soft position limit can not be as signal reference of homing when use
DATUM.
Grammar VARL1 =FS_LIMIT, FS_LIMIT = expression
VAR =FS_LIMIT(axisnum), FS_LIMIT = expression (axisnum)
Controller General
Example BASE(0) 'select axis 0
ATYPE=1 ‘axis type setting
UNITS=100 'pulse amount is 100
DPOS=0 ‘coordinate clears
SPEED=100 'speed is 100units/s
ACCEL=1000 ‘acceleration is 1000 units/s/s

485

FS_LIMIT=200 'set positive limit as 200units
MOVE(300) 'move 300units

When axis reaches 200, it will stop, and show error: Axis:0 AXISSTATUS:
200h, FSOFT.

If wants to move axis, then only motion in negative direction is allowed.

It can be cancelled through set a bigger value.

FS_LIMIT=2000000 ‘cancel soft positive position limit setting.

Instruction

RS_LIMIT, FEWD_IN, REV_IN

RS_LIMIT--Soft Negative Limit

Type Axis Parameters

Description | Soft negative position limit setting, unit is units.
If RS_LIMIT is bigger than REP_DIST, RS_LIMIT will become invalid,
and soft negative position limit function is forbidden.
If needs to cancel Soft negative position limit, it is not recommended to
modify value of REP_DIST, it is better to set RS_LIMIT as a bigger value.
Default value of RS_LIMIT is -200000000.
Soft position limit can not be as signal reference of homing when use
DATUM.

Grammar VAR1 =RS_LIMIT, RS_LIMIT = expression
VAR1 =RS_LIMIT(axisnum), RS_LIMIT = expression (axisnum)

Controller General

Example RS _LIMIT =-50 'set soft negative limit is 50 units
RS_LIMIT=-2000000 ‘cancel soft negative limit

Instruction FS_LIMIT, FWD_IN, REV_IN

FWD_IN--Positive Limit Mapping Input

Type Axis Parameters

Description Input number related to positive position limit input in hardware, -1 is
invalid.
When limit signal comes, axes motion will stop immediately at speed of
FASTDEC.
Input is valid when signal is off in ZMC controller, do use INVERT_IN to
reverse the electric level. (except for ECI)

Grammar VAR1 = FWD_IN, FWD_IN = expression
VAR1 =FWD_IN(axisnum), FWD_IN = expression (axisnum)

Controller General

486

BASE(0,1,2,3) 'select axis0,1,2,3
FWD_IN=6,7,8,9 'set positive limit inputs.
INVERT_IN(6,0N) 'reverse signal
INVERT_IN(7,0N)

INVERT_IN(8,0N)

INVERT_IN(9,0N)

When limit signals come, axis status will show error:
AXis:0AXISSTATUS:10h,FWD.
then only motion in negative direction is allowed.

REV_IN, FS_LIMIT, FASTDEC

REV _IN--Negative Limit Mapping

AXis Parameters

Input number relates to negative position limit input in hardware, -1 is
invalid.

When limit signal comes, axes motion will stop immediately at speed of
FASTDEC.
Input is valid when signal is off in ZMC controller, do use INVERT_IN to

reverse the electric level. (except for ECI)

VAR1 = REV_IN, REV_IN = expression
VAR1 =REV_IN(axisnum), REV_IN = expression (axisnum)

General

See Example in FWD_IN

FWD_IN, RS_LIMIT,FASTDEC

ALM_IN--Alarm Input

AXxis Parameters

Drive alarm input configuration, -1 means invalid.

Once controller gets alarm signal, all axes will stop, acceleration will obey
FASTDEC.

After Alarm input was set, ZMC controller is valid when off, if signal is
normally opened, then use INVERT_IN to reverse electric level; while in
ECI controller, it is valid when ON, if signal is normally closed, then use
INVERT _IN to reverse electric level.

VAR1 = ALM_IN, ALM_IN = expression
VAR1 =ALM_IN(axisnum), ALM_IN = expression (axisnum)

General

487

mk:@MSITStore:D:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV3/TrioBASIC.chm::/REV_IN.html

Example

BASE(0,1)

ALM_IN =10,11 'map alarm signal of axis 0 to input 10, and alarm
signal of axis 1 to input 11

INVERT_IN(10,0N) ‘reverse electric level.

INVERT_IN(11,0N)

Instruction

DATUM_IN, FWD_IN, REV_IN, INVERT_IN, FASTDEC

11.13 On-Position Parameter Instructions

IN_POS — On Position Mark

Type Axis Parameters
Description Read whether axis arrives the position or not, after axis stops, return
value -1 means on position, return value 0 means not on position.
IN_PSO_DIST and IN_POS SPEED must be configured well, or
AXISINP_IN must be configured well.
When this function is not used, directly use IDLE to judge motion finish
status.
Grammar VAR1 = AXISEMG_IN, AXISEMG_IN = expression
VAR1 = AXISEMG_IN (axisnum), AXISEMG_IN (axisnum) = expression
Controller General, valid in 4xx series controllers with the latest firmware version.
Example BASE(1)
DPOS=0
UNITS=1000
SPEED=100 'set speed as 100
ACCEL=500
DECEL=500 'set deceleration as 500
FASTDEC=2000 ‘set fast deceleration as 2000
AXISINP_IN(1) =0 'set input 0 as on-position signal of axis 1
INVERT_IN(0,ON) 'signal reverse
MOVE(1000) AXIS(1)
?IN_POS(1) ‘print value: 0, not on position
WAIT UNTIL IDLE(1) 'wait until axis 1 stops
?IN_POS(1) ‘on position signal is triggered, print value: -1,
it arrives position
Instruction IN_POS DIST, IN_POS SPEED, AXISINP_IN

AXISINP_IN — On-position Signal Input

Type

AXis Parameters

Description

Configure axis on-position input, default (-1) means not to use on-

488

position signal.

When controller on-position signal took effect, and axis stopped, on-
position mark takes effect.

When on-position input was set, ZMC controller default OFF is valid, and
commonly opened signal uses INVERT _IN to reverse the electric level.

ECI controller default ON is valid, commonly-closed signal uses
INVERT_IN to reverse electric level.

VAR1 = AXISINP_IN, A XISINP_IN = expression
VAR1 = AXISINP_IN (axisnum), AXISINP_IN (axisnum) = expression

General, valid in 4xx series controllers with the latest firmware version.

BASE(0) ‘select axis 0

ATYPE=1

UNITS=100 'set pulse amount as 100

DPOS=0 ‘clear coordinates as 0
SPEED=100 'set speed as 100units/s
ACCEL=1000 'set acceleration as 1000units/s/s
DECEL=1000 'set deceleration as 1000units/s/s
AXISINP_IN(0) =0 'set input 0 as on-position of axis 0
INVERT_IN(0,ON)

MOVE(10000) AXIS(0)

TRIGGER

?IN_POS(0)

WAIT UNTIL IDLE(0) ‘after stopped, on-position changes
?IN_POS(0)

IN_POS DIST, IN_POS_SPEED, IN_POS, INVERT_IN,

IN_POS DIST - On-position Distance

AXis Parameters

Configure on-position distance, FE is less than this distance, and
MSPEED is less than IN_POS_SPEED, it means it arrives the position.

Parameters start from 0, when this parameter and on-position parameter are
used together, on-position mark is controlled by on-position signal.

VARL1 = IN_POS_DIST, IN_POS_DIST = expression
VAR1 = IN_POS_DIST (axishum), IN_POS_DIST (axisnum) = expression

General, valid in 4xx series controllers with the latest firmware version.

BASE(0)

ATYPE=4 ‘with encoder feedback
UNITS=1000

SPEED=100 'set speed as 100
ACCEL=1000

DECEL=1000 'set deceleration as 1000
FASTDEC=10000 'set fast deceleration as 10000

489

DPOS=0

AXISINP_IN(0) =-1 'cancel on-position signal
IN_POS DIST=0.5 'on-position distance
IN_POS_SPEED =0.5 'on-position speed
MOVE(100)

DELAY (100)

?FE

?MSPEED

?IN_POS ‘print on-position mark
WAIT UNTIL IDLE(0)

DELAY (100)

on "

?FE

?MSPEED

?IN_POS

IN_POS_SPEED, IN_PQOS, AXISINP_IN

IN_POS SPEED - On-position Speed

AXis Parameters

Configure on-position speed, MSPEED is less than this speed, and FE is
less than IN_POS_DIST, it means it arrives the position.

Parameters start from 0, when this parameter and on-position parameter are
used together, on-position mark is controlled by on-position signal.

VAR1 = IN_POS_SPEED, IN_POS_SPEED = expression
VAR1 = IN_POS SPEED (axisnum), IN_POS SPEED (axisnum) =
expression

General, valid in 4xx series controllers with the latest firmware version.

BASE(0)

ATYPE=4 ‘with encoder feedback
UNITS=1000

SPEED=100 'set speed as 100
ACCEL=1000

DECEL=1000 'set deceleration as 1000
FASTDEC=10000 'set fast deceleration as 10000
DPOS=0

AXISINP_IN(0) =-1 ‘cancel on-position signal
IN_POS DIST=0.5 ‘on-position distance
IN_POS_SPEED =0.5 ‘on-position speed
MOVE(100)

DELAY(100)

?FE

?MSPEED

?IN_POS 'print on-position mark

490

WAIT UNTIL IDLE(0)
DELAY (100)

o "
PFE

?MSPEED

2IN_POS

IN_POS_DIST, IN_POS, AXISINP_IN

11.14 Range Limit Parameter Instructions

REP_OPTION--Coordinate Cycle Mode

AXis Parameters

Repeat set the coordinate.

It can be used to limit main axis coordinate cycle range of CAM type
motion and to realize continuous of multiple CAM profiles.

When in absolute mode, if target position is between coordinate cycle range,
then motion is correct, or motion is incorrect.

No influence on relative motion.

VAR1 = REP_OPTION, REP_OPTION = opt
opt, different bits indicate different meanings.
Bit |Value Description
0 1 0-cycle range — REP_DIST to + REP_DIST.
1- cycle range 0 to + REP_DIST.

1 2 1 means repeat motion is forbidden in CAMBOX and
MOVELIK, once it activates, value recovers to 0.

2 4 reserved
16 [1-Don’t use REP_DIST.
0-Use REP_DIST.

General

BASE(0) 'select axis 0

ATYPE=1

UNITS=100 ‘pulse amount is 100
DPOS=0 ‘coordinate clears
SPEED=100 'speed is 100units/s
ACCEL=1000 ‘acceleration is 1000units/s/s
DECEL=1000 ‘deceleration is 1000units/s/s
REP_DIST=100 ‘set cycle coordinate range
REP_OPTION=0 ‘set cycle mode

TRIGGER 'trigger oscilloscope automatically
VMOVE(1) ‘continuous motion

491

Coordinate Curve:

DPOS(0) vertical scale 100

REP_OPTION=1,
MSPEED(0) vertical scale 100

CAMBOX, MOVELINK, REP_DIST

REP_DIST--Coordinate Cycle Position

AXis Parameters

Auto cycle DPOS and MPOS of axis through REP_OPTION setting.

VARL = REP_DIST, REP_DIST = expression

General

See REP_OPTION as reference

REP_OPTION

FE—Current Follow-up Error

Axis Status
Follow-up error, value=DPOS-MPOS.

492

Grammar VAR1=DPOS
Controller General
Instruction MPQOS, DPOS

FE_RANGE-- Follow-up Error when Alarm

Type AXxis Parameters
Description Follow-up error when alarm happens.
Grammar VAR = FE_RANGE, FE_RANGE = expression
Valid: set assigned value through FE_RANGE AXIS (axis) method.
Example Refer to SERVO.
Instruction FE, FE_LIMIT, P GAIN, D_GAIN, | GAIN, OV_GAIN, VFF GAIN,

FE_LIMIT.

FE_LIMIT--Maximum Follow-Up Error

Type Axis Parameters

Description | Allowed maximum follow-up error, default: 3
When follow error exceeds, real-time error will be caused, and enable relay
(WDOG) clears, which means it prevents other generators from running.
This limit usually is used for protect default status, such as, machine is
locked, encoder feedback is lost, etc. It will report alarms when timeout,
2h/100h/102h are reported usually for AXISSTATUS.

Grammar VAR1 = FE_LIMIT, FE_LIMIT= expression
Valid: set assigned value through FE_LIMIT AXIS (axis) method.

Example Refer to SERVO.

Instruction FE,_P_GAIN, D_GAIN, 1I_GAIN, OV_GAIN, VFF GAIN, FE_LIMIT.

SERVO

11.15 Advanced Setting Instruction

INVERT_STEP--Pulse Mode Setting

Type

AXis Parameters

Description

Servo/Step pulse output mode setting.

There are three modes: pulse direction, double pulse and quadrature pulse,
the default mode is pulse direction control (mode 0).

Now, only some controllers support quadrature pulse.

MPOS information involves many complicate modes, such as, MOVE_OP
high-precision output mode, so controller can’t support modify MPOS

493

direction at present, if needs, modify drive or other related parameters, such
as, Mitsubishi PA 14.

INVERT_STEP = mode
parameters: mode (default is 0) lower 8 bits (bit0-7) indicate mode value,

as follow:
Mode - . .
value Description Reference (positive logical mode0
0-3 dlrectlon_. | -
Pulse line + | sericietof dmetom civl |
direction line. otae i negaive diection rotte i posiive Gecton
double pulse
(or R
4T CWICCW),
positive pulse | wsepuse e
line + negative roate i s diccion oot i negative Girction
pulse line.
AB output,
quagratre | e[| |10 [T
8-9 | pulse (some
controllers are mmmw M
customized) ; r—

Electric levels in different modes: if polarity is reverse, the motion
direction will be opposite to original direction.

Panasonic setting Muitsubishi
Mode - .
value Description setting
Pr0.06 Pr0.07 PA13
0 Pulse/direction(pulse 0 3 >>Q1h
positive logic) (positive)
1 Pulse/direction(pulse / / xx<11h
negative logic) (positive)
) Pulse/direction(pulse 1 3 >x>01h
positive logic) (negative)
3 Pulse/direction(pulse / / xx11h
negative logic) (negative)
4 Double pulse (direction |/ / >xx10h
negative logic) (positive)
5 Double pulse (direction |/ / >xx10h
negative logic) (negative)
6 Double pulse (direction | 1 1 >>Q0h
positive logic) (positive) (default)
7 Double pulse (direction | 0 1 >>00h
positive logic) (negative) | (default) | (default) | (default)

494

Upper 8 bits(bit8-15) indicate protect time of direction changing, unit
is microsecond, value is:0-255

Commonly used modes are 0, 2, 6, 7.

If mode is set incorrectly, step motor will lose 1 step position when change
direction, if can not confirm motor setting, set change protect time as about
100 ms.

Controller General
Example Set as pulse direction mode:
INVERT_STEP = 256*100+0 ‘protect time is 100ms, mode is 0.
Set as double pulse mode:
INVERT_STEP = 256*100+6 ‘protect time is 100ms, mode is 6.
Check pulse mode setting:
Online input instructions to check, as follow:
?INVERT_STEP(0) ‘print axis 0 pulse mode setting value
?*INVERT_STEP ‘print all axes pulse mode setting value
Instruction STEP_RATIO

MAX_ SPEED--Pulse Frequency Limit

Type Axis Parameters

Description Limit of maximum pulse frequency output.
Once exceed this value, frequency will be limited, and AXISSTATUS will
be set.
In terms of encoder axis, when set frequency is under 500K, encoder
smoothing will start, when set frequency is over 1M, encoder smoothing
will be canceled. Default value is 1000000 (the default pulse frequency of
old firmware is 500000).
When use linear motor, and the speed is too high, it is easy to exceed pulse
frequency limit, then it’s better to set a bigger value.

Grammar MAX_SPEED = value

Controller General

Example MAX_SPEED AXIS(n)=4000000 ‘'set axis n pulse speed limit is 4000000
BASE(6)
ATYPE=3
MAX_SPEED =500000 'start encoder filter

Instruction AXISSTATUS

AXIS ZSET--Setting of Precision Output

Type

AXis Parameters

Description

To set precision output function of MOVE_OP, which is used for the

495

main axis of axes group.

When SYSTEM_ZSET is modified, AXIS_ZSET of present BASE axes
will also be modified. In order to fit old procedure, usually it is not
recommended to use SYSTEM_ZSET instruction.

Parameters:

bit 1: 1 - use precision output function of MOVE_OP, 0 - MOVE_OP
original method.

bit 4: 1 - when encoder axes are attached, use MOVE_OP precision mode
based on encoder position, if multiple encoder axes interpolate, then
use the mode of configuration of BASE motion main axis.

bit 5: 1 — CANCEL (2) / RAPIDSTOP (2) emergency deceleration is
DECEL, 0 — emergency deceleration is FASTDEC

To read: VALUE=AXIS_ZSET
To write: AXIS_ZSET=VALUE

Firmware version above 20170517

Example 1: Open Precision Output

BASE(0)

ATYPE=1

DPOS=0

SPEED=100

ACCEL=1000

DECEL=1000

AXIS_ZSET(0)=2 ‘open precision output of MOVE_OP
MOVE(100)

MOVE_OP(0,1) ‘precision takes effect, and select channel 0

Example 2: Open Multi-Encoder Precision Output Port

Normally, there are 4 channels used for precision output in ZMC4XX series,

but some have 8 channels. Suppose there are 3 dispensing positions on

device, all need precision output.

BASE(0,1,2) 'select axis 0 as main axis

AIXS_ZSET(0)=19 ‘'open MOVE_OP encoder precision output for main
axis 0

BASE(3,4,5)

AIXS_ZSET(3)=19

BASE(6,7,8)

AIXS_ZSET(6)=19

Example 3: Emergency Deceleration Selection
BASE(0)
DPOS=0

496

ATYPE=1

SPEED=100

ACCEL=10000

DECEL=10000 ‘set deceleration as 1000
FASTDEC = 100000 ‘set fast deceleration as 100000
AXIS_ZSET=32 'deceleration selection

TRIGGER ‘trigger oscilloscope automatically
MOVE(1000) ‘motion in process

MOVE(-2000) ‘motion in buffer

DELAY (500)

CANCEL(2) ‘emergency stop

Please see below, when AXIS_ZEST is not set, the deceleration should be
100000, and it is 10000 when set.

SYSTEM_ZSET, MOVE OP

AXIS _MODE—connect Motion Holds

Axis parameters]

Set BIT=1 to prevent CONNECT motion from exiting caused by position
limit and soft limit.

BIT1 = 0, when meets position limit, connection “CONNECT” between
master axis and slave axis is interrupted. Then, after position limit alarm is
cleared, operate master axis now, which means slave axis doesn’t follow
anymore.

BIT1 = 1, when meets position limit, connection still exists, after position
limit alarm is cleared, slave axis still follows.

BIT5 = 0, default configuration, tracking MPOS preferentially when main
axis is with encoder.

497

BIT5 = 1, set cam or cam motion on the main axis, and assign compulsively
the DPSO that is to track main axis. Involved instructions: CAMBOX,
CONNECT, MOVELINK, MOVESLINK, MOVESYNC, HW_PSWITCH?2.

Valid in controllers with firmware version 20170616 and above.

VAR1 = AXIS_MODE, AXIS_MODE = expression

Example 1: not set AXIS_MODE parameters
RAPIDSTOP(2)

WAIT IDLE

BASE(0,1)

ATYPE=1,1

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

AXIS_MODE=0,0 'set parameters
FS_LIMIT=1000,500
TRIGGER ‘trigger oscilloscope automatically

CONNECT(1,0) AXIS(1) ‘axis 1 connects to axis 0, ratio is 1
MOVE(1000) AXIS(0)
MOVE(-1000) AXIS(0)

Motion Path:
DPOS(0)=1000(vertical scale), no offset
DPOS(1)=1000(vertical scale), no offset

Axis 1 accesses limit position, then stops, and disconnects with axis 0, which
means they have no any relation on following motions.

Example 2: set AXIS_MODE parameters
RAPIDSTOP(2)

WAIT IDLE

BASE(0,1)

ATYPE=1,1

498

UNITS=100,100

DPOS=0,0

SPEED=100,100

ACCEL=1000,1000

DECEL=1000,1000

AXIS_MODE=0,2

FS_LIMIT=1000,500

TRIGGER ‘trigger oscilloscope automatically
CONNECT(1,0) AXIS(1) ‘'axis 1 connects to axis 0, ratio is 1
MOVE(1000) AXIS(0)

MOVE(-1000) AXI1S(0)

Motion Path:

DPOS(0)=1000(vertical scale), no offset
DPOS(1)=1000(vertical scale), no offset

Axis 1 accesses position limit, then stop, but it keeps connection with axis 0,
then it moves to position that is in the position limit, and follows axis 0.

General

CONNECT, ES_LIMIT, RS_LIMIT

MOVEOP_DELAY-Output Delay in Buffer

Axis parameters

Make buffer signal delay output for BASE axis.

When high precision output mode of MOVE_OP is used on axis appointed by
BASE, it can adjust the actual trigger time of OP, ms (millisecond) as unit, the
value can also be decimals format, maximum of the delay time is 100 ms.

If value is set as minus, OP can be opened in advance, it is 2ms in advance for
stepper, and 20ms in advance for servo. It can be used to stop the glue output
in dispensing machine.

The command will be affected by axis FE, if you only want to verify the

499

command function (ignore this affection), you can set ATYPE as 0 or 1 to test.

Grammar | MOVEOP_DELAY= timems

timems: delay time.(ms)
Controller | With firmware version above 20170505 supports.
Example MOVEOP_DELAY =2 ‘real output time delays 2ms
Instruction | MOVE OP, HW_ PSWITCH, HW_PSWITCH2

MOVEOP_ADIST—Close the glue in advance

Type Axis parameters

Description | MOVE_OP can configure that output in advance one certain distance,
default 0 means it won’t be taken effect. Compare to default value, an
assigned vector distance will be output in advance if it is positive value. If
it is the minus, an assigned vector distance will be delayed.
This command is only valid when one single OP is operated by MOVE_OP,
and for each axis, their actions have the sequence, namely, former one
MOVE_OP operation (that is to change position) is not finished, behind will
not act.
It will clear automatically after MOVEOP_ADIST entering buffer to avoid
affecting other MOVE_OP.
Controllers that are with HW functions can open HW precision output
through AXIS_ZSET, same as MOVE_OP precision, this command only
supports MOVE interpolations or MOVESCAN motions, it doesn’t support
cam, MOVE_PT, etc. And cross-small segments output in advance can be
achieved through MOVE instruction.

Grammar | MOVEOP_ADIST= distance

distance: how far

Controller | 4xx series controllers with fast firmware version above 190201.

Example BASE(0)
ATYPE=1
UNITS=100
DPOS=0
MPOS=0
SPEED=100
ACCEL=1000
DECEL=1000
MERGE=1
SRAMP=100
TRIGGER

MOVEOQOP_ADIST =-10 'delay 10 units (distance), then glue ON
MOVE_OP(0,1)

MOVE(5)

MOVE(50) ‘include actual glue ON and glue OFF

500

MOVE(5)

MOVEOP_ADIST =10 'make glue off in advance 10 units
MOVE_OP(0,0)

END

Motion curve:

MSPEED(0) 100 (vertical scale)
DPOS(0) 50 (vertical scale)
OP(0) 5 (vertical scale)

MOVE_OP, MOVEOP_DELAY, AXIS ZEST

DAC--Analog Control of Field Bus Axes

AXis Parameters

Servo axis DA control directly, speed or torque mode support.

Unit is DA module scale, 12 bits or 16 bits.
When doing speed control, see exact unit of drive.
When doing torque control, the unit is milli, 100% torque when equals 1000.

VAR1 = DAC, DAC = expression

With EtherCAT port or Rtex port, firmware above 2017 support.

Example 1: Rtex speed control
Please use Rtex initialization procedure at first, and set ATYPE=51.
Then do ZDevelop online instruction, as follow:

*|»>dac=10

s Ida[::‘l 1]

At this time, rotation speed of motor is 10r/min, send dac=-10, it will rotate
inversely.
Also it can send dac instruction in the procedure.

Speed unit can refer to drive manual. As follow:
Instruction speed

501

[size]: 32 bits with symbol
[unit]: set through Pr7.25(RTEX speed unit)

Pr7.25 unit
0 [r/min]
1 [instruction unit/s]

[set unit]: maximum speed level in negative direction ~ maximum speed level
in positive direction.

When set unit as r/min, it will convert into instruction unit when doing

internal calculation, the converted value should be from -800000001h to

7FFFFFFFh

* >>drive_read[7*266+25]
0

&S |drive_read(7*256+25)

At this time, the unitis [r/min]

Example 2: Rtex torque control

Please set the first position of drive motor parameter pr6.47 as 0, close 2 DOF
control mode, parameter pr3.17 set speed limit, as follow. (Panasonic Rtex
manual for reference)

The set value of Pr3.17(speed limit selection) is 1, can switch to speed limit

value under torque control through SL_SW.

Type 3 3 3
No. 17 21 22
Propert | B B B
y
Paramet | speed limit | Speed limit value is | Speed limit value is
er name | selection 1 2
Set 0-1 0-20000 0-20000
range
Unit / r/min r/min
Functio valu | SL_SW Set speed limit | WhenPr3.17(speedl
n Z S’r321 ! when turn to torque | imit selection)=1,
1 sz TPz | control. In torque | set SL_SW speed
1 2 control, control is | limit as 1h, and
Set speed limit | corieq out within | internal value s
value selection | the gpeed set by the | limited in the
mode if turn 10 | gneaq limit, and the | smallest set speed
torque control. internal values are | of Pr5.13 (over
limited in the | speed level), Pr6.15
smallest set speed | (the owver second
of Pr5.13 (over | speed level0),
speed level), Pr6.15 | Pr9.10(maximum
(the over second | over speed level).
speed

502

level),Pr9.10(maxi
mum over speed
level)

Then use Rtex initialization procedure, and set ATYPE=52.

Next, can send dac online instruction in zdevelop, now, motor starts.

*|>>dac=30

Fids A Idac=3l]|

Now, the torque of drive motor is 0.03. If dac is too small, motor can not
overcome friction force to operate.

Also can send dac in the procedure.

When in the torque control, unit is milli, dac=1000 means 100%.

[size]: 32 bits with symbol

[unit]: 0.1%

[set range]: maximum speed level in negative direction ~ maximum speed
level in positive direction.

Maximum torque limit[%]=100>Pr9.07/(Pr9.06>2v2)

Example 3: EtherCAT speed control

FORI=0TO 1 first use, set all axes as ordinate pulse type
ATYPE(l)=1

NEXT

SLOT_SCAN(0) 'bus scan start

IF NODE_COUNT(0,0)>0 THEN
AXIS_ADDRESS(0)=1 ‘first drive motor is mapped to axis 0

ATYPE(0)=66 '66 as speed control mode
DRIVE_PROFILE(0)=20 ‘set speed control as 20
DELAY (200)

SLOT_START(0) 'scan bus successfully, start bus

DRIVE_CONTROLWORD(0)=128 ‘clear errors of drive motor out
DELAY (2)
DRIVE_CONTROLWORD(0)=6

DELAY (2)

DRIVE_CONTROLWORD(0)=15

DELAY (2)

DELAY(20)

DATUM(0) ‘clear controller errors out

BASE(0)

AXIS_ENABLE=1 'mapped axis enable open

WDOG=1 ‘axis enable

DAC=10000 ‘'motor rotates at speed of 10000/s
ENDIF

503

Example 4: EtherCAT torque control

Just make some modification of example 3.

ATYPE=67, DRIVE_PROFILE=30.

Now, send range of dac is 0~1000, 1000 means 100% torque, if needs inverse
select, just send minus value.

Instruction

SERVO

ERRORMASK--Operation when Error

Type Axis Parameters

Description | To decide which errors are closed through AND operation between
ERRORMASK and AXISSTATUS.

Grammar VAR1 = ERRORMASK, ERRORMASK = expression

Controller | General

Example BASE(0)
WDOG=1 ‘open enable
?AXISSTATUS ‘print 16, positive hardware position limit alarm
ERRORMASK=16
DELAY(10) 'delay for operation
?WDOG 'print 0, enable is off.

Instruction | AXISSTATUS, WDOG

ZSCAN_CORRECT—Galvanometer Correction

Type AXxis parameters
Description | Correct galvanometer axis parameters.
Grammar | ZSCAN_CORRECT(ixy,imode,imaxline,imaxrow,x1,y1,x2,y2,tableindex)

ixy: value as 0/1, select two galvanometers. O-the first galvanometer 1-
the second galvanometer.
imode: O-close correction, 1-use partition correction, table input
mearused actual postion, 2-use partition correction, table input
pulse position needed to achieve, 210701 add this function.
imaxline: line, Y direction, the more data is, the higher precision is.
imaxroe: row, X direction.
x1,y1: bottom right corner position in theory.
x2,y2: above right corner position in theory.
tableindex: measured actual corrdinate start to save in thr table index,
first
X then Y, the first line(save in the row sequence), the next
line.
Attention: XY is the actual physical axis, the first is X, the
second is Y, no relation with mapped virtual axis number.
Coordinate written is actual pulse position of galvanometer.

504

(support decimals)(XY?2 protocal coordinate is from 32768
to 32767)

Controller

Valid in controllers with galvanometer axis

Example

TABLE(0, -40.6,-41.2)
TABLE(2, 0,-41)
TABLE(4, 41,-42)
TABLE(S, -41,0)
TABLE(8, 0,0)
TABLE(10, 41.2,0)
TABLE(12, -40.4,41.2)
TABLE(14, 0,41.2)
TABLE(16, 41,42.4)

FORi=0 TO 17
TABLE(i) = TABLE(i)*500 ‘all are pulse coordinate
NEXT

ZSCAN_CORRECT(0,1,3,3,-20000,-20000,20000,20000,0)

11.16 Reserved Instructions

D_GAIN--Differential Gain

Type

AXis Parameters

Description

Differential gain, which is only valid in analog servo.

D_GAIN includes differential gain of axis. Differential output is in direct
proportion to change number of follow error, default is 0.

It will produce smoothing response if superpose differential gain for system,
which means bigger proportion gain can be permitted. Vibration will be
caused if too high.

Attention: servo gain should be changed when SERVO = OFF to avoid
unsteadiness.

Grammar

VAR1=D_GAIN, VAR1=D_GAIN
Valid: set assigned axis through D_GAIN AXIS (axis) method

Example

Refer to SERVO

Instruction

SERVO, P_GAIN, D_GAIN, OV_GAIN, VFF GAIN, FE_LIMIT,
FE_RANGE

| GAIN--Integral Gain

Type

AXis Parameters

Description

Integral gain, which only valid in analog servo.
Integral outputs through calculating sum total of follow error. Default: 0.

505

Position errors when running or in still can be decreased through superposing
integral gain into servo system. And overshoot and vibration can be
decreased.

Therefore, it is applied in constant speed and low-speed process.

Attention: servo gain should be changed when SERVO = OFF to avoid
unsteadiness.

Grammar | VAR1=I_GAIN, I_GAIN = expression
Valid: set assigned axis through I_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction | SERVO, P_GAIN, D_GAIN, OV _GAIN, VFE GAIN, FE_LIMIT,
FE_RANGE

OV_GAIN--Speed Gain

Type AXxis Parameters

Description | Speed gain, which is only valid in analog servo.
Speed outputs through multiple changes of MPOS and parameter value of
OV_GAIN. Default: 0.
In system, add output speed gain and damping equivalence of machine, output
will be smooth and proportion gain will be promoted. However, it will cause
big follow errors. And vibration, big follow errors will be produced if there is
too high output gain.
Attention: servo gain should be changed when SERVO = OFF to avoid
unsteadiness.

Grammar | VAR1=0V_GAIN, OV_GAIN = expression
Valid: set assigned axis through OV_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction | SERVO, P_GAIN, D _GAIN, OV GAIN, VFFE GAIN, FE_LIMIT,
FE_RANGE

P_GAIN--Proportion Gain

Type Axis Parameters

Description | Proportion gain, which is only valid in analog servo.
Proportion outputs through multiple follow errors and P_GAIN. Default: 0
Proportion gain sets the rigidity of servo responses, vibration will be caused if
value is too high, but big follow errors will be produced if value is too low.
Attention: servo gain should be changed when SERVO = OFF to avoid
unsteadiness.

Grammar | VAR1=P_GAIN, P_GAIN = expression
Valid: set assigned axis through P_GAIN AXIS (axis) method

Example Refer to SERVO

Instruction | SERVO, D_GAIN, OV_GAIN, VFF _GAIN, FE_LIMIT, FE_RANGE,

506

\ I_GAIN

VFF_GAIN--Feedforward Gain

Type

AXis Parameters

Description

Feedforward gain feedbacked by speed, don’t support non-bus servo.
Speed feedforward is the multiple value of changes of DPOS and parameter
value of VFF_GAIN. Default: 0.

60B1 pdo = axis pulse speed * VFF_GAIN

How to calculate closed-loop axis PID: axis pulse speed * VFF_GAIN (as
speed feedforward)

System follow errors in motion can be decreased and output proportion of
speed can be increased through superposing speed feedforward gain.

Note: servo gain should be changed when SERVO = OFF to avoid
unsteadiness.

Grammar

VAR1=VFF_GAIN, VFF_GAIN = expression
Valid: set assigned axis through VFF_GAIN AXIS (axis) method

Example

Refer to SERVO

Instruction

SERVO, D_GAIN, OV_GAIN, FE_LIMIT, FE_RANGE, I_GAIN, P_GAIN

AFF_GAIN -- Acceleration Feedforward Gain

Type Axis Parameters
Description | Feedforward gain feedbacked by acceleration, don’t support non-bus
Servo.
60B2 pdo = (pulse speed change of axis in each period) * AFF_GAIN
Grammar | VAR1=AFF_GAIN, AFF_GAIN = expression
Valid: use AFF_GAIN AXIS(axis) to set assigned axis.
Example Refer to SERVO
Instruction | SERVO, D_GAIN, OV_GAIN, FE_LIMIT, FE RANGE, |_GAIN, P_GAIN

SERVO——Closed-Loop Switch

Type

AXis Parameters

Description

Close loop switch setting

Value range: ON/OFF, default is OFF.

It is used as closed-loop control system together with P_GAIN, D_GAIN,
I_GIAN, OV_GAIN, VFF_GAIN commands, attention analog servo needs to
be used.

Attention:
1. ATYPE of ECAT bus suits to mode 66 and mode 67.
2. PID can be adjusted to the best according to actual situation only by

507

manual, it is recommended to bring load.
3. PID adjust reference

VAR1 = SERVO, SERVO = ON/OFF

General

RAPIDSTOP(2)
WAITIDLE
TRIGGER

BASE(0)
UNITS=1000
ACCEL=100
DECEL=100
SPEED=1000
CREEP=100
LSPEED=0
MERGE=0
SRAMP=0
DPOS=0
MPOS=0
FE_LIMIT=10

FE_RANGE=10
P_GAIN AXIS(0)=100
D_GAIN=5
|_GAIN=1
OV_GAIN=0
VFF_GAIN=0
SERVO=ON

BASE(0)

MOVE(5000)
WAITIDLE

SERVO AXIS(0)=OFF

DELAY (3000)
DPOS(0)
MPOS(0)
END

'trigger oscilloscope

'max follow error limit range can be modified,
it will alarm when timeout
‘follow error value when set alarm

‘proportion gain, and it can use assigned axis method

'integration gain
'differential gain

'speed gain

‘feedforward gain

‘open closed-loop control

‘close closed-loop control, and can through
assigned axis, and it is recommended to close
after each time usage

'stop detection after 3 seconds

Global curve is below, it can be seen DPOS and MPOS are adjusted to be
real-time synchronous through PID under closed-loop control.

508

Local curve:

TRANS_DPOS

AXis Status
reserved

509

Chapter XII Instructions Related to Input
and Output

12.1 Instructions Related to Input

IN--Inputs

Type Input and output functions
Description Read inputs, return status of in0-31 if there is no parameter.

Read value is the status reversed by INVERT _IN.

10 channel number is related to dial-up switch configuration on expansion
module, start value is (16+dial-up value*16), EIO bus expansion 10 uses
NODE_10 instruction, the value can only be a multiple of 8. See hardware
manual for reference.

Attention: 10 mapped number should be over IO max NO. of controller
itself, and can not superpose with controller number.

Grammar IN([channel1],[channel2])
channell start input channel to read.
channel2 end input channel to read, return signal input status if
no this parameter.
Controller General
Example a=IN(1) 'read status of input 1

Instructions | OP, INVERT IN

AIN--Analog Input

Type Input and output functions

Description Read analog input, return scale value of AD conversion module.
12-bit scale range: 0~4095, mapped voltage: 0-10v.

16-bit scale range: 0~65536, mapped voltage: 0-10v.

ZAIO channel number is related to dial-up switch configuration on
expansion module, start value is (8+dial-up value*8), ZMIO bus 10
expansion AD uses NODE_IO instruction, the value can only be a multiple
of 8. See hardware manual for reference.

Attention: AlO mapped number should be over AIO max NO. of controller
itself, and can not superpose with controller number.

Grammar Var=AIN(channel)

channel analog input channels:0-127

510

Controller General

Example a=AIN(1) ‘read AD value of channel 1.
a=AIN(1) *10/4096 'voltage value of channel 1.

Instructions | AOUT

ZSIMU_IN--Inputs Simulation

Type Simulator specialized instructions.

Description | Simulate input of IN.

Grammar ZSIMU_IN[([ionum ,] value)]
ionum input NO., start from 0, return status of in0-31 if no this parameter
value output status

Controller General

Example ZSIMU_IN(0,1) ‘input O is ON.

Instructions | IN

ZSIMU_AIN--Analog Inputs Simulation

Type Simulator specialized instructions

Description Simulate analog input of IN.

Grammar ZSIMU_AIN(ionum, value)

Controller General

Example ZSIMU_AIN(0,1024) ‘analog input 0
Instructions | AIN

ZSIMU_ENCODER--Encoder Inputs Simulation

Type Simulator specialized instructions
Description | Simulate input of encoder.
Grammar ZSIMU_IN(axis num, value)

axis num axis NO., start from 0

value ENCODER simulation value
Controller General
Example ZSIMU_ENCODER(0,1024) 'ENCODER=1024
Instructions | ENCODER

INVERT _IN--Reverse Inputs

Type

Special instructions

Description

Reverse inputs status, it can be checked if inputs were reversed.

511

Grammar INVERT _IN(channel, state); VAR1= INVERT _IN(channel)
channel: inputs channels
state: ON/OFF
Controller General
Example INVERT_IN(1,0N) ‘it is valid when OFF in terms of special signal,

reverse input to avoid input is not valid when limit
signal comes.(except ECI series.)

FWD_IN(0)=1 'IN1 as positive position limit signal of axis 0.

Instructions

IN

IN_SCAN--Scan Inputs Change Status

Type Input and output functions
Description Scan inputs change status, if returned value is 1(TURN), change
happened; if returned value is O(FALSE), change did not happen.
This function must be used to scan the inputs cycle-by-cycle, returned value
is change status between two cycles. Status details can be checked through
IN_EVENT, read value is status reversed by INVERT_IN.
Only controller with firmware version above 20140214 is valid, scan range
has width limit.
ZMCO00X series only is valid in single task.
Grammar VAR1=IN_SCAN([channel1][,channel2])
channell: start channel to be read.
channel2: end input channel to be read, scan signal input status if no
this parameter.
Controller General
Example WHILE 1

IF IN_SCAN(0,23) THEN 'scan electric level change of INO-23.
IFIN_EVENT (0) >0THEN ‘triggered meet rising edge of INO
PRINT “INO UP”, IN_BUFF(0)
ELSELF IN_EVENT(0) < 0 THEN ‘trigger falling edge of INO
PRINT “INO DOWN?”, IN_BUFF(0)
ENDIF
ENDIF
WEND

Instructions

IN_EVENT, SCAN_EVENT, IN_BUFF

IN_EVENT--Read Input Change

Type

Input and output functions

Description

Read inputs change details.

512

1-rising edge. -1-falling edge, 0-no change
This function should be used with IN_SCAN together.

Grammar VAR1 = IN_EVENT(IONUM)
Controller General
Example See IN_SCAN

Instructions

IN_SCAN, SCAN_EVENT

SCAN_EVENT--Check Change

Type Input and output functions
Description Check change status of expressions.
1:off- on, -1:0n-off, 0:no change.
Don’t call the same SCAN_EVENT of SUB in the cycle or the multi-task.
Valid in controller with firmware version above 150810, or use IN_EVENT
and IN_SCAN instead.
Grammar ret = SCAN_EVENT (expression)
expression any valid expression, result will become BOOL Type.
Controller General
Example Example One: Scan inputs signals

WHILE 1
IF SCAN_EVENT(IN(0))>0 THEN 'trigger rising edge of INO

PRINT “INO ON”
ELSELF SCAN_EVENT(IN(0))<0 THEN ‘trigger falling edge of INO
PRINT “INO OFF”
ENDIF
WEND

Example Two: Scan register, variables
WHILE 1
IF SCAN_EVENT(TABLE(0))>0 THEN

'trigger rising edge of TABLEO
PRINT “TABLEO ON”
ELSELF SCAN_EVENT(TABLE (0))<0 THEN
‘trigger falling edge of TABLEO
PRINT “TABLEO OFF”
ENDIF
WEND
Operate table(0) online, and print results.

Instructions

IN_SCAN, IN_EVENT

IN_BUFF--Read Inputs Buffer

| Type

‘ Input and output functions

513

Description Read present inputs scanned by IN_SCAN, return status of in0-31 if no
parameters.
Read value is status reversed by INVERT _IN.
Grammar IN_BUFF([channel1],[channel2])
channell: start channel to be read, which must be inputs range of
IN_SCAN.
channel2: last channel to be read, return single input status if no last
channel input
Controller General
Example See IN_SCAN
Instructions | IN_SCAN

INFILTER—Input Filter

Type System Parameter
Local input filter parameter.

Description | The bigger value is, the longer filtering time will last, value is:2-9, default is
2.

Grammar VARL = INFILTER, INFILTER= expression

Controller General

Example INFILTER=5 'increase the filtering time when there is terrible interruption.

IN_SMFILTER — Set IN Filter

Type Special Command
Description Set the filter for one single input.
IN_MSFILTER (channel, timems), VAR1=IN_MSFILTER (channel)
Grammar c_hannel: input. chennel_ N N
timems: the filtering time, the unit is ms, and the precision only can
reach system period, up to >200 periods, the default value is 0.
Controller Valid in 5xx series and the firmware version is above 20230808.
Example IN_MSFILTER (0,5) 'set INO as the filter, the filtering time is 5ms

12.2 Instructions Related to Output

OP--Outputs

Type

Input and output instructions and functions

Description

Out or read outputs status

514

When it is used in expression, it is regarded as function grammar
automatically.

10 channel number of ZIO expansion board is related to dial-up code switch
configuration, start value is (16+dial-up value*16), EIO bus expansion 10
uses NODE_IO instruction, the value can only be a multiple of 8. see
hardware manual for reference.

Attention: 10 mapped number should be over IO max NO. of controller
itself, and can not superpose with controller number.

Maximum operation output port number is 32.

OP([ionum],value)
or OP(ionuml, ionum2,value[,mask])
OP([firstnum[, [finalnum])
ionum: output number, starts from 0
value: output status, define multi-port status as bit when operating
multiple outputs.
ionum1.: the first channel to be operated
ionum2: the last channel to be operated
mask: it is used to assign 10s to be operated, the first and the last ¢
channels both are operated when it is not filled.
firstnum: output number, starts from 0.
finalnum: output number, starts from 0, it reads single output status if
this parameter is not filled.

General

Example 1: single operation
'reverse output 0
IF OP (0) = ON THEN
OP (0,0FF)
ELSE
OP (0,0N)
ENDIF

Example 2: regional operation
OP(0,7,3FF) 'bit0-bit7 full open
DELAY (1000)

OP(0,7,0)

OP(8,15,$FF) 'bit8-bit15 full open
DELAY/(1000)
OP(8,15,0)

OP(0,15,3FFFF) 'bit0-bit15 full open
DELAY/(1000)
OP(0,15,0)

OP(0,31,$FFFFFFFF) 'bit0-bit31 full open
DELAY/(1000)

515

OP(0,31,0)

Instructions

READ_OP,MOVE_OP

AOUT--Analog Output

Type Input and output instructions and functions
Description | Analog channel output:
12-bit scale range: 0~4095, mapped voltage: 0-10v.
16-bit scale range: 0~65536, mapped voltage: 0-10v.
AOQOUT(2) relates to parallel port 0~255, which is used to set the power of
laser, such as, valid in ZMC408SCAN and 504SCAN.
Grammar AOUT (channel) = value
channel analog output channels:0-63
DA channel number is related to dial-up switch configuration on expansion
module, start value is (4+dial-up value*4), see hardware manual for
reference.
Controller General
Example AOUT(1)=0 ‘close output DA channel 1.
AOUT(1) = 4095 'DAI output voltage is 10V.
Instructions | AIN

READ_OP--Read Outputs

Type Input and output functions
Description Read outputs status.
Same as OP, output as per bits in terms of multi-output operation.

Grammar READ_OP ([firstnum[,[finalnum])

firstnum first output number, starts from 0.

finalnum last output number, starts from 0, it reads single output

status if no this parameter

Controller General
Example 'reverse output 0

IF READ_OP (0) = ON THEN
OP (0, OFF)

ELSE
OP (0, ON)

ENDIF

Instructions

OoP

516

EXIO_DIR - Configure EXIO Interface

Type Input and output functions
Description | Assign inputs and outputs of EXIO expansion interface as per bit, and
it needs to be used together with customized adapter board.
Use Fiber adapter board IO configuration instruction “EXIO_DIR(O,
$8FFFF), YAG adapter board 10 configuration instruction “EXIO_DIR(O0,
$FCBFE) and SPI adapter board 10 configuration instruction
“EXIO_DIR(0, SFFFFA).
Grammar Command grammar: Exio_Dir(isel, idirbit)
Function grammar: Exio_Dir(isel)
isel: Exio selection, fix O currently
idirbit: assign inputs and outputs as per bit, 1-output, O—input (default)
Controller ZMC408SCAN
Example EXI0O_DIR(0, $8FFFF) 'Fiber adapter board

Instructions

oP

12.3 Position Comparison Output Instructions

PSWITCH--Position Comparison by Software

Type Inputs and Outputs Instructions
Description Operate outputs based on result of position comparison.
If more than one PSWITCH are mapped to the same output, then relevant
comparers should be arranged in order.
For pulse type motor, when ATYPE=4, it is the MPOS. Default
ATYPE=1/7, it’s DPOS.
Grammar PSWITCH(num,enable,[,axis,op num,op state,set pos,reset pos])
num: comparer NO., ZM1XX has 16 comparers, NO.:0-15.
enable: enable comparers, ON-Start, OFF-Cancel.
axis: axis NO. which position is required.
op num: I0s to be operated.
op state: output status, 1-output is ON in followed position range, 0
output is OFF in followed position range.
set pos: set start position that output activates. Unit is units.
reset pos: set position that output reset. Unit is units.
Different controllers support different comparison numbers, use ?*max to
print and check max_pswitch parameters to determine the number.
Controller General

517

RAPIDSTOP(2)

WAIT IDLE

DELAY(1000)

ERRSWITCH =3

BASE(0,1) 'select axis NO.
ATYPE=1,1 ‘pulse type stepper or servo
DPOS =0,0

UNITS=1,1 ‘pulse amount

SPEED =10000,10000
ACCEL=SPEED(0)*10,SPEED(1)*10
DECEL=SPEED(0)*10,SPEED(1)*10
REP_OPTION=1,1 'set coordinate cycle range: 0 ~ +REP_DIST
REP_DIST=1000,1000

TRIGGER

MOVE(10000,8000)

PSWITCH(0,0N,0,0,0N,500,520)
PSWITCH(1,0N,1,1,0N,300,400)

END

DPOS(0) vertical scale 1000, no offset
MSPEED(0) vertical scale 10000, no offset
OP(0) vertical scale 1, no offset

DPOS(0) vertical scale 2000, offset -2000
MSPEED(0) vertical scale 10000, offset -10000
OP(0) vertical scale 1, offset -1

5 MSPEED(1) in: Max:6248.01|

As former example, just modify some instruction as follow:
REP_OPTION=0,0
'set coordinate cycle range: -REP_DIST~+REP_DIST

DPOS(0) vertical scale 1000, no offset

518

MSPEED(0) vertical scale 10000, no offset
OP(0) vertical scale 1, no offset

DPOS(0) vertical scale 2000, offset -2000
MSPEED(0) vertical scale 10000, offset -10000
OP(0) vertical scale 5, offset -1

Min:0.00 Max:6248.01

Min:0.0(Aax:1.00

HW_PSWITCH

HW _ PSWITCH—Hardware Position Comparison Output

AXis Instructions

Position Comparison Output by hardware, different axes are mapped
to different outputs.

Default mapping relationship: axis 0-5 are mapped to output 0,1,2,3,0,1.
There are totally 4 hardware comparison outputs.

Two HW_PSWITCH can be called continuously, and the number of called
instructions can be gained by related functions.

Each compare point is triggered, present output electrical level will be
reversed.

HW busffers are 1024, totally 1024 HW instrutions can be called
continuously.

After HW instrution is called, it won’t be affected by followed coordinate
change caused by related functions, coordinate saved in TABLE should be
correct, it is better to modify coordinate by manual, and try to avoid conflict
between HW instrution and change caused by auto coordinate
cycle(REP_OPTION) .

Since coordinate is not determined by procedure in auto coordinate cycle

519

mode, not able to confirm if HW is before or after the coordinate, so
coordinate in TABLE can also not be confirmed.

This instruction only supports pulse axis hardware position comparison
output, use HW_PSWITCH2 in fieldbus axis.

For pulse type motor, when ATYPE=4, it is the MPOS. Default
ATYPE=1/7, it’s DPOS.

HW_PSWITCH(mode, direction, reserve, tablestart, tableend)
Buff=HW_PSWITCH([axisnum])
mode: 1-start comparer, 2-stop and delete comparer that’s not finished
direction; 0-negative direction of coordinate, 1-positive direction
of coordinate, 2-no direction.
reserve: reserved
tablestart: TABLE NO. that saves first comparison coor